A Cloud Computing Workflow for Managing Oceanographic Data

  • Salma Allam
  • Antonino Galletta
  • Lorenzo Carnevale
  • Moulay Ali Bekri
  • Rachid El Ouahbi
  • Massimo Villari
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 824)

Abstract

Ocean data management plays an important role in the oceanographic problems, such as ocean acidification. These data, having different physical, biological and chemical nature, are collected from all seas and oceans of the world, generating an international networks for standardizing data formats and facilitating global databases exchange. Cloud computing is therefore the best candidate for oceanographic data migration on a distributed and scalable platform, able to help researchers for performing future predictive analysis. In this paper, we propose a new Cloud based workflow solution for storing oceanographic data and ensuring a good user experience about the geographical data visualization. Experiments prove the goodness of the proposed system in terms of performance.

Keywords

Oceanography Cloud Computing Data collection Data management Data migration NoSQL Big Data 

Notes

Acknowledgment

This work has been supported by Cloud for Europe grant agreement number FP7-610650 (C4E) Tender: REALIZATION OF A RESEARCH AND DEVELOPMENT PROJECT (PRE-COMMERCIAL PROCUREMENT) ON “CLOUD FOR EUROPE”, Italy-Rome: Research and development services and related consultancy services Contract notice: 2014/S 241-424518. Directive: 2004/18/EC. (http://www.cloudforeurope.eu/).

References

  1. 1.
    Doney, S.C., Balch, W.M., Fabry, V.J., Feely, R.A.: Ocean acidification a critical emerging problem. Oceanography 22(4), 16–25 (2009)CrossRefGoogle Scholar
  2. 2.
    Allam, R.E.S., Ouahbi, M.D.E.O.: Adv. Inf. Technol. Theory Appl. 1, 163–166 (2016). ISSN: 2489–1703Google Scholar
  3. 3.
    Schlitzer, R.: Ocean Data View, pp. 1–11 (2011)Google Scholar
  4. 4.
    Smith, W.H.F., Wessel, P.: Gridding with continuous curvature splines in tension. Geophysics 55(3), 293–305 (1990). http://library.seg.org/doi/10.1190/1.1442837CrossRefGoogle Scholar
  5. 5.
    Started, G.: Ocean Data View, pp. 1–11 (2011)Google Scholar
  6. 6.
    Ware, C., Plumlee, M., Arsenault, R., Mayer, L.A., Smith, S., House, D.: GeoZui3D: data fusion for interpreting oceanographic data. In: Oceans Conference Record (IEEE), vol. 3, pp. 1960–1964 (2001)Google Scholar
  7. 7.
    Plumlee, M., Ware, C.: An evaluation of methods for linking 3D views. In: Proceedings of the Symposium on Interactive 3D Graphics, pp. 193–201 (2003). http://www.scopus.com/inward/record.url?eid=2-s2.0-0038642661&partnerID=tZOtx3y1
  8. 8.
    Butler, K., Merati, N.: Analysis patterns for cloud-centric atmospheric and ocean research. In: Cloud Computing in Ocean and Atmospheric Sciences, pp. 15–34. Elsevier (2016).  https://doi.org/10.1016/b978-0-12-803192-6.00002-5
  9. 9.
    Wigton, R.: Forces and patterns in the scientific cloud. In: Cloud Computing in Ocean and Atmospheric Sciences, pp. 35–41. Elsevier (2016).  https://doi.org/10.1016/b978-0-12-803192-6.00003-7
  10. 10.
    Li, W., Shao, H., Wang, S., Zhou, X., Wu, S.: A2ci. In: Cloud Computing in Ocean and Atmospheric Sciences, pp. 137–161. Elsevier (2016).  https://doi.org/10.1016/b978-0-12-803192-6.00009-8
  11. 11.
    Fatland, R., MacCready, P., Oscar, N.: LiveOcean. In: Cloud Computing in Ocean and Atmospheric Sciences, pp. 277–296. Elsevier (2016).  https://doi.org/10.1016/b978-0-12-803192-6.00014-1
  12. 12.
    Fazio, M., Celesti, A., Villari, M., Puliafito, A.: The need of a hybrid storage approach for IoT in PaaS cloud federation. In: 2014 28th International Conference on Advanced Information Networking and Applications Workshops, pp. 779–784 (2014)Google Scholar
  13. 13.
    Celesti, A., Peditto, N., Verboso, F., Villari, M., Puliafito, A., Draco PaaS: a distributed resilient adaptable cloud oriented platform. In: IEEE International Symposium on Parallel Distributed Processing. Workshops and PhD Forum 2013, pp. 1490–1497 (2013)Google Scholar
  14. 14.
    Tusa, F., Celesti, A., Villari, M., Puliafito, A.: How to enhance cloud architectures to enable cross-federation. In: Proceedings of IEEE CLOUD 2010, pp. 337–345. IEEE, July 2010Google Scholar
  15. 15.
    Vernik, G., Shulman-Peleg, A., Dippl, S., Formisano, C., Jaeger, M., Kolodner, E., Villari, M.: Data on-boarding in federated storage clouds. In: 2013 IEEE Sixth International Conference on Cloud Computing (CLOUD), pp. 244–251, June 2013Google Scholar
  16. 16.
    Goiri, I., Guitart, J., Torres, J.: Characterizing cloud federation for enhancing providers’ profit. In: 2010 IEEE 3rd International Conference on Cloud Computing (CLOUD), pp. 123–130, July 2010Google Scholar
  17. 17.
    Azodolmolky, S., Wieder, P., Yahyapour, R.: Cloud computing networking: challenges and opportunities for innovations. IEEE Commun. Mag. 51(7), 54–62 (2013)CrossRefGoogle Scholar
  18. 18.
    Villari, M., Fazio, M., Dustdar, S., Rana, O., Ranjan, R.: Osmotic computing: a new paradigm for edge/cloud integration. IEEE Cloud Comput. 3(6), 76–83 (2016)CrossRefGoogle Scholar
  19. 19.
    Catalog of Databases and Reports, May 1999. http://cdiac.ornl.gov/oceans/
  20. 20.
    Key, R., Olsen, A., van Heuven, S., Lauvset, S., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishi, M., Perez, F., Suzuki, T.: Global Ocean Data Analysis Project, Version 2 (GLODAPv2). Ornl/Cdiac-162, Ndp-093, vol. 2 (2015)Google Scholar
  21. 21.
    Suzuki, T., Ishii, M., Aoyama, M., Christian, J.R., Enyo, K., Kawano, T., Key, R.M., Kosugi, N., Kozyr, A., Miller, L.A., Murata, A., Nakano, T., Ono, T., Saino, T., Sasaki, K.-I., Sasano, D., Takatani, Y., Wakita, M., Sabine, C.L.: Pacifica Data Synthesis Project. Ornl/Cdiac-159, Ndp-092 (2013)Google Scholar
  22. 22.
    Hoppema, M., Velo, A., van Heuven, S., Tanhua, T., Key, R.M., Lin, X., Bakker, D.C.E., Perez, F.F., Ríos, A.F., Lo Monaco, C., Sabine, C.L., Álvarez, M., Bellerby, R.G.J.: Consistency of cruise data of the CARINA database in the Atlantic sector of the Southern Ocean. Earth Syst. Sci. Data 1, 63–75 (2009)CrossRefGoogle Scholar
  23. 23.
    Hubbs, C.L.: University of Michigan, U.S.A., vol. III, pp. 1–6 (1930)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Salma Allam
    • 1
  • Antonino Galletta
    • 2
  • Lorenzo Carnevale
    • 2
  • Moulay Ali Bekri
    • 1
  • Rachid El Ouahbi
    • 1
  • Massimo Villari
    • 2
  1. 1.Lab MIASH and Lab MACS, Department of Computer Science and Mathematics, Faulty of SciencesUniversity Moulay IsmailMeknesMorocco
  2. 2.Department of EngineeringUniversity of MessinaMessinaItaly

Personalised recommendations