Material Choice

  • Touraj Nejatian
  • Richard Holliday
  • Robert Wassell
Part of the BDJ Clinician’s Guides book series (BDJCG)


This chapter will emphasise the need to:
  • Be aware of the capabilities of modern CAD/CAM technology for making extra-coronal restorations from all types of materials

  • Choose alloys carefully when prescribing metallic restorations (e.g. for bruxists) to reduce problems with biocompatibility and corrosion

  • Check your laboratory heat treat cast posts and cores made from gold alloy to ensure optimum stiffness

  • Choose reputable high strength ceramics which can be etched for optimum resin bonding

  • Cut retentive preparations for zirconia restorations to ensure retention

  • Prescribe direct and indirect composite restorations which are fit for the intended purpose.


  1. 1.
    Kelly JR. Clinically relevant approach to failure testing of all-ceramic restorations. J Prosthet Dent. 1999;81:652–61.CrossRefGoogle Scholar
  2. 2.
    Sailer I, Makarov NA, Thoma DS, Zwahlen M, Pjetursson BE. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part I: single crowns (SCs). Dent Mater. 2015;31:603–23.CrossRefGoogle Scholar
  3. 3.
    Miyazaki T, Hotta Y, Kunii J, Kuriyama S, Tamaki Y. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater J. 2009;28:44–56.CrossRefGoogle Scholar
  4. 4.
    Tsitrou EA, Northeast SE, van Noort R. Evaluation of the marginal fit of three margin designs of resin composite crowns using CAD/CAM. J Dent. 2007;35:68–73.CrossRefGoogle Scholar
  5. 5.
    Herrara M, Catalán A, Flores M, Martínez A. Marginal discrepancy and microleakage in crown-copings fabricated by three CAD/CAM systems: an in vitro study. Open J Stomatol. 2012;2:Article ID:22977, 22977 pages.Google Scholar
  6. 6.
    Qualtrough AJ, Piddock V. Dental CAD/CAM: a millstone or a milestone? Dent Update. 1995;22:200–4.PubMedGoogle Scholar
  7. 7.
    CAD/CAM for practice and lab. [cited June 2018]. Available from:
  8. 8.
    Planmeca PlanMill® 50. [cited October 2016]. Available from:
  9. 9.
    Kelly JR, Benetti P. Ceramic materials in dentistry: historical evolution and current practice. Aust Dent J. 2011;56(Suppl 1):84–96.CrossRefGoogle Scholar
  10. 10.
    CEREC. 3D preparation guidelines [cited October 2016]. Available from:
  11. 11.
    Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br Dent J. 2015;219:521–9.CrossRefGoogle Scholar
  12. 12.
    Koutsoukis T, Zinelis S, Eliades G, Al-Wazzan K, Rifaiy MA, Al Jabbari YS. Selective laser melting technique of Co-Cr dental alloys: a review of structure and properties and comparative analysis with other available techniques. J Prosthodont. 2015;24:303–12.CrossRefGoogle Scholar
  13. 13.
    Knosp H, Holliday RJ, Corti CW. Gold in dentistry: alloys, uses and performance. Gold Bull. 2003;36:93–101.CrossRefGoogle Scholar
  14. 14.
    The Editors of Encyclopædia Britannica. Lost-wax process metal casting. 2016 [cited July 2016]. Available from:
  15. 15.
    Wassell RW, Walls AW, Steele JG. Crowns and extra-coronal restorations: materials selection. Br Dent J. 2002;192:199–202, 205–211.CrossRefGoogle Scholar
  16. 16.
    Frykholm KO, Frithiof L, Fernstrom AI, Moberger G, Blohm SG, Bjorn E. Allergy to copper derived from dental alloys as a possible cause of oral lesions of lichen planus. Acta Derm Venereol. 1969;49:268–81.PubMedGoogle Scholar
  17. 17.
    Hopkins K. A method of strengthening aluminous porcelain jacket crowns. Br Dent J. 1981;151:225–7.CrossRefGoogle Scholar
  18. 18.
    Wiltshire WA, Ferreira MR, Ligthelm AJ. Allergies to dental materials. Quintessence Int. 1996;27:513–20.PubMedGoogle Scholar
  19. 19.
    Report on base metal alloys for crown and bridge applications: benefits and risks. Council on Dental Materials, Instruments, and Equipment. J Am Dent Assoc. 1985;111:479–83.Google Scholar
  20. 20.
    American Dental Association. CDT: Code on dental procedures and nomenclature. [cited August 2016]. Available from:
  21. 21.
    Beddis HP, Ridsdale L, Chin JS, Nixon PJ. An audit of the quality of base metal cast restorations provided within the restorative department of a UK dental institute. Br Dent J. 2014;217:E11.CrossRefGoogle Scholar
  22. 22.
    Weinstein M, Katz S, Weinstein A. Fused porcelain-to-metal teeth. U.S. Patent no. 3,052,982. Washington, DC: U.S. Patent Office; 1962.Google Scholar
  23. 23.
    al-Hiyasat AS, Saunders WP, Sharkey SW, Smith GM, Gilmour WH. Investigation of human enamel wear against four dental ceramics and gold. J Dent. 1998;26:487–95.CrossRefGoogle Scholar
  24. 24.
    Northeast SE, Van Noort R, Johnson A, Winstanley RB, White GE. Metal-ceramic bridges from commercial dental laboratories: alloy composition, cost and quality of fit. Br Dent J. 1992;172:198–204.CrossRefGoogle Scholar
  25. 25.
    Hansson O. Casting accuracy of a nickel and beryllium-free cobalt-chromium alloy for crown and bridge prostheses and resin-bonded bridges. Swed Dent J. 1985;9:105–15.PubMedGoogle Scholar
  26. 26.
    Shoher I, Whiteman A. Captek - a new capillary casting technology for ceramo-metal restorations. Quintessence Dent Technol. 1995;18:9–20.Google Scholar
  27. 27.
    Walter M, Reppel PD, Boning K, Freesmeyer WB. Six-year follow-up of titanium and high-gold porcelain-fused-to-metal fixed partial dentures. J Oral Rehabil. 1999;26:91–6.CrossRefGoogle Scholar
  28. 28.
    Cendres + Métaux [cited August 2016]. Available from:
  29. 29.
    McLean JW, Sced IR. The bonded alumina crown. 1. The bonding of platinum to aluminous dental porcelain using tin oxide coatings. Aust Dent J. 1976;21:119–27.CrossRefGoogle Scholar
  30. 30.
    McLean JW, Kedge MI, Hubbard JR. The bonded alumina crown. 2. Construction using the twin foil technique. Aust Dent J. 1976;21:262–8.CrossRefGoogle Scholar
  31. 31.
    Piddock V, Marquis PM, Wilson HJ. Comparison of the strengths of aluminous porcelain fired on to platinum and palladium foils. J Oral Rehabil. 1986;13:31–7.CrossRefGoogle Scholar
  32. 32.
    Southan D. Defects in porcelain at the porcelain-to-metal interface. In: Yamada H, Grenoble P, editors. Dental porcelain, the state of the art, 1977. Los Angeles: University of Southern California School of Dentistry; 1977. p. 48–9.Google Scholar
  33. 33.
    Hummert T, Barghi N, Berry T. Effect of fitting adjustments on compressive strength of a new foil crown system. J Prosthet Dent. 1991;66:177–81.CrossRefGoogle Scholar
  34. 34.
    Philp GK, Brukl CE. Compressive strengths of conventional, twin foil, and all-ceramic crowns. J Prosthet Dent. 1984;52:215–20.CrossRefGoogle Scholar
  35. 35.
    ISO 6872:2015(en) Dentistry — ceramic materials. [cited September 2016]. Available from:
  36. 36.
    Rekow ED, Silva NR, Coelho PG, Zhang Y, Guess P, Thompson VP. Performance of dental ceramics: challenges for improvements. J Dent Res. 2011;90:937–52.CrossRefGoogle Scholar
  37. 37.
    Michalske TA, Freiman SW. A molecular interpretation of stress-corrosion in silica. Nature. 1982;295:511–2.CrossRefGoogle Scholar
  38. 38.
    Gracis S, Thompson VP, Ferencz JL, Silva NR, Bonfante EA. A new classification system for all-ceramic and ceramic-like restorative materials. Int J Prosthodont. 2015;28:227–35.CrossRefGoogle Scholar
  39. 39.
    Justia Trademarks. [cited October 2016]. Available from:
  40. 40.
    Helvey G. Classification of dental ceramics. Inside Dent. 2013:62–76.Google Scholar
  41. 41.
    Sirona CAD/CAM materials. [cited November 2016]. Available from:
  42. 42.
    Tinschert J, Zwez D, Marx R, Anusavice KJ. Structural reliability of alumina-, feldspar-, leucite-, mica- and zirconia-based ceramics. J Dent. 2000;28:529–35.CrossRefGoogle Scholar
  43. 43.
    Shirakura A, Lee H, Geminiani A, Ercoli C, Feng C. The influence of veneering porcelain thickness of all-ceramic and metal ceramic crowns on failure resistance after cyclic loading. J Prosthet Dent. 2009;101:119–27.CrossRefGoogle Scholar
  44. 44.
    Geminiani A, Lee H, Feng C, Ercoli C. The influence of incisal veneering porcelain thickness of two metal ceramic crown systems on failure resistance after cyclic loading. J Prosthet Dent. 2010;103:275–82.CrossRefGoogle Scholar
  45. 45.
    Perdigao J, Sezinando A, Munoz MA, Luque-Martinez IV, Loguercio AD. Prefabricated veneers - bond strengths and ultramorphological analyses. J Adhes Dent. 2014;16:137–46.PubMedGoogle Scholar
  46. 46.
    Alkadi L, Ruse ND. Fracture toughness of two lithium disilicate dental glass ceramics. J Prosthet Dent. 2016;116:591–6.CrossRefGoogle Scholar
  47. 47.
    Pieger S, Salman A, Bidra AS. Clinical outcomes of lithium disilicate single crowns and partial fixed dental prostheses: a systematic review. J Prosthet Dent. 2014;112:22–30.CrossRefGoogle Scholar
  48. 48.
    Elsaka SE, Elnaghy AM. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic. Dent Mater. 2016;32:908–14.CrossRefGoogle Scholar
  49. 49.
    Chavali R, Nejat AH, Lawson NC. Machinability of CAD-CAM materials. J Prosthet Dent. 2017;118:194–9.CrossRefGoogle Scholar
  50. 50.
    Wendler M, Belli R, Petschelt A, Mevec D, Harrer W, Lube T, et al. Chairside CAD/CAM materials. Part 2: flexural strength testing. Dent Mater. 2017;33:99–109.CrossRefGoogle Scholar
  51. 51.
    Magne P, Belser U. Esthetic improvements and in vitro testing of In-Ceram Alumina and Spinell ceramic. Int J Prosthodont. 1997;10:459–66.PubMedGoogle Scholar
  52. 52.
    Guazzato M, Albakry M, Swain MV, Ironside J. Mechanical properties of In-Ceram Alumina and In-Ceram Zirconia. Int J Prosthodont. 2002;15:339–46.PubMedGoogle Scholar
  53. 53.
    Tanaka K, Tamura J, Kawanabe K, Nawa M, Oka M, Uchida M, et al. Ce-TZP/Al2O3 nanocomposite as a bearing material in total joint replacement. J Biomed Mater Res. 2002;63:262–70.CrossRefGoogle Scholar
  54. 54.
    Miyazaki T, Nakamura T, Matsumura H, Ban SJ, Kobayashi T. Current status of zirconia restoration. J Prosthodont Res. 2013;57:236–61.CrossRefGoogle Scholar
  55. 55.
    Lughi V, Sergo V. Low temperature degradation -aging- of zirconia: a critical review of the relevant aspects in dentistry. Dent Mater. 2010;26:807–20.CrossRefGoogle Scholar
  56. 56.
    Mitov G, Anastassova-Yoshida Y, Nothdurft FP, von See C, Pospiech P. Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns. J Adv Prosthodont. 2016;8:30–6.CrossRefGoogle Scholar
  57. 57.
    Oilo M, Kvam K, Tibballs JE, Gjerdet NR. Clinically relevant fracture testing of all-ceramic crowns. Dent Mater. 2013;29:815–23.CrossRefGoogle Scholar
  58. 58.
    Omori S, Komada W, Yoshida K, Miura H. Effect of thickness of zirconia-ceramic crown frameworks on strength and fracture pattern. Dent Mater J. 2013;32:189–94.CrossRefGoogle Scholar
  59. 59.
    Marchack BW, Sato S, Marchack CB, White SN. Complete and partial contour zirconia designs for crowns and fixed dental prostheses: a clinical report. J Prosthet Dent. 2011;106:145–52.CrossRefGoogle Scholar
  60. 60.
    Sulaiman TA, Abdulmajeed AA, Donovan TE, Cooper LF, Walter R. Fracture rate of monolithic zirconia restorations up to 5 years: a dental laboratory survey. J Prosthet Dent. 2016;116:436–9.CrossRefGoogle Scholar
  61. 61.
    Kelly JR, Rungruanganunt P. Fatigue behavior of computer-aided design/computer-assisted manufacture ceramic abutments as a function of design and ceramics processing. Int J Oral Maxillofac Implants. 2016;31:601–9.CrossRefGoogle Scholar
  62. 62.
    Jones DW, Wilson HJ. Some properties of dental ceramics. J Oral Rehabil. 1975;2:379–96.CrossRefGoogle Scholar
  63. 63.
    Ingot options for IPS e.max Press. [cited October 2016]. Available from:
  64. 64.
    Dong JK, Luthy H, Wohlwend A, Scharer P. Heat-pressed ceramics: technology and strength. Int J Prosthodont. 1992;5:9–16.PubMedGoogle Scholar
  65. 65.
    Raigrodski AJ, Hillstead MB, Meng GK, Chung KH. Survival and complications of zirconia-based fixed dental prostheses: a systematic review. J Prosthet Dent. 2012;107:170–7.CrossRefGoogle Scholar
  66. 66.
    Fasbinder DJ. Materials for chairside CAD/CAM restorations. Compend Contin Educ Dent. 2010;31:702–4, 706, 708-709.PubMedGoogle Scholar
  67. 67.
    Monasky GE, Taylor DF. Studies on the wear of porcelain, enamel, and gold. J Prosthet Dent. 1971;25:299–306.CrossRefGoogle Scholar
  68. 68.
    Heintze SD, Cavalleri A, Forjanic M, Zellweger G, Rousson V. Wear of ceramic and antagonist--a systematic evaluation of influencing factors in vitro. Dent Mater. 2008;24:433–49.CrossRefGoogle Scholar
  69. 69.
    Kim MJ, Oh SH, Kim JH, Ju SW, Seo DG, Jun SH, et al. Wear evaluation of the human enamel opposing different Y-TZP dental ceramics and other porcelains. J Dent. 2012;40:979–88.CrossRefGoogle Scholar
  70. 70.
    Conrad HJ, Seong WJ, Pesun IJ. Current ceramic materials and systems with clinical recommendations: a systematic review. J Prosthet Dent. 2007;98:389–404.CrossRefGoogle Scholar
  71. 71.
    Mizrahi B. The anterior all-ceramic crown: a rationale for the choice of ceramic and cement. Br Dent J. 2008;205:251–5.CrossRefGoogle Scholar
  72. 72.
    Fleming GJ, Maguire FR, Bhamra G, Burke FM, Marquis PM. The strengthening mechanism of resin cements on porcelain surfaces. J Dent Res. 2006;85:272–6.CrossRefGoogle Scholar
  73. 73.
    Chun YH, Raffelt C, Pfeiffer H, Bizhang M, Saul G, Blunck U, et al. Restoring strength of incisors with veneers and full ceramic crowns. J Adhes Dent. 2010;12:45–54.PubMedGoogle Scholar
  74. 74.
    Nakamura K, Mouhat M, Nergard JM, Laegreid SJ, Kanno T, Milleding P, et al. Effect of cements on fracture resistance of monolithic zirconia crowns. Acta Biomater Odontol Scand. 2016;2:12–9.CrossRefGoogle Scholar
  75. 75.
    Zhao K, Pan Y, Guess PC, Zhang XP, Swain MV. Influence of veneer application on fracture behavior of lithium-disilicate-based ceramic crowns. Dent Mater. 2012;28:653–60.CrossRefGoogle Scholar
  76. 76.
    Lameira DP, Buarque e Silva WA, Andrade e Silva F, De Souza GM. Fracture strength of aged monolithic and bilayer zirconia-based crowns. Biomed Res Int. 2015;2015:418641.CrossRefGoogle Scholar
  77. 77.
    Stawarczyk B, Frevert K, Ender A, Roos M, Sener B, Wimmer T. Comparison of four monolithic zirconia materials with conventional ones: contrast ratio, grain size, four-point flexural strength and two-body wear. J Mech Behav Biomed Mater. 2016;59:128–38.CrossRefGoogle Scholar
  78. 78.
    Nakamura K, Harada A, Inagaki R, Kanno T, Niwano Y, Milleding P, et al. Fracture resistance of monolithic zirconia molar crowns with reduced thickness. Acta Odontol Scand. 2015;73:602–8.CrossRefGoogle Scholar
  79. 79.
    Oilo M, Kvam K, Gjerdet NR. Simulation of clinical fractures for three different all-ceramic crowns. Eur J Oral Sci. 2014;122:245–50.CrossRefGoogle Scholar
  80. 80.
    Pressable ceramic options from Ivoclar. [cited October 2016]. Available from:
  81. 81.
    Lynch CD, Opdam NJ, Hickel R, Brunton PA, Gurgan S, Kakaboura A, et al. Guidance on posterior resin composites: Academy of Operative Dentistry - European Section. J Dent. 2014;42:377–83.CrossRefGoogle Scholar
  82. 82.
    Ilie N, Hickel R. Resin composite restorative materials. Aust Dent J. 2011;56(Suppl 1):59–66.CrossRefGoogle Scholar
  83. 83.
    Chesterman J, Jowett A, Gallacher A, Nixon P. Bulk-fill resin-based composite restorative materials: a review. Br Dent J. 2017;222:337–44.CrossRefGoogle Scholar
  84. 84.
    Nandini S. Indirect resin composites. J Conserv Dent. 2010;13:184–94.CrossRefGoogle Scholar
  85. 85.
    Mainjot AK, Dupont NM, Oudkerk JC, Dewael TY, Sadoun MJ. From Artisanal to CAD-CAM blocks: state of the art of indirect composites. J Dent Res. 2016;95:487–95.CrossRefGoogle Scholar
  86. 86.
    Ruse ND, Sadoun MJ. Resin-composite blocks for dental CAD/CAM applications. J Dent Res. 2014;93:1232–4.CrossRefGoogle Scholar
  87. 87.
    Kildal KK, Ruyter IE. How different curing methods affect mechanical properties of composites for inlays when tested in dry and wet conditions. Eur J Oral Sci. 1997;105:353–61.CrossRefGoogle Scholar
  88. 88.
    Duquia Rde C, Osinaga PW, Demarco FF, de VHL, Conceicao EN. Cervical microleakage in MOD restorations: in vitro comparison of indirect and direct composite. Oper Dent. 2006;31:682–7.CrossRefGoogle Scholar
  89. 89.
    da Veiga AM, Cunha AC, Ferreira DM, da Silva Fidalgo TK, Chianca TK, Reis KR, et al. Longevity of direct and indirect resin composite restorations in permanent posterior teeth: a systematic review and meta-analysis. J Dent. 2016;54:1–12.CrossRefGoogle Scholar
  90. 90.
    Thordrup M, Isidor F, Horsted-Bindslev P. A prospective clinical study of indirect and direct composite and ceramic inlays: ten-year results. Quintessence Int. 2006;37:139–44.PubMedGoogle Scholar
  91. 91.
    Fron Chabouis H, Prot C, Fonteneau C, Nasr K, Chabreron O, Cazier S, et al. Efficacy of composite versus ceramic inlays and onlays: study protocol for the CECOIA randomized controlled trial. Trials. 2013;14:278.CrossRefGoogle Scholar
  92. 92.
    Menini M, Conserva E, Tealdo T, Bevilacqua M, Pera F, Signori A, et al. Shock absorption capacity of restorative materials for dental implant prostheses: an in vitro study. Int J Prosthodont. 2013;26:549–56.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Touraj Nejatian
    • 1
    • 2
  • Richard Holliday
    • 3
  • Robert Wassell
    • 2
  1. 1.Nottingham Dental CareNottinghamUK
  2. 2.Royal College of SurgeonsEnglandUK
  3. 3.Department of Restorative DentistryNewcastle University School of Dental SciencesNewcastle upon TyneUK

Personalised recommendations