Advertisement

Wood Cell Wall Structure and Organisation in Relation to Mechanics

  • Lennart Salmén
Chapter

Abstract

The wood cell wall, as well as the entire wood structure, is a highly intermixed assembly of biopolymers building up various structural elements. The understanding of the organisation of these wood polymers and their interaction is a key to be able to better utilise wood materials. The complexity of the wood cell wall is here discussed regarding the cellulose fibrillar network, the cellulose aggregate structure and the arrangement of the matrix polymers of hemicelluloses and lignin. The ability to model the wood cell wall properties, based on the structural organisation within different cell wall structures, and the difficulties in relating predictions to actual measurements of cell wall properties are described. The deficiencies regarding our structural knowledge in relation to mechanical properties are also being defined.

Keywords

Cell wall Cellulose Hemicellulose Lignin Microfibrils Microfibril angle Micromechanics Humidity Temperature Secondary cell wall 

References

  1. Abe K, Yamamoto H (2005) Mechanical interaction between cellulose microfibril and matrix substance in wood cell wall determined by X-ray diffraction. J Wood Sci 51:334–338CrossRefGoogle Scholar
  2. Adusumalli R-B, Raghavan R, Ghislni R, Zimmermann T, Michler J (2010) Deformation and failure mechanism of secondary cell wall in Spruce late wood. Appl Phys A 100:447–452CrossRefGoogle Scholar
  3. Åkerholm M, Salmén L (2001) Interactions between wood polymers studied by dynamic FT-IR spectroscopy. Polymer 42(3):963–969CrossRefGoogle Scholar
  4. Altaner CM, Jarvis MC (2008) Modelling polymer interactions of the ‘molecular Velcro’ type in wood under mechanical stress. J Theor Biol 253:434–445CrossRefPubMedGoogle Scholar
  5. Arnould O, Arinero R (2015) Towards a better understanding of wood cell wall characterisation with contact resonance atomic force microscopy. Compos A 74(69–76)CrossRefGoogle Scholar
  6. Atalla RH, Agarwal UP (1985) Raman microprobe evidence for lignin orientation in the cell walls of native woody tissue. Sience 227:636–639CrossRefGoogle Scholar
  7. Bardage S, Donalson L, Tokoh C, Daniel G (2004) Ultrastructure of the cell wall of unbeaten Norway spruce pulp fibre surfaces. NPPJ 19(4):448–452Google Scholar
  8. Bergander A, Salmén L (2000a) The transverse elastic modulus of the native wood fibre wall. J Pulp Pap Sci 26(6):234–238Google Scholar
  9. Bergander A, Salmén L (2000b) Variations in transverse fibre wall properties: relations between elastic properties and structure. Holzforschung 54(6):655–661CrossRefGoogle Scholar
  10. Bergander A, Salmén L (2002) Cell wall properties and their effects on mechanical properties of fibers. J Mater Sci 37(1):151–156CrossRefGoogle Scholar
  11. Bergenstråhle M, Berglund lA, Mazeau K (2007) Thermal response in crystalline Iâ cellulose: a molecular dynamics study. J Phys Chem B 111:9138–9145CrossRefPubMedGoogle Scholar
  12. Boyd JD (1982) An anatomical explanation for visco-elastic and mechanosorptive creep in wood, and effects of loading rate on strength. New perspective in wood anatomy. PGoogle Scholar
  13. Brändström J, Bardage SL, Daniel G, Thomas N (2003) The structural organisation of the S1 cell wall layer of Norway spruce tracheids. IAWA J 24(1):27–40CrossRefGoogle Scholar
  14. Burgert I (2006) Exploring the micromechanical design of plant cell walls. Am J Bot 93(10):1391–1406CrossRefPubMedGoogle Scholar
  15. Cave ID (1968) The anisotropic elasticity of the plant cell wall. Wood Sci Technol 2:268–278CrossRefGoogle Scholar
  16. Cave ID (1969) The longitudinal Young’s modulus of Pinus radiata. Wood Sci Technol 3:40–48CrossRefGoogle Scholar
  17. Chanzy H, Henrissat B (1985) Unidirectional degradation of Valonia cellulose micrystals subjected to cellulase action. FEBS Lett 184:285–288CrossRefGoogle Scholar
  18. de Borst K, Bader TK (2014) Structure-function relationships in hardwood—insight from micromechanical modellig. J Theor Biol 345:78–91CrossRefPubMedGoogle Scholar
  19. Donalson LA (2001) A three-dimensional computer model of the tracheid cell wall as a tool for interpretations of wood cell wall ultrastructure. IAWA J 29(4):345–386CrossRefGoogle Scholar
  20. Dong F, Olsson A-M, Salmén L (2010) Fibre morphological effects on mechano-sorptive creep. Wood Sci Technol 44(3):475–483CrossRefGoogle Scholar
  21. Eder M, Arnould O, Dunlop JWC, Hornatowska J, Salmen L (2013) Experimental micromechanical characterisation of wood cell walls. Wood Sci Technol 47:163–182CrossRefGoogle Scholar
  22. Fahlén J, Salmén L (2002) On the lamellar structure of the tracheid cell wall. Plant Biol 4:339–345CrossRefGoogle Scholar
  23. Fahlén J, Salmén L (2005) Pore and matrix distribution in the fibre wall revealed by atomic force microscopy and image analysis. Biomacromol 6(1):433–438CrossRefGoogle Scholar
  24. Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsyth VT, Apperley DC, Kennedy CJ, Jarvis MC (2011) Nanostructure of cellulose microfibrils in spruce wood. PNAS 108(47):1195–1203CrossRefGoogle Scholar
  25. Fratzl P (2003) Cellulose and collagen: from fibres to tissues. Currrent opin. colloid interface sci. 8:32–39CrossRefGoogle Scholar
  26. Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interface 9:2749–2786CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gierlinger N, Schwanninger M, Reinecke A, Burgert I (2006) Molecular changes during tensile deformation of single wood fibres followed by Raman microscopy. Biomacromol 7:2077–2081CrossRefGoogle Scholar
  28. Gindl W, Gupta HS, Schöberl T, Lichtenegger HC, Fratzl P (2004) Mechanical properties of spruce wood cell walls by nanoindentation. Appl Phys A 79:2069–2073CrossRefGoogle Scholar
  29. Hieta K, Kuga S, Usuda M (1984) Electron staining of reducing ends evidences a parallel-chain structure in Valonia cellulose. Biopolymers 23:1807–1810CrossRefGoogle Scholar
  30. Hofstetter K, Gamstedt EK (2009) Hierarchical modelling of microstructural effects on mechanical properties of wood. A review. Holzforschung 63:130–138CrossRefGoogle Scholar
  31. Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromol 10(9):2571–2576CrossRefGoogle Scholar
  32. Joffre T, Isaksson P, Dumont PJJ, Roscoat SR, Sticko S, Orgéas L, Gamstedt EK (2016) A method to measure moisture induced swelling properties of a single wood cell. Experimental Mechanics On-lineCrossRefGoogle Scholar
  33. Joffre T, Neagu RC, Bardage SL, Gamstedt EK (2014) Modelling of the hygroelastic behaviour of normal and compression wood tracheids. J Struct Biol 185:89–98CrossRefPubMedGoogle Scholar
  34. Keckes J, Burgert I, Frûhmann K, Mûller M, Kölln K, Hamilton M, Burghammer M, Roth SV, Stanzl-Tschegg SE, Fratzl P (2003) Cell-wall recovery after irreversible deformation of wood. Nat Mater 2:810–814CrossRefPubMedGoogle Scholar
  35. Kerr AJ, Goring DAI (1975) The ultrastructural arrangement of the wood cell wall. Cell Chem Technol 9(6):563–573Google Scholar
  36. Kolseth P, Ehrnrooth EML (1986) Mechanical softening of single wood pulp fibers. In: Bristow JA, Kolseth P (eds) Paper structure and properties. Marcel Dekker Inc, New York, pp 27–50Google Scholar
  37. Kroon-Batenburg LM, Kroon J, Norholt MG (1986) Chain modulus and intramolecular hydrogen bonding in native and regenerated cellulose fibers. Polym Commun 27:290–292CrossRefGoogle Scholar
  38. Li W, Wang H, Wang H, Yu Y (2014) Moisture dependence of indentation deformation and mechanical properties of mason pine (Pinus Massoniana Lamb) cell walls as related to microfibrilar angle. Wood Fiber Sci 46(2):228–236Google Scholar
  39. Lindh EL, Salmén L (2017) Surface accessibility of cellulose fibrils studied by hydrogen-deuterium exchange with water. Cellulose 24:21–33CrossRefGoogle Scholar
  40. Lindh EL, Terenzia C, Salmén L, Furó I (2017) Water in cellulose: evidence and identification of immobile and mobile adsorbed phases by 2H MAS NMR. PCCPCrossRefPubMedGoogle Scholar
  41. Mark RE (1972) Mechanical behaviour of the molecular components of fibers. In: Jayne BA (ed) Theory and design of wood and fiber composite materials. Syracuse University Press, Syracuse, pp 49–82Google Scholar
  42. Matsuo M, Sawatari C, Iwai Y, Ozaki F (1990) Effect of orientation distribution and crystallinity on the measurement by X-ray diffraction of the crystal lattice moduli of cellulose I and II. Macromolecules 23(13):3266–3275CrossRefGoogle Scholar
  43. Matthews JF, Skopec CE, Mason PE, Zuccato P, Torget RW, Sugiyama J, Himmel ME, Bradya JW (2006) Computer simulation studies of microcrystalline cellulose Ib. Carbohydr Res 341:138–152CrossRefPubMedGoogle Scholar
  44. Nakai T, Yamamoto H, Nakano T, Hamatake M (2006) Mechanical behavior of the crystal lattice of natural cellulose in wood under repeated uniaxial tensile stress in the fiber direction. Wood Sci Technol 40:683–695CrossRefGoogle Scholar
  45. Nishino T, Takano K, Nakamae K (1995) Elastic modulus of the crystalline regions of cellulose polymorphs. J Polym Sci, Part B: Polym Phys 33(11):1647–1651CrossRefGoogle Scholar
  46. Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55:241–249CrossRefGoogle Scholar
  47. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Ib from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefGoogle Scholar
  48. Olsson A-M, Salmén L (1997) The effect of lignin structure on the viscoelastic properties of wood. Nordic Pulp Pap Res J 12(3):140–144CrossRefGoogle Scholar
  49. Olsson A-M, Salmén L (2014) Mechano-sorptive creep in pulp fibres and paper. Wood Sci Technol 48(3):569–580CrossRefGoogle Scholar
  50. Raghavan R, Adusumalli R-B, Buerki G, Hansen S, Zimmermann T, Michler J (2012) Deformation of the compound middle lamella in spruce latewood by micro-pillar compression of double cell walls. J Mater Sci 47:6125–6130CrossRefGoogle Scholar
  51. Revol J-F, Goring DAI (1983) Directionality of the fibre c-axis of cellulose crystallites in microfibrils of Valonia ventricosa. Polymer 24:1547–1550CrossRefGoogle Scholar
  52. Reza M (2016) Study of Norway spruce wall structure with microscopy tools. Applied physics. Helsinki, Aalto University. PhDGoogle Scholar
  53. Reza M, Ruokolainen J, Vourinen T (2014) Out-of-plane orientation of cellulose elementary fibrils on spruce tracheid wall based on imaging with high-resolution transmission electroc microscopy. Planta 240:565–573CrossRefPubMedGoogle Scholar
  54. Sakurada I, Nukushima Y, Ito T (1962) Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57:651–660CrossRefGoogle Scholar
  55. Salmén L (1982) Temperature and water induced softening behaviour of wood fibre based materials. PhD thesis, KTH, StockholmGoogle Scholar
  56. Salmén L (2004) Micromechanical understanding of the cell-wall structure. CR Biologies 337:873–880CrossRefGoogle Scholar
  57. Salmén L (2007) The mechanical deformation of wood—relation to ultrastructure. In: Entwistle KM, Walker CF (eds) The comprised wood workshop 2007. University of Canterbury, Christchurch, New Zeeland, pp 143–157Google Scholar
  58. Salmén L, Bergström E (2009) Cellulose structural arrangement in relation to spectral changes in tensile loading FTIR. Cellulose 16(6):975–982CrossRefGoogle Scholar
  59. Salmén L, de Ruvo A (1985) A model for the prediction of fiber elasticity. Wood Fiber Sci 17(3):336–350Google Scholar
  60. Salmén L, Kolseth P, de Ruvo A (1985) Modeling the softening behavior of wood fibers. J Pulp Pap Sci 11(4):J102–J107Google Scholar
  61. Salmén L, Olsson A-M, Stevanic JS, Simonovic J, Radotic K (2012) Structural organisation of the wood polymers in the wood fibre structure. Bioresources 7(1):521–532Google Scholar
  62. Salmén L, Stevanic JS, Olsson A-M (2016) Contribution of lignin to the strength properties in wood fibres studied by dynamic FTIR spectroscopy and dynamic mechanical analysis (DMA). Holzforschung 70(12):1155–1163CrossRefGoogle Scholar
  63. Schwiedrzik J, Raghavan R, Rüggeberg M, Hansen S, Wehrs J, Adusumalli RB, Zimmermann T, Michler J (2016) Identification of polymer matrix yield stress in the wood cell wall based on micropillar compression and micromechanical modelling. Philos Mag 96(32–34):3461–3478CrossRefGoogle Scholar
  64. Sell J, Zimmermann T (1993) Radial fibril agglomerations of the S2 on transverse-fracture surfaces of tracheids of tension-loaded spruce and white fir. Holz Roh Werkstoff 51:384CrossRefGoogle Scholar
  65. Simonovic J, Stevanic J, Djikanovic D, Salmen L, Radotic K (2011) Anisotropy of cell wall polymers in branches of hardwood and softwood: a polarized FTIR study. Cellulose 18(6):1433–1440CrossRefGoogle Scholar
  66. Spatz H-C, Köhler L, Niklas KJ (1999) Mechanical behaviour of plant tissues: composite materials or structures? J Exp Biol 202:3269–3272PubMedGoogle Scholar
  67. Stone J, Scallan AM, Ahlgren PAV (1971) The ultrastructural distribution of lignin in tracheid cell walls. Tappi 54:1527–1530Google Scholar
  68. Tanaka F, Iwata T (2006) Estimation of the elastic modulus of cellulose crystal by molecular mechanics simulation. Cellulose 13:509–517CrossRefGoogle Scholar
  69. Tashiro K, Kobayashi M (1991) Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds. Polymer 32(8):1516–1526CrossRefGoogle Scholar
  70. Tokoh C, Takabe K, Fujita M, Saiki H (1998) Cellulose synthesized by acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5:249–261CrossRefGoogle Scholar
  71. Wagner L, Bos C, Bader TK, de Borst K (2015) Effect of water on the mechanical properties of wood cell walls—results of a nanoindentation study. Bioresources 10(3):4011–4025CrossRefGoogle Scholar
  72. Wang N, Liu W, Peng Y (2013) Gradual transition zone between cell wall layers and its influence on wood elastic modulus. J Mater Sci 48(14):5071–5084CrossRefGoogle Scholar
  73. Wang N, Wangyn L, Lai J (2014a) An attempt in model the influence of gradual transition between cell wall layers on cell wall hygroelastic properties. J Mater Sci 49:1984–1993CrossRefGoogle Scholar
  74. Wang X, Keplinger T, Gierlinger N, Burgert I (2014b) Plant material features responsible for bamboo’s excellent mechanical performance: a comparison of tensile properties of bamboo and spruce at the tissue, fibre and cell wall levels. Ann Bot 8:1627–1635CrossRefGoogle Scholar
  75. Wang X, Li Y, Deng Y, Yu W, Xie X, Wang S (2016) Contribution of basic chemical components to the mechanical behavior of wood fiber cell walls as evaluated by nanoindentation. Bioresources 11(3):6026–6039Google Scholar
  76. Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS carbon 13 NMR spectroscopy. Carbohydr Res 312(3):123–129CrossRefGoogle Scholar
  77. Yamamoto H, Koijima Y (2002) Properties of cell wall constituents in relation to longitudinal elasticity of wood. Wood Sci Technol 36:55–74CrossRefGoogle Scholar
  78. Yu Y, Fei B, Wang H, Tian G (2011) Longitudinal mechanical properties of cell wall of Masson pine (Pinus massoniana Lamb) as related to moisture content: A nanoindentation study. Holzforschung 65:121–126Google Scholar
  79. Zhang S-Y, Fei B-H, Wang C-G (2016) Effects of chemical extraction treatment on nano-scale mechanical properties of the wood cell wall. Bioresources 11(3):7365–7376Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.RISE BioeconomyStockholmSweden

Personalised recommendations