Twisting Growth in Plant Roots

  • Hirofumi WadaEmail author
  • Daichi Matsumoto


One of the fundamental problems in plant morphogenesis is the molecular and cellular basis of left-right asymmetry that often leads to various chiral structures such as the coils of tendrils and twisted leaves. The twisting mutants of the Arabidopsis roots and hypocotyl exhibit a helical pattern of epidermal cell files with a handedness that is opposite to that of the underlying cortical microtubule arrays in the epidermis. These mutants offer the unique opportunity to investigate the genetic basis of twisting in plants, particularly in the context of cortical microtubules. In this chapter, we address the importance of large-scale mechanical forces to understand the mechanism of this hierarchical helical order, with a particular emphasis on the role of tissue tension combined with the stresses generated by differential growth. Physical processes such as elasticity and geometry might be important factors to coordinate the chirality across different length scales and to organize an entire plant body.



We are grateful to Takashi Hashimoto for sharing the images shown in Figs. 1 and 2 and for valuable discussions. We also thank Tobias Baskin for suggesting relevant literature on twisted cell growth (Probine 1963; Sellen 1983).


  1. Abraham Y, Tamburu C, Klein E, Dunlop JWC, Fratzl P, Raviv U, Elbaum R (2011) Tilted cellulose arrangement as a novel mechanism for hygroscopic coiling in the stork’s bill awn. J R Soc Interf 9:640–647CrossRefGoogle Scholar
  2. Aharoni H, Abraham Y, Elbaum R, Sharon E, Kupferman R (2012) Emergence of spontaneous twist and curvature in non-euclidean rods: Application to erodium plant cells. Phys Rev Lett 108(238):106Google Scholar
  3. Armon S, Efrati E, Kupferman R, Sharon E (2011) Geometry and mechanics in the opening of chiral seed pods. Science 333:1726–1730CrossRefPubMedGoogle Scholar
  4. Baskin TI (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21:203–222CrossRefPubMedGoogle Scholar
  5. Baskin TI, Jensen OE (2013) On the role of stress anisotropy in the growth of stems. J Exp Bot 64:4697–4707CrossRefPubMedGoogle Scholar
  6. Boudaoud A (2010) An introduction to the mechanics of morphogenesis for plant biologists. Trends Plant Sci 15:353–360CrossRefPubMedGoogle Scholar
  7. Burgert I, Keplinger T (2013) Plant micro- and nanomechanics: experimental techniques for plant cell-wall analysis. Exp Bot 64:4635–4649CrossRefGoogle Scholar
  8. Buschmann H, Hauptmann M, Niessing D, Lloyd CW, Schäffner AR (2009) Helical growth of the arabidopsis mutant tortifolia2 does not depend on cell division patterns but involves handed twisting of isolated cells. Plant Cell 21:2090–2106CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dumais J (2012) Can mechanics control pattern formation in plants? Curr Opin Plant Biol 10:58–62CrossRefGoogle Scholar
  10. Dumais J (2013) Modes of deformation of walled cells. J Exp Bot 64:4681–4695CrossRefPubMedGoogle Scholar
  11. Dumais J, Forterre Y (2012) “Vegetable Dynamicks”: the role of water in plant movements. Annu Rev Fluid Mech 44:453–478CrossRefGoogle Scholar
  12. Elbaum R, Zaltzman L, Burgert I, Fratzl P (2007) The role of wheat awns in the seed dispersal unit. Science 316:884–886CrossRefPubMedGoogle Scholar
  13. Furutani I, Watanabe Y, Prieto R, Masukawa M, Suzuki K, Naoi K, Thitamadee S, Shikanai T, Hashimoto T (2000) The spiral genes are required for directional control of cell elongation in arabidopsis thaliana. Development 127:4443–4453PubMedGoogle Scholar
  14. Geitmann A, Ortega JKE (2009) Mechanics and modeling of plant cell growth. Trends Plant Sci 14:467–478CrossRefPubMedGoogle Scholar
  15. Gerbode SJ, Puzey JR, McCormick AG, Mahadevan L (2012) How the cucumber tendril coils and overwinds. Science 337:1087–1091CrossRefPubMedGoogle Scholar
  16. Goriely A, Tabor M (1998) Spontaneous helix hand reversal and tendril perversion in climbing plants. Phys Rev Lett 80:1564CrossRefGoogle Scholar
  17. Goriely A, Tabor M (2011) Spontaneous rotational inversion in phycomyces. Phys Rev Lett 106(138):103Google Scholar
  18. Goriely A, Robertson-Tessi M, Tabor M, Vandiver R (2008) Elastic growth models. In: Mondaini RP, Pardalos PM (eds) Mathematical modeling of biosystems. Springer, Berlin, Heidelberg, pp 1–44Google Scholar
  19. Green PB (1994) Connecting gene and hormone action to form, pattern and organogenesis. J Exp Bot 45:1775–1788Google Scholar
  20. Hamant O, Heisler MG, Joensson H, Krupinski P, Uyttewaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerowitz EM, Couder Y, Traas J (2008) Developmental patterning by mechanical signals in arabidopsis. Science 322:1650–1655CrossRefGoogle Scholar
  21. Hannezo E, Prost J, Joanny JF (2012) Mechanical instability of biological tubes. Phys Rev Lett 109(018):101Google Scholar
  22. Hashimoto T (2002) Molecular genetic analysis of left-right handedness in plants. Phil Trans R Soc Lond B 357:799–808CrossRefGoogle Scholar
  23. Hawkins RJ, Tindemans SH, Mulder BM (2010) Model for the orientational ordering of the plant microtubule cortical array. Phys Rev E 82(011):911Google Scholar
  24. Henley CL (2012) Possible origins of macroscopic left-right asymmetry in organisms. J Stat Phys 148:741–775CrossRefGoogle Scholar
  25. Himmelspach R, Williamson RE, Wasteneys GO (2013) Cellulose microbril alignment recovers from dcb-induced disruption despite microtubule disorganization. Plant J 36:565–575CrossRefGoogle Scholar
  26. Ishida T, Kaneko Y, Iwano M, Hashimoto T (2007a) Helical microtubule arrays in a collection of twisting tubulin mutants of arabidopsis thaliana. Proc Natl Acad Sci USA 104:8544–8549CrossRefPubMedGoogle Scholar
  27. Ishida T, Thitamadee S, Hashimoto T (2007b) Twisted growth and organization of cortical microtubules. J Plant Res 120:61–70CrossRefPubMedGoogle Scholar
  28. Kamiya N, Tazawa M, Takada T (1963) The relation of tugor pressure to cell volume in nitella with special reference to mechanical properties of the cell wall. Protoplasma 57:501–521CrossRefGoogle Scholar
  29. Landrein B, Bringmann M, Lathe R, Vouillot C, Ivakov A, Boudaoud A, Persson S, Hamant O (2013) Impaired cellulose synthase guidance leads to stem torsion and twists phyllotactic patterns in arabidopsis. Curr Biol 23:895–900CrossRefPubMedGoogle Scholar
  30. Levin M (2005) Left-right asymmetry in embryonic development: a comprehensive review. Mech Dev 122:3–25CrossRefPubMedGoogle Scholar
  31. Liang H, Mahadevan L (2011) Growth, geometry, and mechanics of a blooming lily. Proc Natl Acad Sci USA 108:5516–5521CrossRefPubMedGoogle Scholar
  32. Lockhart JA (1965) An analysis of irreversible plant cell elongation. J Theor Biol 8:264–275CrossRefPubMedGoogle Scholar
  33. Marder M, Sharon E, Smith S, Roman B (2003) Theory of edges of leaves. Europhys Lett 62:498–504CrossRefGoogle Scholar
  34. Mirabet V, Das P, Boudaoud A, Hamant O (2011) The role of mechanical forces in plant morphogenesis. Ann Rev Plant Biol 62:365–385CrossRefGoogle Scholar
  35. Moulia B (2013) Plant biomechanics and mechanobiology are convergent paths to flourishing interdisciplinary research. J Exp Bot 64:4617–4633CrossRefPubMedGoogle Scholar
  36. Muratov A, Baulin VA (2015) Mechanism of dynamic reorientation of cortical microtubules due to mechanical stress. Biohys Chem 207:82–89CrossRefGoogle Scholar
  37. Ortega J (1985) Augmented growth equation for cell wall expansion. Plant Physiol 79:318–320CrossRefPubMedPubMedCentralGoogle Scholar
  38. Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495CrossRefPubMedGoogle Scholar
  39. Peaucelle A, Wightman R, Hoefte H (2015) The control of growth symmetry breaking in the arabidopsis hypocotyl. Curr Biol 25:1746–1752CrossRefPubMedGoogle Scholar
  40. Peters WS, Thomos AD (1996) The history of tissue tension. Ann Bot 77:657–665CrossRefPubMedGoogle Scholar
  41. Probine MC (1963) Cell growth and the structure and mechanical properties of the wall in internodal cells of nitella opaca-iii. spiral growth and cell wall structure. J Exp Bot 14:101–113CrossRefGoogle Scholar
  42. Richter G, Monshausen GB, Krol A, Gilroy S (2009) Mechanical stimuli modulate lateral root organogenesis. Plant Physiol 151:1855–1866CrossRefPubMedPubMedCentralGoogle Scholar
  43. Robinson S, Burian A, Couturier E, Landrein B, Louveaux M, Neumann ED, Peaucelle A, Weber A, Nakayama N (2013) Mechanical control of morphogenesis at the shoot apex. Exp Bot 64:4729–4744CrossRefGoogle Scholar
  44. Roelofsen PA (1966) Ultrastructure of the wall in growing cells and its relation to the direction of the growth. Adv Bot Res 2:69–149CrossRefGoogle Scholar
  45. Savin T, Kurpios NA, Shyer AE, Florescu P, Liang H, Mahadevan L, Tabin CJ (2011) On the growth and form of the gut. Nature 476:57–63CrossRefPubMedPubMedCentralGoogle Scholar
  46. Schopfer P (2006) Biomechanics of plant growth. Am J Bot 93:1415–1425CrossRefPubMedGoogle Scholar
  47. Schulgasser K, Witztum A (2004) Spiralling upward. J Theor Biol 230:275–280CrossRefPubMedGoogle Scholar
  48. Sellen DB (1983) The response of mechanically anisotropic cylinderical cells to multiaxial stress. J Exp Bot 34:681–687CrossRefGoogle Scholar
  49. Sharon E, Efrati E (2010) The mechanics of non-euclidean plates. Soft Matter 6:5693–5704CrossRefGoogle Scholar
  50. Shraiman BI (2005) Mechanical feedback as a possible regulator of tissue growth. Proc Natl Acad Sci USA 102:3318–3323CrossRefPubMedGoogle Scholar
  51. Silk WK (1989) Growth rate patterns which maintain a helical tissue tube. J Theor Biol 138:311–327CrossRefGoogle Scholar
  52. Smyth DR (2016) Helical growth in plant organs: mechanisms and significance. Development 143:3272–3282CrossRefPubMedGoogle Scholar
  53. Thitamadee S, Tuchihara K, Hashimoto T (2002) Microtubule basis for left-handed helical growth in arabidopsis. Nature (London) 417:193–196CrossRefPubMedGoogle Scholar
  54. Thompson DW (1992) On growth and form: the complete, Revised edn. Dover, New YorkCrossRefGoogle Scholar
  55. Wada H (2012) Hierarchical helical order in the twisted growth of plant organs. Phys Rev Lett 109(128):104Google Scholar
  56. Wolgemuth CW, Goldstein RE, Powers TR (2004) Dynamic supercoiling bifurcations of growing elastic filaments. Phys D 190:266–289CrossRefGoogle Scholar
  57. Yin J, Cao Z, Li C, Sheinman I, Chen X (2008) Stress-driven buckling patterns in spheroidal core/shell structures. Proc Natl Acad Sci USA 105:19,132–19,135CrossRefGoogle Scholar
  58. Zhao ZL, Zhao HP, Li BW, Nie BD, Feng XQ, Gao H (2015) Biomechanical tactics of chiral growth in emergent aquatic macrophytes. Sci Rep 5(12):610Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsRitsumeikan UniversityKusatsuJapan

Personalised recommendations