Advertisement

Cryopreservation of Tamarillo (Solanum betaceum Cav.) Embryogenic Cultures

  • D. Graça
  • S. Correia
  • E. A. Ozudogru
  • M. Lambardi
  • J. M. Canhoto
Chapter
Part of the Forestry Sciences book series (FOSC, volume 85)

Abstract

Plant germplasm preservation is crucial to store genetic resources for both breeding and conservation programs to minimize biodiversity losses. Biotechnological resources, and in vitro cultures in particular, are progressively becoming an alternative for germplasm conservation.

References

  1. Barun S (2015) A review on applications & advantages of cryopreservation in different fields of science. The Beats Nat Sci 2:1–6Google Scholar
  2. Bonga JM (2012) Recalcitrance in the in vitro propagation of trees. In: Integrating vegetative propagation, biotechnologies and genetic improvement for tree production and sustainable forest management (IUFRO, ed), p 37, Brno, Czech RepublicGoogle Scholar
  3. Canhoto J, Lopes M, Cruz G (2005) Protocol of somatic embryogenesis: tamarillo (Cyphomandra betacea (Cav.) Sendt). In: Jain S, Gupta P (eds), Protocol for somatic embryogenesis in woody plants, pp 379–389. Springer, BerlinGoogle Scholar
  4. Chen TH, Kartha KK, Leung NL, Kurz WG, Chatson KB, Constabel F (1984) Cryopreservation of alkaloid-producing cell cultures of periwinkle (Catharanthus roseus). Plant Physiol 75:726–731CrossRefPubMedPubMedCentralGoogle Scholar
  5. Correia SI, Canhoto JM (2012) Biotechnology of tamarillo (Cyphomandra betacea): from in vitro cloning to genetic transformation. Scientia Hort 148:161–168CrossRefGoogle Scholar
  6. Currais L, Loureiro J, Santos C, Canhoto JM (2013) Ploidy stability in embryogenic cultures and regenerated plantlets of tamarillo. Plant Cell Tissue Org Cult 114:149–159CrossRefGoogle Scholar
  7. Engelmann F (2011) Use of biotechnologies for the conservation of plant biodiversity. Vitro Cell & Dev Biology - Plant 47:5–16CrossRefGoogle Scholar
  8. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plant 15:473–497CrossRefGoogle Scholar
  9. Ozudogru EA, Lambardi M (2016) Cryotechniques for the long-term conservation of embryogenic cultures from woody plants. In: Germanà M, Lambardi M (eds) In vitro embryogenesis in higher plants. Springer, Berlin, pp 537–550CrossRefGoogle Scholar
  10. Popova E, Shukla M, Kim HH, Saxena PK (2015) Plant cryopreservation for biotechnology and breeding. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies: breeding, biotechnology and molecular tools. Springer, Berlin, pp 63–93CrossRefGoogle Scholar
  11. Reed BM, Kovalchuk I, Kushnarenko S, Meier-Dinkel A, Schoenweiss K, Pluta S, Straczynska K, Benson EE (2004) Evaluation of critical points in technology transfer of cryopreservation protocols to international plant conservation laboratories. CryoLetters 25:341–352PubMedGoogle Scholar
  12. Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33CrossRefPubMedGoogle Scholar
  13. Thorpe TA, Stasolla C (2001) Somatic embryogenesis. In: Thorp TA (ed) Current trends in the embryology of angiosperms. Kluwer Academic Publishers, Dordrecht, pp 279–336CrossRefGoogle Scholar
  14. Withers LA, King P (1980) A simple freezing unit and routine cryopreservation method for plant-cell cultures. Cryo-letters 1:213–220Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • D. Graça
    • 1
  • S. Correia
    • 1
  • E. A. Ozudogru
    • 2
  • M. Lambardi
    • 2
  • J. M. Canhoto
    • 1
  1. 1.Centre for Functional Ecology, Department of Life SciencesUniversity of CoimbraCoimbraPortugal
  2. 2.CNR (National Research Council), IVALSA InstituteFlorenceItaly

Personalised recommendations