Advertisement

Molecular Mechanisms of Mechanosensing and Mechanotransduction

  • Masatsugu Toyota
  • Takuya Furuichi
  • Hidetoshi Iida
Chapter

Abstract

Mechanical stimuli, such as touch, bending, gravity, and wounding, influence plant growth and development through the activation of intracellular signaling pathways and gene expression. Therefore, mechanosensing and mechanotransduction are of vital importance and have been attracting the attention of many plant scientists for nearly 150 years. Based on recent molecular and cellular approaches, candidates for mechanosensors have been discovered. These include mechanosensitive (MS) channels, such as MscS-like (MSL) proteins, mid1-complementing activities (MCAs), and reduced hyperosmolality-induced [Ca2+]i increase 1 (OSCA1), which generate intracellular ionic signals and receptor-like kinases that trigger the activation of regulatory proteins or enzymes, including Ca2+-binding proteins, protein kinases, protein phosphatases, and transcription factors. Other possible groups of mechanosensors are intracellular filamentous structures in the cytoskeleton, such as microtubules and actin filaments, which may directly act as sensors for the deformation of intracellular structures. In this chapter, we discuss the mechanisms by which plants sense and respond to mechanical stimuli by focusing on mechanosensors along with their downstream signaling molecules, such as auxin and reactive oxygen species (ROS).

Keywords

Mechanosensitive channels Organelles Cytoskeleton Intracellular signals Long-distance signals 

List of Abbreviations

CBLs

Calcineurin B-like proteins

CICR

Ca2+-induced Ca2+ release

CIPKs

CBL-interacting protein kinases

FtsZ

Filamentous temperature-sensitive Z

GLR

Glutamate receptor-like channels

InsP3

Inositol 1,4,5-trisphosphate

MCA1

mid1-complementing activity 1

MCAs

mid1-complementing activities

MS

Mechanosensitive

MscL

Mechanosensitive channel of large conductance

MscS

Mechanosensitive channel of small conductance

MSL

MscS-like

OSCA1

Reduced hyperosmolality-induced [Ca2+]i increase 1

RAL

Rapid alkalinization factor

ROS

Reactive oxygen species

SA

Stretch-activated

TM

Transmembrane

TPC1

Two-pore channel 1

References

  1. Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffmann T, Tang YY et al (2001) A defined range of guard cell calcium oscillation parameters encodes stomatal movements. Nature 411:1053–1057PubMedCrossRefPubMedCentralGoogle Scholar
  2. Anishkin A, Loukin SH, Teng J, Kung C (2014) Feeling the hidden mechanical forces in lipid bilayer is an original sense. Proc Natl Acad Sci USA 111:7898–7905PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arimura G, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406:512–515PubMedCrossRefPubMedCentralGoogle Scholar
  4. Asai N, Nishioka T, Takabayashi J, Furuichi T (2009) Plant volatiles regulate the activities of Ca2+-permeable channels and promote cytoplasmic calcium transients in Arabidopsis leaf cells. Plant Signal Behav 4:294–300PubMedPubMedCentralCrossRefGoogle Scholar
  5. Baskin TI (2001) On the alignment of cellulose microfibrils by cortical microtubules: a review and a model. Protoplasma 215:150–171PubMedCrossRefPubMedCentralGoogle Scholar
  6. Baskin TI (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21:203–222CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baskin TI, Wilson JE, Cork A, Williamson RE (1994) Morphology and microtubule organization in Arabidopsis roots exposed to oryzalin or taxol. Plant Cell Physiol 35:935–942PubMedPubMedCentralGoogle Scholar
  8. Berridge MJ (1997) The AM and FM of calcium signalling. Nature 386:759–760CrossRefPubMedGoogle Scholar
  9. Blancaflor EB, Hasenstein KH (1993) Organization of cortical microtubules in graviresponding maize roots. Planta 191:231–237PubMedPubMedCentralGoogle Scholar
  10. Booth IR, Blount P (2012) The MscS and MscL families of mechanosensitive channels act as microbial emergency release valves. J Bacteriol 194:4802–4809PubMedPubMedCentralCrossRefGoogle Scholar
  11. Bowman CL, Gottlieb PA, Suchyna TM, Murphy YK, Sachs F (2007) Mechanosensitive ion channels and the peptide inhibitor GsMTx-4: history, properties, mechanisms and pharmacology. Toxicon 49:249–270PubMedCrossRefPubMedCentralGoogle Scholar
  12. Braam J, Davis RW (1990) Rain-, wind-, and touch-induced expression of calmodulin and calmodulin-related genes in Arabidopsis. Cell 60:357–364PubMedCrossRefPubMedCentralGoogle Scholar
  13. Brohawn SG (2015) How ion channels sense mechanical force: insights from mechanosensitive K2P channels TRAAK, TREK1, and TREK2. Ann NY Acad Sci 1352:20–32PubMedCrossRefPubMedCentralGoogle Scholar
  14. Burian A, Ludynia M, Uyttewaal M, Traas J, Boudaoud A, Hamant O et al (2013) A correlative microscopy approach relates microtubule behaviour, local organ geometry, and cell growth at the Arabidopsis shoot apical meristem. J Exp Bot 64:5753–5767PubMedPubMedCentralCrossRefGoogle Scholar
  15. Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30PubMedCrossRefPubMedCentralGoogle Scholar
  16. Chen Y, Simasko SM, Niggel J, Sigurdson WJ, Sachs F (1996) Ca2+ uptake in GH3 cells during hypotonic swelling: the sensory role of stretch-activated ion channels. Am J Physiol 270:C1790–C1798PubMedCrossRefPubMedCentralGoogle Scholar
  17. Ciesielski T (1871) In Abwärtskrümmung der Wurzel. Inaug Dissert, BreslauGoogle Scholar
  18. Cosgrove DJ, Hedrich R (1991) Stretch-activated chloride, potassium, and calcium channels coexisting in plasma membranes of guard cells of Vicia faba L. Planta 186:143–153PubMedCrossRefPubMedCentralGoogle Scholar
  19. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ et al (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60PubMedPubMedCentralCrossRefGoogle Scholar
  20. Darwin C (1880) The power of movement in plants. John Murray, LondonGoogle Scholar
  21. Darwin C (1888) The movements and habits of climbing plants. John Murray, LondonGoogle Scholar
  22. Denness L, McKenna JF, Segonzac C, Wormit A, Madhou P, Bennett M et al (2011) Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiol 156:1364–1374PubMedPubMedCentralCrossRefGoogle Scholar
  23. Ding JP, Pickard BG (1993) Mechanosensory calcium-selective cation channels in epidermal cells. Plant J 3:83–110PubMedCrossRefPubMedCentralGoogle Scholar
  24. Dutta R, Robinson KR (2004) Identification and characterization of stretch-activated ion channels in pollen protoplasts. Plant Physiol 135:1398–1406PubMedPubMedCentralCrossRefGoogle Scholar
  25. Evans MJ, Choi WG, Gilroy S, Morris RJ (2016) A ROS-assisted calcium wave dependent on the AtRBOHD NADPH oxidase and TPC1 cation channel propagates the systemic response to salt stress. Plant Physiol 171:1771–1784PubMedPubMedCentralCrossRefGoogle Scholar
  26. Falke LC, Edwards KL, Pickard BG, Misler S (1988) A stretch-activated anion channel in tobacco protoplasts. FEBS Lett 237:141–144PubMedCrossRefPubMedCentralGoogle Scholar
  27. Farmer EE, Gasperini D, Acosta IF (2014) The squeeze cell hypothesis for the activation of jasmonate synthesis in response to wounding. New Phytol 204:282–288PubMedCrossRefPubMedCentralGoogle Scholar
  28. Fischer K, Schopfer P (1997) Interaction of auxin, light, and mechanical stress in orienting microtubules in relation to tropic curvature in the epidermis of maize coleoptiles. Protoplasma 196:108–116CrossRefGoogle Scholar
  29. Furuichi T, Lida H, Sokabe M, Tatsumi H (2012) Expression of arabidopsis MCA1 enhanced mechanosensitive channel activity in the Xenopus laevis oocyte plasma membrane. Plant Signal Behav 7:1022–1026CrossRefGoogle Scholar
  30. Ge J, Li W, Zhao Q, Li N, Chen M, Zhi P et al (2015) Architecture of the mammalian mechanosensitive Piezo1 channel. Nature 527:64–69PubMedCrossRefPubMedCentralGoogle Scholar
  31. Gilroy S, Suzuki N, Miller G, Choi WG, Toyota M, Devireddy AR et al (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci 19:623–630PubMedCrossRefGoogle Scholar
  32. Groover A (2016) Gravitropisms and reaction woods of forest trees—evolution, functions and mechanisms. New Phytol 211:790–802PubMedCrossRefGoogle Scholar
  33. Guo Y, Halfter U, Ishitani M, Zhu JK (2001) Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell 13:1383–1400PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gutierrez R, Lindeboom JJ, Paredez AR, Emons AM, Ehrhardt DW (2009) Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments. Nat Cell Biol 11:797–806PubMedCrossRefPubMedCentralGoogle Scholar
  35. Hamant O, Heisler MG, Jonsson H, Krupinski P, Uyttewaal M, Bokov P et al (2008) Developmental patterning by mechanical signals in Arabidopsis. Science 322:1650–1655PubMedCrossRefPubMedCentralGoogle Scholar
  36. Hamant O, Moulia B (2016) How do plants read their own shapes? New Phytol 212:333–337CrossRefPubMedPubMedCentralGoogle Scholar
  37. Hamilton ES, Jensen GS, Maksaev G, Katims A, Sherp AM, Haswell ES (2015) Mechanosensitive channel MSL8 regulates osmotic forces during pollen hydration and germination. Science 350:438–441PubMedPubMedCentralCrossRefGoogle Scholar
  38. Haruta M, Sabat G, Stecker K, Minkoff BB, Sussman MR (2014) A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343:408–411PubMedPubMedCentralCrossRefGoogle Scholar
  39. Haswell ES, Meyerowitz EM (2006) MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr Biol 16:1–11PubMedCrossRefPubMedCentralGoogle Scholar
  40. Haswell ES, Peyronnet R, Barbier-Brygoo H, Meyerowitz EM, Frachisse JM (2008) Two MscS homologs provide mechanosensitive channel activities in the Arabidopsis root. Curr Biol 18:730–734PubMedCrossRefPubMedCentralGoogle Scholar
  41. Hayakawa K, Tatsumi H, Sokabe M (2008) Actin stress fibers transmit and focus force to activate mechanosensitive channels. J Cell Sci 121:496–503PubMedCrossRefGoogle Scholar
  42. Himmelspach R, Wymer CL, Lloyd CW, Nick P (1999) Gravity-induced reorientation of cortical microtubules observed in vivo. Plant J 18:449–453PubMedCrossRefGoogle Scholar
  43. Hoson T, Soga K (2003) New aspects of gravity responses in plant cells. Int Rev Cytol 229:209–244PubMedCrossRefGoogle Scholar
  44. Hou G, Kramer VL, Wang YS, Chen R, Perbal G, Gilroy S et al (2004) The promotion of gravitropism in Arabidopsis roots upon actin disruption is coupled with the extended alkalinization of the columella cytoplasm and a persistent lateral auxin gradient. Plant J 39:113–125PubMedCrossRefGoogle Scholar
  45. Hou G, Mohamalawari DR, Blancaflor EB (2003) Enhanced gravitropism of roots with a disrupted cap actin cytoskeleton. Plant Physiol 131:1360–1373PubMedPubMedCentralCrossRefGoogle Scholar
  46. Iida H (2014) Mugifumi, a beneficial farm work of adding mechanical stress by treading to wheat and barley seedlings. Front Plant Sci 5:453PubMedPubMedCentralCrossRefGoogle Scholar
  47. Ikushima T, Shimmen T (2005) Mechano-sensitive orientation of cortical microtubules during gravitropism in azuki bean epicotyls. J Plant Res 118:19–26PubMedCrossRefGoogle Scholar
  48. Jeandroz S, Lamotte O, Astier J, Rasul S, Trapet P, Besson-Bard A et al (2013) There’s more to the picture than meets the eye: nitric oxide cross talk with Ca2+ signaling. Plant Physiol 163:459–470PubMedPubMedCentralCrossRefGoogle Scholar
  49. Joo JH, Bae YS, Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126:1055–1060PubMedPubMedCentralCrossRefGoogle Scholar
  50. Kamano S, Kume S, Iida K, Lei KJ, Nakano M, Nakayama Y et al (2015) Transmembrane topologies of Ca2+-permeable mechanosensitive channels MCA1 and MCA2 in Arabidopsis thaliana. J Biol Chem 290:30901–30909PubMedPubMedCentralCrossRefGoogle Scholar
  51. Kiep V, Vadassery J, Lattke J, Maass JP, Boland W, Peiter E et al (2015) Systemic cytosolic Ca2+ elevation is activated upon wounding and herbivory in Arabidopsis. New Phytol 207:996–1004PubMedCrossRefPubMedCentralGoogle Scholar
  52. Kim BG, Waadt R, Cheong YH, Pandey GK, Dominguez-Solis JR, Schultke S et al (2007) The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J 52:473–484PubMedCrossRefPubMedCentralGoogle Scholar
  53. Kloda A, Martinac B (2002) Common evolutionary origins of mechanosensitive ion channels in Archaea, Bacteria and cell-walled Eukarya. Archaea 1:35–44PubMedCrossRefPubMedCentralGoogle Scholar
  54. Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352:524–526PubMedCrossRefPubMedCentralGoogle Scholar
  55. Knight MR, Smith SM, Trewavas AJ (1992) Wind-induced plant motion immediately increases cytosolic calcium. Proc Natl Acad Sci USA 89:4967–4971PubMedPubMedCentralCrossRefGoogle Scholar
  56. Krieg M, Dunn AR, Goodman MB (2015) Mechanical systems biology of C. elegans touch sensation. BioEssays 37:335–344PubMedPubMedCentralCrossRefGoogle Scholar
  57. Kurusu T, Kuchitsu K, Nakano M, Nakayama Y, Iida H (2013) Plant mechanosensing and Ca2+ transport. Trends Plant Sci 18:227–233PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kurusu T, Iida H, Kuchitsu K (2012a) Roles of a putative mechanosensitive plasma membrane Ca2+-permeable channel OsMCA1 in generation of reactive oxygen species and hypo-osmotic signaling in rice. Plant Signal Behav 7:796–798PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kurusu T, Nishikawa D, Yamazaki Y, Gotoh M, Nakano M, Hamada H et al (2012b) Plasma membrane protein OsMCA1 is involved in regulation of hypo-osmotic shock-induced Ca2+ influx and modulates generation of reactive oxygen species in cultured rice cells. BMC Plant Biol 12:11PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kurusu T, Yamanaka T, Nakano M, Takiguchi A, Ogasawara Y, Hayashi T et al (2012c) Involvement of the putative Ca2+-permeable mechanosensitive channels, NtMCA1 and NtMCA2, in Ca2+ uptake, Ca2+-dependent cell proliferation and mechanical stress-induced gene expression in tobacco (Nicotiana tabacum) BY-2 cells. J Plant Res 125:555–568PubMedCrossRefGoogle Scholar
  61. Laluk K, Prasad KV, Savchenko T, Celesnik H, Dehesh K, Levy M et al (2012) The calmodulin-binding transcription factor SIGNAL RESPONSIVE1 is a novel regulator of glucosinolate metabolism and herbivory tolerance in Arabidopsis. Plant Cell Physiol 53:2008–2015PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lee CP, Maksaev G, Jensen GS, Murcha MW, Wilson ME, Fricker M et al (2016) MSL1 is a mechanosensitive ion channel that dissipates mitochondrial membrane potential and maintains redox homeostasis in mitochondria during abiotic stress. Plant J 88:809–825PubMedPubMedCentralCrossRefGoogle Scholar
  63. Levina N, Totemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18:1730–1737PubMedPubMedCentralCrossRefGoogle Scholar
  64. Li Y, Yuan F, Wen Z, Li Y, Wang F, Zhu T et al (2015) Genome-wide survey and expression analysis of the OSCA gene family in rice. BMC Plant Biol 15:261PubMedPubMedCentralCrossRefGoogle Scholar
  65. Liu Z, Cheng Q, Sun Y, Dai H, Song G, Guo Z et al (2015) A SNP in OsMCA1 responding for a plant architecture defect by deactivation of bioactive GA in rice. Plant Mol Biol 87:17–30PubMedCrossRefPubMedCentralGoogle Scholar
  66. Maksaev G, Haswell ES (2012) MscS-Like10 is a stretch-activated ion channel from Arabidopsis thaliana with a preference for anions. Proc Natl Acad Sci USA 109:19015–19020PubMedPubMedCentralCrossRefGoogle Scholar
  67. Maple J, Chua NH, Moller SG (2002) The topological specificity factor AtMinE1 is essential for correct plastid division site placement in Arabidopsis. Plant J 31:269–277PubMedCrossRefPubMedCentralGoogle Scholar
  68. Messerli MA, Danuser G, Robinson KR (1999) Pulsatile influxes of H+, K+ and Ca2+ lag growth pulses of Lilium longiflorum pollen tubes. J Cell Sci 112:1497–1509PubMedPubMedCentralGoogle Scholar
  69. Monshausen GB, Bibikova TN, Weisenseel MH, Gilroy S (2009) Ca2+ regulates reactive oxygen species production and pH during mechanosensing in Arabidopsis roots. Plant Cell 21:2341–2356PubMedPubMedCentralCrossRefGoogle Scholar
  70. Moulia B, Coutand C, Julien JL (2015) Mechanosensitive control of plant growth: bearing the load, sensing, transducing, and responding. Front Plant Sci 6:52PubMedPubMedCentralCrossRefGoogle Scholar
  71. Mousavi SA, Chauvin A, Pascaud F, Kellenberger S, Farmer EE (2013) GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature 500:422–426PubMedCrossRefPubMedCentralGoogle Scholar
  72. Nakagawa Y, Katagiri T, Shinozaki K, Qi Z, Tatsumi H, Furuichi T et al (2007) Arabidopsis plasma membrane protein crucial for Ca2+ influx and touch sensing in roots. Proc Natl Acad Sci USA 104:3639–3644PubMedPubMedCentralCrossRefGoogle Scholar
  73. Nakamura M, Toyota M, Tasaka M, Morita MT (2011) An Arabidopsis E3 Ligase, SHOOT GRAVITROPISM9, Modulates the Interaction between Statoliths and F-Actin in Gravity Sensing. Plant Cell 23:1830–1848PubMedPubMedCentralCrossRefGoogle Scholar
  74. Nakano M, Iida K, Nyunoya H, Iida H (2011) Determination of structural regions important for Ca(2+) uptake activity in Arabidopsis MCA1 and MCA2 expressed in yeast. Plant Cell Physiol 52:1915–1930PubMedCrossRefPubMedCentralGoogle Scholar
  75. Nakayama Y, Fujiu K, Sokabe M, Yoshimura K (2007) Molecular and electrophysiological characterization of a mechanosensitive channel expressed in the chloroplasts of Chlamydomonas. Proc Natl Acad Sci USA 104:5883–5888PubMedPubMedCentralCrossRefGoogle Scholar
  76. Nick P, Bergfeld R, Schafer E, Schopfer P (1990) Unilateral reorientation of microtubules at the outer epidermal wall during photo- and gravitropic curvature of maize coleoptiles and sunflower hypocotyls. Planta 181:162–168PubMedCrossRefPubMedCentralGoogle Scholar
  77. Palmieri M, Kiss JZ (2005) Disruption of the F-actin cytoskeleton limits statolith movement in Arabidopsis hypocotyls. J Exp Bot 56:2539–2550PubMedCrossRefPubMedCentralGoogle Scholar
  78. Paredez AR, Somerville CR, Ehrhardt DW (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:1491–1495PubMedCrossRefPubMedCentralGoogle Scholar
  79. Perera IY, Hung CY, Brady S, Muday GK, Boss WF (2006) A universal role for inositol 1,4,5-trisphosphate-mediated signaling in plant gravitropism. Plant Physiol 140:746–760PubMedPubMedCentralCrossRefGoogle Scholar
  80. Plieth C, Trewavas AJ (2002) Reorientation of seedlings in the earth’s gravitational field induces cytosolic calcium transients. Plant Physiol 129:786–796PubMedPubMedCentralCrossRefGoogle Scholar
  81. Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 99:8436–8441PubMedPubMedCentralCrossRefGoogle Scholar
  82. Rigo G, Ayaydin F, Tietz O, Zsigmond L, Kovacs H, Pay A et al (2013) Inactivation of plasma membrane-localized CDPK-RELATED KINASE5 decelerates PIN2 exocytosis and root gravitropic response in Arabidopsis. Plant Cell 25:1592–1608PubMedPubMedCentralCrossRefGoogle Scholar
  83. Robinson S, Burian A, Couturier E, Landrein B, Louveaux M, Neumann ED et al (2013) Mechanical control of morphogenesis at the shoot apex. J Exp Bot 64:4729–4744PubMedCrossRefPubMedCentralGoogle Scholar
  84. Rosa M, Abraham-Juarez MJ, Lewis MW, Fonseca JP, Tian W, Ramirez V et al (2017) The Maize MID-COMPLEMENTING ACTIVITY homolog CELL NUMBER REGULATOR13/NARROW ODD DWARF coordinates organ growth and tissue patterning. Plant Cell 29:474–490PubMedPubMedCentralCrossRefGoogle Scholar
  85. Shigematsu H, Iida K, Nakano M, Chaudhuri P, Iida H, Nagayama K (2014) Structural characterization of the mechanosensitive channel candidate MCA2 from Arabidopsis thaliana. PLoS ONE 9:e87724PubMedPubMedCentralCrossRefGoogle Scholar
  86. Shih HW, Miller ND, Dai C, Spalding EP, Monshausen GB (2014) The receptor-like kinase FERONIA is required for mechanical signal transduction in Arabidopsis seedlings. Curr Biol 24:1887–1892PubMedCrossRefPubMedCentralGoogle Scholar
  87. Stanković B, Davies E (1997) Intercellular communication in plants: electrical stimulation of proteinase inhibitor gene expression in tomato. Planta 202:402–406CrossRefGoogle Scholar
  88. Stanković B, Davies E (1998) The wound response in tomato involves rapid growth and electrical responses, systemically up-regulated transcription of proteinase inhibitor and calmodulin and down-regulated translation. Plant Cell Physiol 39:268–274CrossRefGoogle Scholar
  89. Steinhorst L, Kudla J (2013) Calcium and reactive oxygen species rule the waves of signaling. Plant Physiol 163:471–485PubMedPubMedCentralCrossRefGoogle Scholar
  90. Suchyna TM, Johnson JH, Hamer K, Leykam JF, Gage DA, Clemo HF et al (2000) Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J Gen Physiol 115:583–598PubMedPubMedCentralCrossRefGoogle Scholar
  91. Taiz L (1984) Plant cell expansion: regulation of cell wall mechanical properties. Annu Rev Plant Physiol 35:585–657CrossRefGoogle Scholar
  92. Takemura K, Kamachi H, Kume A, Fujita T, Karahara I, Hanba YT (2017) A hypergravity environment increases chloroplast size, photosynthesis, and plant growth in the moss Physcomitrella patens. J Plant Res 130:181–192PubMedCrossRefPubMedCentralGoogle Scholar
  93. Teng J, Loukin S, Anishkin A, Kung C (2015) The force-from-lipid (FFL) principle of mechanosensitivity, at large and in elements. Pflugers Arch 467:27–37PubMedCrossRefPubMedCentralGoogle Scholar
  94. Toyota M, Furuichi T, Tatsumi H, Sokabe M (2007) Hypergravity stimulation induces changes in intracellular calcium concentration in Arabidopsis seedlings. Adv Space Res 39:1190–1197CrossRefGoogle Scholar
  95. Toyota M, Furuichi T, Tatsumi H, Sokabe M (2008a) Critical consideration on the relationship between auxin transport and calcium transients in gravity perception of Arabidopsis seedlings. Plant Signal Behav 3:521–524PubMedPubMedCentralCrossRefGoogle Scholar
  96. Toyota M, Furuichi T, Tatsumi H, Sokabe M (2008b) Cytoplasmic calcium increases in response to changes in the gravity vector in hypocotyls and petioles of Arabidopsis seedlings. Plant Physiol 146:505–514PubMedPubMedCentralCrossRefGoogle Scholar
  97. Toyota M, Furuichi T, Sokabe M, Tatsumi H (2013) Analyses of a gravistimulation-specific Ca2+ signature in Arabidopsis using parabolic flights. Plant Physiol 163:543–554PubMedPubMedCentralCrossRefGoogle Scholar
  98. Toyota M, Gilroy S (2013) Gravitropism and mechanical signaling in plants. Am J Bot 100:111–125PubMedCrossRefPubMedCentralGoogle Scholar
  99. Toyota M, Ikeda N, Tasaka M, Morita MT (2014) Centrifuge microscopy to analyze the sedimentary movements of amyloplasts. Bio-protocol 4:e1229CrossRefGoogle Scholar
  100. Veley KM, Marshburn S, Clure CE, Haswell ES (2012) Mechanosensitive channels protect plastids from hypoosmotic stress during normal plant growth. Curr Biol 22:408–413PubMedPubMedCentralCrossRefGoogle Scholar
  101. Volkers L, Mechioukhi Y, Coste B (2015) Piezo channels: from structure to function. Pflugers Arch 467:95–99PubMedCrossRefPubMedCentralGoogle Scholar
  102. Weinl S, Kudla J (2009) The CBL-CIPK Ca2+-decoding signaling network: function and perspectives. New Phytol 184:517–528PubMedCrossRefPubMedCentralGoogle Scholar
  103. Wildon D, Thain J, Minchin P, Gubb I, Reilly A, Skipper Y et al (1992) Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360:62–65CrossRefGoogle Scholar
  104. Wilson ME, Jensen GS, Haswell ES (2011) Two mechanosensitive channel homologs influence division ring placement in Arabidopsis chloroplasts. Plant Cell 23:2939–2949PubMedPubMedCentralCrossRefGoogle Scholar
  105. Wilson ME, Maksaev G, Haswell ES (2013) MscS-like mechanosensitive channels in plants and microbes. Biochemistry 52:5708–5722PubMedPubMedCentralCrossRefGoogle Scholar
  106. Wormit A, Butt SM, Chairam I, McKenna JF, Nunes-Nesi A, Kjaer L et al (2012) Osmosensitive changes of carbohydrate metabolism in response to cellulose biosynthesis inhibition. Plant Physiol 159:105–117PubMedPubMedCentralCrossRefGoogle Scholar
  107. Yamanaka T, Nakagawa Y, Mori K, Nakano M, Imamura T, Kataoka H et al (2010) MCA1 and MCA2 that mediate Ca2+ uptake have distinct and overlapping roles in Arabidopsis. Plant Physiol 152:1284–1296PubMedPubMedCentralCrossRefGoogle Scholar
  108. Yang H, Xie S, Wang L, Jing S, Zhu X, Li X et al (2011) Identification of up-regulated genes in tea leaves under mild infestation of green leafhopper. Sci Hortic 130:476–481CrossRefGoogle Scholar
  109. Yuan F, Yang H, Xue Y, Kong D, Ye R, Li C et al (2014) OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514:367–371PubMedCrossRefPubMedCentralGoogle Scholar
  110. Zandomeni K, Schopfer P (1994) Mechanosensory microtubule reorientation in the epidermis of maize coleoptiles subjected to bending stress. Protoplasma 182:96–101CrossRefPubMedGoogle Scholar
  111. Zebelo SA, Maffei ME (2015) Role of early signalling events in plant-insect interactions. J Exp Bot 66:435–448PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Masatsugu Toyota
    • 1
    • 2
    • 3
  • Takuya Furuichi
    • 4
  • Hidetoshi Iida
    • 5
  1. 1.Department of Biochemistry and Molecular BiologySaitama UniversitySaitama City, SaitamaJapan
  2. 2.Department of BotanyUniversity of WisconsinMadisonUSA
  3. 3.Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO)SaitamaJapan
  4. 4.Department of Human Life ScienceNagoya University of EconomicsInuyama City, AichiJapan
  5. 5.Department of BiologyTokyo Gakugei UniversityTokyoJapan

Personalised recommendations