Advertisement

Plants at Bodybuilding: Development of Plant “Muscles”

  • Tatyana Gorshkova
  • Polina Mikshina
  • Anna Petrova
  • Tatyana Chernova
  • Natalia Mokshina
  • Oleg Gorshkov
Chapter

Abstract

Plant fibers are the important elements to shape the mechanical properties of plant body, especially in the organs that have already ceased elongation. The major distinguishing parameters of fibers are a highly prosenchimatous cell shape and an increased cell wall thickness as compared to other types of plant cells. The increase of fiber cell length is largely achieved by intrusive growth—elongation with the increased rate as compared to the adjacent cells and squeezing between them along the middle lamellae. The highly pronounced intrusive growth is the cause of fiber bundle formation. Thickening of cell wall in fibers of many plant species is supplied by deposition of the tertiary cell wall (G-layer) of peculiar design and properties. Tension of cellulose microfibrils is developed in this cell wall layer, providing the contractile properties that permit to move plant organs. We summarize the currently available data describing the inherent to fibers mechanisms by which they attain their exclusive length (intrusive growth) and extreme cell wall thickness (tertiary cell wall deposition) and consider the results obtained by finite element modeling to realize the cause of cellulose microfibril tension. The suggested hypothesis is based on the entrapment of tissue- and stage-specific version of rhamnogalacturonan I between laterally interacting cellulose microfibrils.

Keywords

Plant fibers Intrusive growth Cell wall Tertiary cell wall G-layer Rhamnogalacturonan I Cellulose Tension of cellulose microfibrils 

Notes

Acknowledgements

The study was supported by Russian Science Foundation (project 16-14-10256—GT, CT, MN, GO; comparison of sets of genes up-regulated in intrusively elongating fibers and growing in vitro pollen tube; analysis of post-deposition modification of tertiary cell wall), and Program of the President of Russian Federation for Young Scientists (project MK-8393.2016.4—MP; analysis of the rhamnogalacturonan I ability to gelation and finite element modeling of tension creation in tertiary cell wall; project MK-8014.2016.4—PA, MN; study of the tissue-specific galactosidase role in the gelatinous cell wall formation).

References

  1. Ageeva M, Petrovska B, Kieft H et al (2005) Intrusive growth of flax phloem fibres is of intercalary type. Planta 222:565–574CrossRefPubMedGoogle Scholar
  2. Akin DE (2013) Linen most useful: perspectives on structure, chemistry, and enzymes for retting flax. ISRN Biotechnol 2013:186534CrossRefPubMedGoogle Scholar
  3. Alméras T, Clair B (2016) Critical review on the mechanisms of maturation stress generation in trees. J R Soc Interface 13(122):20160550CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bedinger PA, Hardeman KJ, Loukides CA (1994) Travelling in style: the cell biology of pollen. Trends Cell Biol 4:132–138CrossRefPubMedGoogle Scholar
  5. Bos HL (2004) The potential of flax fibres as reinforcement for composite materials. Dissertation, Technische Universiteit EindhovenGoogle Scholar
  6. Bosch M, Hepler PK (2005) Pectin methylesterases and pectin dynamics in pollen tubes. Plant Cell 17:3219–3226CrossRefPubMedPubMedCentralGoogle Scholar
  7. Burk DH, Liu B, Zhong R, Morrison WH, Ye Z-H (2001) A katanin-like protein regulates normal cell wall biosynthesis and cell elongation. Plant Cell 13(4):807–827CrossRefPubMedPubMedCentralGoogle Scholar
  8. Canaveze Y, Machado SR (2016) The occurrence of intrusive growth associated with articulated laticifers in Tabernaemontana catharinensis A.DC., a New Record for Apocynaceae. Int J Plant Sci 177(5):458–467CrossRefGoogle Scholar
  9. Cassan-Wang H, Goué N, Saidi MN et al (2013) Identification of novel transcription factors regulating secondary cell wall formation in Arabidopsis. Front Plant Sci 4:189CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chang SS, Clair B, Ruelle J et al (2009) Mesoporosity as a new parameter for understanding tension stress generation in trees. J Exp Bot 60(11):3023–3030CrossRefPubMedGoogle Scholar
  11. Chang SS, Quignard F, Almeras T, Clair B (2015) Mesoporosity changes from cambium to mature tension wood: a new step toward the understanding of maturation stress generation in trees. New Phytol 205(3):1277–1287CrossRefPubMedGoogle Scholar
  12. Chebli Y, Kaneda M, Zerzour R, Geitmann A (2012) The cell wall of the Arabidopsis pollen tube—spatial distribution, recycling, and network formation of polysaccharides. Plant Physiol 160(4):1940–1955CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chernova TE, Gurjanov OP, Brach NB et al (2007) Variability in the composition of tissue-specific galactan from flax fibers. Russ J Plant Physiol 54(6):876–884CrossRefGoogle Scholar
  14. Chernova TE, Mikshina PV, Salnikov VV et al (2018) Development of distinct cell wall layers both in primary and secondary phloem fibers of hemp (Cannabis sativa L.). Ind Crop Prod 117:97–109CrossRefGoogle Scholar
  15. Clair B, Gril J, Di Renzo F et al (2008) Characterization of a gel in the cell wall to elucidate the paradoxical shrinkage of tension wood. Biomacromolecules 9:494–498CrossRefPubMedGoogle Scholar
  16. Clair B, Alteyrac J, Gronvold A et al (2013) Patterns of longitudinal and tangential maturation stresses in Eucalyptus nitens plantation trees. Ann For Sci 70:801–811CrossRefGoogle Scholar
  17. Dadswell HE, Wardrop AB (1955) The structure and properties of tension wood. Holzforschung 9(4):97–104CrossRefGoogle Scholar
  18. Dawson C, Vincent JFV, Rocca A-M (1997) How pine cones open. Nature 390:668CrossRefGoogle Scholar
  19. Egholm RD, Christensen SF, Szabo P (2006) Stress-strain behavior in uniaxial compression of polymer gel beads. J Appl Polym Sci 102:3037–3047CrossRefGoogle Scholar
  20. Elbaum R, Zaltzman L, Burgert I, Fratzl P (2007) The role of wheat awns in the seed dispersal unit. Science 316(5826):884–886CrossRefPubMedGoogle Scholar
  21. Esau K (1943) Vascular differentiation in the vegetative shoot of linum. III. The origin of the bast fibers. Am J Bot 30(8):579–586CrossRefGoogle Scholar
  22. Esau K (1965) Plant anatomy, 2nd edn. Wiley, New YorkGoogle Scholar
  23. Evert RF (2006) Esau’s plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development, 3rd edn. Wiley, New YorkCrossRefGoogle Scholar
  24. Fahn A (1990) Plant anatomy, 4th edn. Pergamon Press, OxfordGoogle Scholar
  25. Fan L-M, Wang Y-F, Wang H, Wu W-H (2001) In vitro Arabidopsis pollen germination and characterisation of the inward potassium currents in Arabidopsis pollen grain protoplasts. J Exp Bot 52:1603–1614CrossRefPubMedGoogle Scholar
  26. Geitmann A, Ortega JKE (2009) Mechanics and modeling of plant cell growth. Trends Plant Sci 14(9):467–478CrossRefPubMedGoogle Scholar
  27. Geitmann A (2016) Actuators acting without actin. Cell 166(1):15–17CrossRefPubMedGoogle Scholar
  28. Gorshkov O, Mokshina N, Gorshkov V et al (2017) Transcriptome portrait of cellulose-enriched flax fibers at advanced stage of specialization. Plant Mol Biol 93:431–449CrossRefPubMedGoogle Scholar
  29. Gorshkova TA, Wyatt SE, Salnikov VV et al (1996) Cell-wall polysaccharides of developing flax plants. Plant Physiol 110(2):721–729CrossRefPubMedPubMedCentralGoogle Scholar
  30. Gorshkova TA, Salnikov VV, Pogodina NM et al (2000) Composition and distribution of cell wall phenolic compounds in flax (Linum usitatissimum L.) stem tissues. Ann Bot 85(4):477–486CrossRefGoogle Scholar
  31. Gorshkova TA, Sal’nikov VV, Chemikosova SB et al (2003) The snap point: transition point in Linum usitatissimum L. bast fiber development. Ind Crops Prod 18:213–221CrossRefGoogle Scholar
  32. Gorshkova TA, Chemikosova SB, Salnikov VV et al (2004) Occurrence of cell-specific galactan is coinciding with bast fibre developmental transition in flax. Ind Crops Prod 19:217–224CrossRefGoogle Scholar
  33. Gorshkova T, Morvan C (2006) Secondary cell-wall assembly in flax phloem fibres: Role of galactans. Planta 223:149–158CrossRefPubMedGoogle Scholar
  34. Gorshkova TA, Mikshina PV, Ibragimova NN et al (2009) Pectins in secondary cell walls: modifications during cell wall assembly and maturation. In: Schols HA, Visser RGF, Voragen AGJ (eds) Pectins and pectinases. Wageningen Academic Publishers, The Netherlands, pp 149–165Google Scholar
  35. Gorshkova TA, Gurjanov OP, Mikshina PV et al (2010) A special type of secondary cell wall, formed by plant fibers. Russ J Plant Physiol 57:346–361CrossRefGoogle Scholar
  36. Gorshkova T, Brutch N, Chabbert B et al (2012) Plant fibre formation: state of the art, recent and expected progress, and open questions. CRC Crit Rev Plant Sci 31:201–228CrossRefGoogle Scholar
  37. Gorshkova T, Mokshina N, Chernova T et al (2015) Aspen tension wood fibers contain β-(1 → 4)-galactans and acidic arabinogalactans retained by cellulose microfibrils in gelatinous walls. Plant Physiol 169(3):2048–2063PubMedPubMedCentralGoogle Scholar
  38. Gorshkova TA, Chernova TE, Gorshkov VY et al (2018) Intrusive growth of flax fibers: major players revealed by transcriptome analysis (in press)Google Scholar
  39. Gorshkova T, Chernova T, Mokshina N et al (2018) Plant “muscles”: fibers with a tertiary cell wall. New Phytol 218(1):66–72CrossRefPubMedGoogle Scholar
  40. Goswami L, Dunlop JWC, Jungnikl K et al (2008) Stress generation in the tension wood of poplar is based on the lateral swelling power of the G-layer. Plant J 56:531–538CrossRefPubMedGoogle Scholar
  41. Gray-Mitsumune M, Mellerowicz EJ, Abe H et al (2004) Expansins abundant in secondary xylem belong to subgroup A of the α-expansin gene family. Plant Physiol 135:1552–1564CrossRefPubMedPubMedCentralGoogle Scholar
  42. Gray-Mitsumune M, Blomquist K, McQueen-Mason S et al (2008) Ectopic expression of a wood-abundant expansin PttEXPA1 promotes cell expansion in primary and secondary tissues in aspen. Plant Biotechnol J 6:62–72PubMedGoogle Scholar
  43. Guerriero G, Hausman J-F, Cai G (2014) No stress! Relax! Mechanisms governing growth and shape in plant cells. Int J Mol Sci 15:5094–5114CrossRefPubMedPubMedCentralGoogle Scholar
  44. Gurjanov OP, Gorshkova TA, Kabel MA et al (2007) MALDI-TOF MS evidence for the linking of flax bast fibre galactan to rhamnogalacturonan backbone. Carbohydr Polym 67:86–96CrossRefGoogle Scholar
  45. Gurjanov OP, Ibragimova NN, Gnezdilov OI, Gorshkova TA (2008) Polysaccharides, tightly bound to cellulose in the cell wall of flax bast fibre: Isolation and identification. Carbohydr Res 72:719–729CrossRefGoogle Scholar
  46. Hejnowicz Z (1980) Tensional stress in the cambium and its developmental significance. Am J Bot 67:1–5CrossRefGoogle Scholar
  47. Hepler PK, Winship LJ (2015) The pollen tube clear zone: clues to the mechanism of polarized growth. J Integr Plant Biol 57(1):79–92CrossRefPubMedGoogle Scholar
  48. Hubbe MA (2006) Bonding between cellulosic fibers in the absence and presence of dry-strength agents. BioResources 1(2):281–318Google Scholar
  49. Ioelovich M (2008) Cellulose as a nanostructured polymer: a short. BioResources 3(4):1403–1418Google Scholar
  50. Jura-Morawiec J (2017) Atypical origin, structure and arrangement of secondary tracheary elements in the stem of the monocotyledonous dragon tree, Dracaena draco. Planta 245(1):93–99CrossRefPubMedGoogle Scholar
  51. Larson PR (1994) The vascular cambium. Development and structure. Springer, BerlinCrossRefGoogle Scholar
  52. Lev-Yadun S (2001) Intrusive growth—the plant analog of dendrite and axon growth in animals. New Phytol 150:508–512CrossRefGoogle Scholar
  53. Lev-Yadun S, Dafni A, Flaishman MA et al (2004) Plant coloration undermines herbivorous insect camouflage. BioEssays 26:1126–1130CrossRefPubMedGoogle Scholar
  54. Lev-Yadun S (2015) Plant development: cell movement relative to each other is both common and very important. Plant Sig Behav 10(3):e991566–1CrossRefGoogle Scholar
  55. Li WT, He M, Wang J, Wang YP (2013) Zinc finger protein (ZFP) in plants-a review. POJ 6(6):474–480Google Scholar
  56. Mazur E, Kurczynska EU (2012) Rays, intrusive growth, and storied cambium in the inflorescence stems of Arabidopsis thaliana (L.) Heynh. Protoplasma 249:217–220CrossRefPubMedGoogle Scholar
  57. Mazur E, Kurczyńska EU, Friml J (2014) Cellular events during interfascicular cambium ontogenesis in inflorescence stems of Arabidopsis. Protoplasma 251:1125–1139CrossRefPubMedGoogle Scholar
  58. Mellerowicz EJ, Baucher M, Sundberg B, Boerjan W (2001) Unravelling cell wall formation in the woody dicot stem. Plant Mol Biol 47:274–329CrossRefGoogle Scholar
  59. Mellerowicz EJ (2006) Xylem cell expansion—Lessons from poplar. In: Hayashi T (ed) The science and lore of the plant cell wall. Universal Publishers, Brown Walker Press, Boca RatonGoogle Scholar
  60. Mellerowicz EJ, Immerzeel P, Hayashi T (2008) Xyloglucan: the molecular muscle of trees. Ann Bot 102:659–665CrossRefPubMedPubMedCentralGoogle Scholar
  61. Mellerowicz EJ, Gorshkova TA (2012) Tensional stress generation in gelatinous fibres: a review and possible mechanism based on cell-wall structure and composition. J Exp Bot 63:551–565CrossRefPubMedGoogle Scholar
  62. Mikshina PV, Gurjanov OP, Mukhitova FK et al (2012) Structural details of pectic galactan from the secondary cell walls of flax (Linum usitatissimum L.) phloem fibres. Carbohydr Polym 87:853–861CrossRefGoogle Scholar
  63. Mikshina PV, Chernova TE, Chemikosova SB et al (2013) Cellulosic fibers: role of matrix polysaccharides in structure and function. In: van de Ven T, Godbout L (eds) Cellulose—fundamental aspects. InTech, Rijeka, pp 91–113Google Scholar
  64. Mikshina PV, Idiyatullin BZ, Petrova AA et al (2015a) Physicochemical properties of complex rhamnogalacturonan I from gelatinous cell walls of flax fibers. Carbohydr Polym 117:853–861CrossRefPubMedGoogle Scholar
  65. Mikshina PV, Petrova AA, Idiyatullin BZ et al (2015b) Tissue-specific rhamnogalacturonan I forms the gel with hyperelastic properties. Biochem (Mosc) 80:915–924CrossRefGoogle Scholar
  66. Mikshina PV, Makshakova ON, Petrova AA et al (2017) Gelation of rhamnogalacturonan I is based on galactan side chain interaction and does not involve chemical modifications. Carbohydr Polym 171:143–151CrossRefPubMedGoogle Scholar
  67. Mokshina NE, Ibragimova NN, Salnikov VV et al (2012) Galactosidase of plant fibers with gelatinous cell wall: identification and localization. Russ J Plant Physiol 59(2):246–254CrossRefGoogle Scholar
  68. Müller M, Burghammer M, Sugiyama J (2006) Direct investigation of the structural properties of tension wood cellulose microfibrils using microbeam X–ray fibre diffraction. Holzforschung 60:474–479CrossRefGoogle Scholar
  69. Nezhad AS, Geitmann A (2013) The cellular mechanics of an invasive lifestyle. J Exp Bot 64(15):4709–4728CrossRefGoogle Scholar
  70. Perez S, Mazeau K (2004) Conformations, structures, and morphologies of celluloses. In: Dumitriu S (ed) Polysaccharides, structure and functional versatility, 2nd edn. CRC Press, New York, pp 41–68Google Scholar
  71. Qin Y, Leydon AR, Manziello A et al (2009) Penetration of the stigma and style elicits a novel transcriptome in pollen tubes, pointing to genes critical for growth in a pistil. PLoS Genet 5:e1000621CrossRefPubMedPubMedCentralGoogle Scholar
  72. Roach MJ, Mokshina NY, Badhan A et al (2011) Development of cellulosic secondary walls in flax fibers requires β-galactosidase. Plant Physiol 156(3):1351–1363CrossRefPubMedPubMedCentralGoogle Scholar
  73. Salnikov VV, Ageeva MV, Gorshkova TA (2008) Homofusion of Golgi secretory vesicles in flax phloem fibers during formation of the gelatinous secondary cell wall. Protoplasma 233:269–273CrossRefPubMedGoogle Scholar
  74. Schreiber N, Gierlinger N, Pütz N et al (2010) G-fibres in storage roots of Trifolium pratense (Fabaceae): tensile stress generators for contraction. Plant J 61:854–861CrossRefPubMedGoogle Scholar
  75. Siedlecka A, Wiklund S, Péronne M-A et al (2008) Pectin methyl esterase inhibits intrusive and symplastic cell growth in developing wood cells of Populus. Plant Physiol 146:554–565CrossRefPubMedPubMedCentralGoogle Scholar
  76. Snegireva AV, Ageeva MV, Vorob’ev VN et al (2006) Plant fiber intrusive growth characterized by NMR method. Russ J Plant Physiol 53:163–168CrossRefGoogle Scholar
  77. Snegireva A, Ageeva M, Amenitskii S et al (2010) Intrusive growth of sclerenchyma fbers. Russ J Plant Physiol 57:342–355CrossRefGoogle Scholar
  78. Snegireva A, Chernova T, Ageeva M et al (2015) Intrusive growth of primary and secondary phloem fibres in hemp stem determines fibre-bundle formation and structure. AoB Plants 7:plv061CrossRefPubMedPubMedCentralGoogle Scholar
  79. Sturcova A, His I, Apperley DC et al (2004) Structural details of crystalline cellulose from higher plants. Biomacromol 5:1333–1339CrossRefGoogle Scholar
  80. Viëtor RJ, Newman RH, Ha MA et al (2002) Conformational features of crystal-surface cellulose from higher plants. Plant J 30:721–731CrossRefGoogle Scholar
  81. Wang Y, Zhang WZ, Song LF et al (2008) Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol 148:1201–1211CrossRefPubMedPubMedCentralGoogle Scholar
  82. Wang SS, Diao WZ, Yang X et al (2015) Arabidopsis thaliana CML25 mediates the Ca(2 +) regulation of K(+) transmembrane trafficking during pollen germination and tube elongation. Plant Cell Environ 38(11):2372–2386CrossRefPubMedGoogle Scholar
  83. Wenham MW, Cusick F (1975) The growth of secondary wood fibres. New Phytol 74:247–261CrossRefGoogle Scholar
  84. Yamamoto H, Ruelle J, Arakawa Y et al (2010) Origin of the characteristic hygro-mechanical properties of the gelatinous layer in tension wood from Kunugi oak (Quercus acutissima). Wood Sci Technol 44:149–163CrossRefGoogle Scholar
  85. Yang Zh (1998) Signaling tip growth in plants. Curr Opin Plant Biol 1:525–530CrossRefPubMedGoogle Scholar
  86. Zhong R, Ye Zh-H (1999) IFL1, a gene regulating interfascicular fiber differentiation in Arabidopsis, encodes a homeodomainleucine zipper protein. Plant Cell 11:2139–2152CrossRefPubMedPubMedCentralGoogle Scholar
  87. Zhong R, Burk DH, Ye ZH (2001) Fibers. A model for studying cell differentiation, cell elongation, and cell wall biosynthesis. Plant Physiol 126(2):477–479CrossRefPubMedPubMedCentralGoogle Scholar
  88. Zhong R, Demura T, Ye Zh-H (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell 18(11):3158–3170CrossRefPubMedPubMedCentralGoogle Scholar
  89. Zhong R, Ye Zh-H (2014) Complexity of the transcriptional network controlling secondary wall biosynthesis. Plant Sci 229:193–207CrossRefPubMedGoogle Scholar
  90. Zimmermann U, Husken D, Schulze ED (1980) Direct turgor pressure measurements in individual leaf cells of Tradescantia virginiana. Planta 149:445–453CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Tatyana Gorshkova
    • 1
  • Polina Mikshina
    • 1
  • Anna Petrova
    • 1
  • Tatyana Chernova
    • 1
  • Natalia Mokshina
    • 1
  • Oleg Gorshkov
    • 1
  1. 1.The Laboratory of Plant Cell Growth MechanismsKazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RASKazanRussia

Personalised recommendations