Advertisement

Somatic Embryogenesis in Cherry (Prunus sp.)

  • Kaouther Ben Mahmoud
  • Yordan Muhovski
  • Fabienne Delporte
  • Ahmed Jemmali
  • Philippe Druart
Chapter
Part of the Forestry Sciences book series (FOSC, volume 85)

Abstract

Cherry is a member of the Rosaceae family, subfamily Prunoideae, subgenus Cerasus. It is the common name of several Prunus species such as P. avium, P. cerasus, P. mahaleb, P. serotina, P. serrulata, P. incisa and many interspecific hybrids (P. canescens x P. incisa, P. avium x P. cerasus, P. incisa x serrula, etc.).

References

  1. Ben Mahmoud K (2012) Etude de l’aptitude à l’embryogenèse somatique du porte-greffe de cerisier CAB 6P (Prunus cerasus L.) et des mécanismes histologiques et moléculaires associés. Ph.D., National Agronomic Institute of Tunisia, Tunis, TunisiaGoogle Scholar
  2. Ben Mahmoud K, Delporte F, Muhovski Y, Elloumi N, Jemmali A, Druart Ph (2013) Expression of PiABP19, Picdc2 and PiSERK3 during induction of somatic embryogenesis in leaflets of Prunus incisa (Thunb.). Mol Biol Rep 40:1569–1577CrossRefPubMedGoogle Scholar
  3. Brown SK, Iezzoni AF, Fogle HW (1996) Cherries. In: Janick J, Moore JN (ed) Fruit breeding: tree and tropical fruits, 1st edn. Wiley, New York, USA, pp 213–255Google Scholar
  4. Chen JG, Shimomura S, Sitbon F, Stanberg G, Jones AM (2001) The role of auxin-binding protein 1 in the expansion of tobacco leaf cells. Plant J 28:607–617CrossRefPubMedGoogle Scholar
  5. Cheng Y, Liu H, Cao L, Wang S, Li Y, Zhang Y, Jiang W, Zhou Y, Wang H (2015) Down regulation of multiple CDK inhibitor ICK/KRP genes promotes cell proliferation, callus induction and plant regeneration in Arabidopsis. Front Plant Sci 6:1–12Google Scholar
  6. Das S, Ray S, Dey S, Dasgupta S (2001) Optimisation of sucrose, inorganic nitrogen and abscisic acid levels for Santalum album L. somatic embryo production in suspension culture. Process Biochem 37:51–56CrossRefGoogle Scholar
  7. De Oliveira Santos M, Romano E, Yotoko KSC, Tinoco MLP, Dias BBA, Araga FJL (2005) Characterization of the cacao somatic embryogenesis receptor-like kinase (SERK) gene expressed during somatic embryogenesis. Plant Sci 168:723–729CrossRefGoogle Scholar
  8. Dennis TT (2006) Effect of sugars, gibberellic acid and abscisic acid on somatic embryogenesis in Tylophora indica (Burm. f.) Merrill. Chin J Biotech 22:465–471CrossRefGoogle Scholar
  9. Druart Ph (1999) Somatic embryogenesis in Prunus species. In: Gupta PK, Newton RJ, Mohain JS (eds) Somatic embryogenesis in woody plants, 1st edn. Kluwer Academic, Dordrecht, Netherlands, pp 215–235CrossRefGoogle Scholar
  10. Druart Ph (2003) Micropropagation of apples (Malus sp.). In: Jain SM, Ishii K (eds) Micropropagation. Kluwer Academic, The Netherlands, pp 433–463CrossRefGoogle Scholar
  11. Feher A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tiss Org Cult 74:201–228CrossRefGoogle Scholar
  12. Fuentes SRL, Calheiros MBP, Manetti-Filho J, Vieira LGE (2000) The effects of silver nitrate and different carbohydrates sources on somatic embryogenesis in Coffea canephora. Plant Cell Tiss Org Cult 60:5–13CrossRefGoogle Scholar
  13. Giri C, Shyamkumar B, Anjaneyulu C (2004) Progress in tissue culture, genetic transformation and applications of biotechnology to tress: an overview. Trees 18:115–135CrossRefGoogle Scholar
  14. Isah T (2016) Induction of somatic embryogenesis in woody plants. Acta Physiol Plant 38:1–22CrossRefGoogle Scholar
  15. Jayasankar S, Kappel F (2011) Recent advances in cherry breeding. Fruit Vegetable Cereal Biotechnol 5:63–67Google Scholar
  16. Joubès J, Lemaire-Chamley M, Delmas F, Walter J, Hernould M, Mouras A, Raymond P, Chevalier C (2001) A new C-type cyclin-dependent kinase from tomato expressed in dividing tissues does not interact with mitotic and G1 cyclins. Plant Phys 126:1403–1415CrossRefGoogle Scholar
  17. Lee EK, Cho DY, Soh WY (2001) Enhanced production and germination of somatic embryos by temporary starvation in tissue cultures of Daucus carota. Plant Cell Tiss Org Cult 20:408–415Google Scholar
  18. Lin HY, Chen JC, Wei MJ, Lien YC, Li HH, Ko SS, Liu ZH, Fang SC (2014) Genome-wide annotation, expression profiling and protein interaction studies of the core cell-cycle genes in Phalaenopsis Aphrodite. Plant Mol Biol 84:203–226CrossRefPubMedGoogle Scholar
  19. Lou H, Kako S (1995) Role of high sugar concentrations in inducing somatic embryogenesis from cucumber cotyledons. Sci Hort 64:11–20CrossRefGoogle Scholar
  20. Malumbres M (2014) Cyclin-dependent kinases. Genome Biol 15:122–131CrossRefPubMedPubMedCentralGoogle Scholar
  21. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  22. Nolan KE, Irwanto RR, Rose RJ (2003) Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Phys 133:218–230CrossRefGoogle Scholar
  23. Omid K, Deljou A, Kordestani GK (2008) Secondary somatic embryogenesis of carnation (Dianthus caryophyllus L.). Plant Cell Tiss Org Cult 92:273–280CrossRefGoogle Scholar
  24. Raj Bhansali R, Driver JA, Durzan DJ (1990) Rapid multiplication of adventitious somatic embryos in peach and nectarine by secondary embryogenesis. Plant Cell Rep 9:280–284Google Scholar
  25. Reidiboym-Talleux L, Diemer F, Sourdioux M, Chapelain K, De March G (1999) Improvement of somatic embryogenesis in wild cherry (Prunus avium). Effect of maltose and ABA supplements. Plant Cell Tiss Org Cult 55:199–209CrossRefGoogle Scholar
  26. Salvo SAGD, Hirsch CN, Buell CR, Kaeppler SM, Kaeppler HF (2014) Whole transcriptome profiling of maize during early somatic embryogenesis reveals altered expression of stress factors and embryogenesis-related genes. PLoS One 9:1–17Google Scholar
  27. Samson NP, Campa C, Le Gal L, Noirot M, Thomas G, Lokeswari TS, de Kochko A (2006) Effect of primary culture medium composition on high frequency somatic embryogenesis in different Coffea species. Plant Cell Tiss Org Cult 86:37–45CrossRefGoogle Scholar
  28. Schmidt ED, Guzzo F, Toonen MA, de Vries SC (1997) A leucine rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062PubMedGoogle Scholar
  29. Shibli RA, Shatnawi M, Abu-Ein, Al-Juboory KH (2001) Somatic embryogenesis and plant recovery from callus of ‘Nabali’ Olive (Olea europea L.). Sci Hort 88:243–256CrossRefGoogle Scholar
  30. Shimada T, Hirabayashi T, Endo T, Fuji H, Kita M, Omura M (2005) Isolation and characterization of the somatic embryogenesis receptor-like kinase gene homologue (CiSERK1) from Citrus unshiu Marc. Sci Hort 103:233–238CrossRefGoogle Scholar
  31. Stasolla C, Kong L, Yeung EC, Thorpe TA (2002) Maturation of somatic embryos in conifers: morphogenesis, physiology, biochemistry and molecular biology. In vitro Cell Dev Biol-Plant 38:93–105CrossRefGoogle Scholar
  32. Steinmacher DA, Clement CR, Guerra MP (2007) Somatic embryogenesis from immature peach palm inflorescence explants: towards development of an efficient protocol. Plant Cell Tiss Org 89:15–22CrossRefGoogle Scholar
  33. Tapan KM, Bhattacharya A, Ahuja PS (2001) Induction of synchronous secondary somatic embryogenesis in Camellia sinensis (L.) O. Kuntze. J Plant Physiol 158:945–951CrossRefGoogle Scholar
  34. Tomaz ML, Januzzi Mendes BM, Mourao Filho DAA, Demétrio CGB, Jansakul N, Rodriguez APM (2001) Somatic emrbyogenesis in citrus spp.: carbohydrate stimulation and histodifferentiation. In vitro Cell Dev Biology-Plant 37:446–450CrossRefGoogle Scholar
  35. Tromas A, Braun N, Muller P, Khodus T, Paponov IA, Palme A, Liung K, Lee JY, Benfey P, Murray JAH, Scheres B, Perrot-Rechenmann C (2009) The auxin binding protein 1 is required for differential auxin responses mediating root growth. PLoS One 4:1–11CrossRefGoogle Scholar
  36. Tromas A, Paponov I, Perrot-Rechemmann C (2010) Auxin binding protein 1: functional and evolutionary aspects. Trends Plant Sci 8:436–446CrossRefGoogle Scholar
  37. Verdeil JL, Alemanno L, Niemenak N, Tranbarger TJ (2007) Pluripotent versus totipotent plant stem cells: dependence versus autonomy? Trends Plant Sci 12:245–252CrossRefPubMedGoogle Scholar
  38. Von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tiss Org Cult 69:233–249CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Kaouther Ben Mahmoud
    • 1
  • Yordan Muhovski
    • 2
  • Fabienne Delporte
    • 2
  • Ahmed Jemmali
    • 1
  • Philippe Druart
    • 2
  1. 1.National Institute of Agronomic Research of TunisiaAriana, TunisTunisia
  2. 2.Walloon Agriculture Research Centre, Chaussée de Charleroi, 234GemblouxBelgium

Personalised recommendations