Advertisement

Somatic Embryogenesis in Açaí Palm (Euterpe oleracea Mart.)

  • Elínea de Oliveira Freitas
  • Inaê Mariê de Araújo Silva-Cardoso
  • Jéssica Cristina Barbosa Ferreira
  • Frederico Henrique da Silva Costa
  • Jonny Everson Scherwinski-Pereira
Chapter
Part of the Forestry Sciences book series (FOSC, volume 85)

Abstract

The açaí palm (Euterpe oleracea Mart.) is a species that belongs to the family Arecaceae and supplies one of the most popular “superfruits” of the Amazon rainforest, commonly known as “açaí-do-pará”. Due to the many health benefits, continuously elucidated by the scientific community, this species has become the target of several consumer markets around the globe. Due to the aforementioned benefits, the demand for products derived from E. oleracea, in Brazil and internationally, has increased over the last years, which requires a transition from an extractive production system to a system based on large commercially farmed areas. The açaí palm (E. oleracea) can be propagated via seeds and via tillering. However, due to the low rates of production and survival of the plants obtained by tillers, commercial-scale production of plantlets is limited to sexual propagation, which presents drawbacks such as the slowness and unevenness of the germination process, aside from the resulting genetic heterogeneity. In this setting, in vitro cultivation techniques—especially somatic embryogenesis—are seen as a promising alternative to clonal propagation of E. oleracea. In the Euterpe genus, relatively few studies of somatic embryogenesis have been developed, limited to E. edulis and E. oleracea, the vast majority using zygotic embryos as initial explants. Immature inflorescences have also been studied as potential explants for palm trees, due to the high embryogenic capacity of the calli originating therefrom. In addition to the explants mentioned above, immature leaves are also seen as possible explants to be used in the initiation of the technique in E. oleracea. This chapter presents and discusses the principles, strategies and limitations of using somatic embryogenesis for the propagation of E. oleracea.

Notes

Acknowledgements

The authors thank CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for financial support and scholarships. We also wish to extend our thanks to Embrapa Eastern Amazon, Belém, PA, Brazil, for providing the biological material for experiments.

References

  1. Abul-Soad AA (2011) Micropropagation of date palm using inflorescence explants. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date Palm Biotechnology. Springer, Dordrecht, pp 91–118CrossRefGoogle Scholar
  2. Almeida M, Almeida CV, Graner EM, Brondani GE, Abreu-Tarazi MF (2012) Pre-procambial cells are niches for pluripotent and totipotent stem-like cells for organogenesis and somatic embryogenesis in the peach palm: a histological study. Plant Cell Rep 31:1495–1515. https://doi.org/10.1007/s00299-012-1264-6CrossRefPubMedGoogle Scholar
  3. Balzon TA, Luis ZG, Scherwinski-Pereira JE (2013) New approaches to improve the efficiency of somatic embryogenesis in oil palm (Elaeis guineensis Jacq.) from mature zygotic embryos. Vitro Cell Dev Biol Plan 49(1):41–50. http://dx.doi.org/10.1007/s11627-012-9479-3CrossRefGoogle Scholar
  4. Barbosa PO, Pala D, Silva CT, Souza MO, Amaral JF, Vieira RAL, Folly GAF, Volp ACP, Freitas RNF (2016) Açai (Euterpe oleracea Mart.) pulp dietary intake improves cellular antioxidant enzymes and biomarkers of serum in healthy women. Nutrition 32:674–680. https://doi.org/10.1016/j.nut.2015.12.030CrossRefPubMedGoogle Scholar
  5. Bem GF, Costa CA, Oliveira PRB, Cordeiro VSC, Santos IB, Carvalho LCRM, Souza MAV, Ognibene DT, Daleprane JB, Sousa PJC, Resende AC, Moura RS (2014) Protective effect of Euterpe oleracea Mart (açaí) extract on programmed changes in the adult rat offspring caused by maternal protein restriction during pregnancy. J Pharm Pharmacol 66:1328–1338. https://doi.org/10.1111/jphp.12258CrossRefPubMedGoogle Scholar
  6. Carey AN, Miller MG, Fisher DR, Bielinski DF, Gilman CK, Poulose SM, Shukitt-Hale B (2015) Dietary supplementation with the polyphenolrich açaí pulps (Euterpe oleracea Mart. and Euterpe precatoria Mart.) improves cognition in aged rats and attenuates inflammatory signaling in BV-2 microglial cells. Nutr Neurosci 20(4):238–245. https://doi.org/10.1080/1028415X.2015.1115213CrossRefPubMedGoogle Scholar
  7. Carvalho D, Boletim: Produção Nacional de Açaí. SEBRAE (2015) hhttp://www.bibliotecas.sebrae.com.br/chronus/ARQUIVOS_CHRONUS/bds/bds.nsf/64153228c3c444bcdb587b6b501fa076/$File/5827.pdf. Accessed on Aug 7 2017
  8. Companhia Nacional de Abastecimento (CONAB). Açaí (fruto) (2016) Conjuntura Nacional. http://www.conab.gov.br/OlalaCMS/uploads/arquivos/16_05_09_11_55_19_conjutura_de__acai_abr_-16-1.pdf. Accessed on Aug 7 2017
  9. Costa MR, Oliveira MSP, Moura EF (2001) Variabilidade genética em açaizeiro Pesquisa (Euterpe oleraceae Mart.). Biotecnologia Cienc Desenvolv 21:46–50Google Scholar
  10. Costa MGM, Ooki GN, Vieira ADS, Bedani RB, Saad SMI (2017) Synbiotic Amazonian palm berry (açai, Euterpe oleracea Mart.) ice cream improved Lactobacillus rhamnosus GG survival to simulated gastrointestinal stress. Food Funct. 8(2):731–740. https://dx.doi.org/10.1039/c6fo00778cCrossRefGoogle Scholar
  11. Dudits D, Györgyey J, Bögre L, Bako L (1995) Molecular biology of somatic embryogenesis. In: Thorpe TA (ed) In vitro Embryogenesis in Plants. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 267–308CrossRefGoogle Scholar
  12. Elhiti M, Stasolla C, Wang A (2013) Molecular regulation of plant somatic embryogenesis. Vitro Cell Dev Biol Plant 49:631–642. https://doi.org/10.1007/s11627-013-9547-3CrossRefGoogle Scholar
  13. Emons AMC (1994) Somatic embryogenesis: cell biological aspects. Acta Bot Neerl 43(1):1–14CrossRefGoogle Scholar
  14. Eshraghi P, Zarghami R, Mirabdulbaghi M (2005) Somatic embryogenesis in two Iranian date palm cultivars. Afr J Biotechnol 4:1309–1312Google Scholar
  15. Fehér A (2015) Somatic embryogenesis—stress-induced remodeling of plant cell fate. Biochim Biophys Acta 1849(4):385–402. https://doi.org/10.1016/j.bbagrm.2014.07.005CrossRefPubMedGoogle Scholar
  16. Fehér A (2006) Why somatic plant cells start to form embryos? In: Mujib S, Samaj J (eds) Somatic embryogenesis plant cell monographs. Springer, Heidelberg, pp 85–101Google Scholar
  17. Fehér A, Pasternak T, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228. https://doi.org/10.1023/A:1024033216561CrossRefGoogle Scholar
  18. Feio CA, Izar MC, Ihara SS, Kasmas SH, Martins CM, Feio MN, Maués LA, Borges NC, Moreno RA, Póvoa RM, Fonseca FA (2012) Euterpe oleracea (açai) modifies sterol metabolism and attenuates experimentally-induced atherosclerosis. J Atheroscler Thromb 19(3):237–245. https://doi.org/10.5551/jat.11205CrossRefPubMedGoogle Scholar
  19. Ferreira DS, Gomes AL, Silva MG, Alves AB, Agnol WHD, Ferrari RA, Carvalho PRN, Pacheco MTB (2016) Antioxidant capacity and chemical characterization of açaí (Euterpe oleracea Mart.) fruit fractions. Food Sci Technol 4(5):95–102. https://doi.org/10.13189/fst.2016.040502CrossRefGoogle Scholar
  20. Fki L, Masmoudi R, Kriaâ W, Mahjoub A, Sghaier B, Mzid R, Mliki A, Rival A, Drira N (2011) Date palm micropropagation via somatic embryogenesis. In: Jain SM, Al-Khayri JM, Johnson DV (eds) Date Palm Biotechnology. Springer, Dordrecht, pp 47–68CrossRefGoogle Scholar
  21. Fragoso MF, Prado MG, Barbosa L, Rocha NS, Barbisan LF (2012) Inhibition of mouse urinary bladder carcinogenesis by açai fruit (Euterpe oleracea Martius) intake. Plant Foods Hum Nutr 67:235–241. https://doi.org/10.1007/s11130-012-0308-yCrossRefPubMedGoogle Scholar
  22. Freitas EO, Monteiro TR, Nogueira GF, Scherwinski-Pereira JE (2016) Somatic embryogenesis from immature and mature zygotic embryos of the açaí palm (Euterpe oleracea): Induction of embryogenic cultures, morphoanatomy and its morphological characteristics. Sci Hort 212:126–135. https://doi.org/10.1016/j.scienta.2016.09.044CrossRefGoogle Scholar
  23. Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regul 43:27–47. https://doi.org/10.1023/B:GROW.0000038275.29262.fbCrossRefGoogle Scholar
  24. Garzón GA, Narváez-Cuenca C-E, Vincken J-P, Gruppen H (2017) Polyphenolic composition and antioxidant activity of açai (Euterpe oleracea Mart.) from Colombia. Food Chem 217:364–372. https://doi.org/10.1016/j.foodchem.2016.08.107CrossRefPubMedGoogle Scholar
  25. Goh DKS, Bon M-C, Aliotti F, Escoute J, Ferrière N, Monteuuis O (2001) In vitro somatic embryogenesis in two major rattan species: Calamus merrillii and Calamus subinermis. Vitro Cell Dev Biol Plant 37:375–381. https://doi.org/10.1007/s11627-001-0066-2CrossRefGoogle Scholar
  26. Goh DKS, Michaux-Ferrière N, Monteuuis O, Bom M-C (1999) Evidence of somatic embryogenesis from root tip explants of the rattan Calamus manan. Vitro Cell Dev Biol Plant 35:424–427. https://doi.org/10.1007/s11627-999-0060-7CrossRefGoogle Scholar
  27. Gomes HT, Bartos PMC, Scherwinski-Pereira JE (2015) Optimizing rooting and survival of oil palm (Elaeis guineensis) plantlets derived from somatic embryos. Vitro Cell Dev Biol Plant 51:111–117. https://doi.org/10.1007/s11627-015-9669-xCrossRefGoogle Scholar
  28. Gordon A, Cruz APG, Cabral LMC, Freitas SC, TaxI CMAD, Donangelo CM, Mattietto RA, Friedrich M, Matta M, Marx F (2012) Chemicalcharacterization and evaluation of antioxidant properties of açaí fruits (Euterpe oleraceae Mart) during ripening. Food Chem 133:256–263. https://doi.org/10.1016/j.foodchem.2011.11.150CrossRefPubMedGoogle Scholar
  29. Guerra MP, Handro W (1988) Somatic embryogenesis and plant regeneration in embryo cultures of Euterpe edulis mart. (palmae). Plant Cell Rep 7:550–552. https://doi.org/10.1007/BF00272754CrossRefPubMedGoogle Scholar
  30. Guerra MP, Handro W (1998) Somatic embryogenesis and plant regeneration in different organs of Euterpe edulis Mart. (Palmae): control and structural features. J Plant Res 111: 65-71. https://doi.org/10.1007/BF02507151CrossRefGoogle Scholar
  31. Guerra MP, Handro W (1991) Somatic embryogenesis in tissue cultures of Euterpe edulis Mart. (Palmae). In: Ahuja MR (ed), Woody plant biotechnology. Plenwn Press, New York, pp 189–196CrossRefGoogle Scholar
  32. Heinrich M, Dhanji T, Casselman I (2011) Açai (Euterpe oleracea Martius): a phytochemical and pharmacological assessment of the species’ health claims. Phytochem Lett 4:10–21. https://doi.org/10.1016/j.phytol.20https://doi.org/10.11.005CrossRefGoogle Scholar
  33. Henderson A, Galeano G (1996) Euterpe, Prestoea, and Neonicholsonia (Palmae: Euterpeinae). New York Botanical Garden, New YorkGoogle Scholar
  34. Hogan S, Chung H, Zhang L, Li J, Lee Y, Dai Y, Zhou K (2010) Antiproliferative and antioxidant properties of anthocyanin-rich extract from açai. Food Chem 118:208–214. https://doi.org/10.1016/j.foodchem.2009.04.099CrossRefGoogle Scholar
  35. Instituto Brasileiro de Geografia e Estatística (IBGE) (2015) Produção da Extração Vegetal e da Silvicultura 2015. https://sidra.ibge.gov.br/pesquisa/pevs/quadros/brasil/2015. Accessed on Aug 7 2017
  36. Isah T (2016) Induction of somatic embryogenesis in woody plants. Acta Physiol Plant 38(118):1–22. https://doi.org/10.1007/s11738-016-2134-6
  37. Jayanthi M, Susanthi B, Nandiganti MM, Mandal PK (20.15) In vitro somatic embryogenesis and plantlet regeneration from immature male inflorescence of adult dura and tenera palms of Elaeis guineensis (Jacq.). SpringerPlus. 4(256):1–7. https://doi.org/10.1186/s40064-015-1025-4
  38. Jiménez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110. https://doi.org/10.1007/s10725-005-3478-xCrossRefGoogle Scholar
  39. Johansen DA (1940) Plant microtechnique. McGraw-Hill Book Co. Inc., New York, 523 pGoogle Scholar
  40. Kang J, Li Z, Wu T, Jensen GS, Schauss AG, Wu X (2010) Anti-oxidant capacities of flavonoid compounds isolated from acai pulp (Euterpe oleracea Mart.). Food Chem 122:610–617. https://doi.org/10.1016/j.foodchem.2010.03.020CrossRefGoogle Scholar
  41. Kang J, Thakali KM, Xie C, Kondo M, Tong Y, Ou B, Jensen G, Medina MB, Schauss AG, Wu X (2012) Bioactivities of açaí (Euterpe precatoria Mart.) fruit pulp, superior antioxidant and anti-inflammatory properties to Euterpe oleracea Mart. Food Chem 133:671–677. https://doi.org/10.1016/j.foodchem.2012.01.048CrossRefGoogle Scholar
  42. Karami O, Said A (2010) The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol Biol Rep. 37:2493–2507. https://doi.org/10.1007/s11033-009-9764-3CrossRefPubMedGoogle Scholar
  43. Karun A, Siril EA, Radha E, Parthasarathy VA (2004) Somatic embryogenesis and plantlet regeneration from leaf and inflorescence explants of arecanut (Areca catechu L.). Curr Sci 86:1623–1628Google Scholar
  44. Konieczny R, Sliwinska E, Pilarska M, Tuleja M (2012) Morphohistological and flow cytometric analyses of somatic embryogenesis in Trifolium nigrescens Viv. Plant Cell Tissue Organ Cult 109:131–141. https://doi.org/10.1007/s11240-011-0081-xCrossRefGoogle Scholar
  45. Lakshmanan P, Taji A (2000) Somatic embryogenesis in leguminous plants. Plant Biology. 2:136–148. https://doi.org/10.1055/s-2000-9159CrossRefGoogle Scholar
  46. Ledo AS, Lameira OA, Benbadis AK, De Menezes IC, Oliveira MSP, Medeiros Filho S (2002) Somatic embryogenesis from zygotic embryos of Euterpe oleracea Mart. Rev Bras Frutic 24:601–603. https://doi.org/10.1590/S0100-29452002000300004CrossRefGoogle Scholar
  47. Lorenzi H, Souza HM, Costa JTM, Cerqueira LSC, Behr N (1996) Palmeiras do Brasil: nativas e exóticas. Instituto Plantarum, Nova Odessa, 303 pGoogle Scholar
  48. Luis ZG, Scherwinski-Pereira JE (2014) An improved protocol for somatic embryogenesis and plant regeneration in macaw palm (Acrocomia aculeata) from mature zygotic embryos. Plant Cell Tissue Organ Cult 118:485–496. https://doi.org/10.1007/s11240-014-0500-xCrossRefGoogle Scholar
  49. Machado DE, Rodrigues-Baptista KC, Alessandra-Perini J, Moura R. S, Santos TA, Pereira KG, Silva YM, Souza PJC, Nasciutti LE, Perini JA (2016) Euterpe oleracea extract (açaí) is a promising novel pharmacological therapeutic treatment for experimental endometriosis. PlosONE 11(11). http://dx.doi.org/10.1371/journal.pone.0166059CrossRefPubMedPubMedCentralGoogle Scholar
  50. Magalhães HM, Lopes PSN, Ribeiro LM (2013) Sant’anna-Santos, B. F.; Oliveira, D. M. T. Structure of the zygotic embryos and seedlings of Butia capitata (Arecaceae). Trees 27:273–283. https://doi.org/10.1007/s00468-012-0797-1CrossRefGoogle Scholar
  51. Mahdavi-Darvari F, Noor NM, Ismanizan I (2014) Epigenetic regulation and gene markers as signals of early somatic embryogenesis. Plant Cell Tissue Organ Cult 120(2):407–422. https://doi.org/10.1007/s11240-014-0615-0CrossRefGoogle Scholar
  52. Martins CC, Bovi MLA, Nakagawa J, Júnior GG (2004) Temporary storage of Jussara palm seeds: effests of time, temperature end pulp on germination and vigor. Hortic. Bras. 22:271–276. https://doi.org/10.1590/S0102-05362004000200021CrossRefGoogle Scholar
  53. Moura RS, Ferreira TS, Lopes AA, Pires KMP, Nesi RT, Resende AC, Souza PJC, Silva AJR, Borges RM, Porto LC, Valenca SS (2012) Effects of Euterpe oleracea Mart. (açaí) extract in acute lung inflammation induced by cigarette smoke in the mouse. Phytomedicine 19:262–269. https://doi.org/10.1016/j.phymed.2011.11.004CrossRefPubMedGoogle Scholar
  54. Mulabagal V, Keller WJ, Calderón AI (2012) Quantitative analysis of anthocyanins in Euterpe oleracea (açaí) dietary supplement raw materials and capsules by Q-TOF liquid chromatography/mass spectrometry. Pharm Biol. 50(10):1289–1296. https://doi.org/10.3109/13880209.2012.674141CrossRefPubMedGoogle Scholar
  55. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.xCrossRefGoogle Scholar
  56. Nascimento WMO (2008) Açaí Euterpe oleracea Mart., Informativo Técnico Rede de Sementes da Amazônia n.18, Embrapa Amazônia OrientalGoogle Scholar
  57. Nascimento WMO, Cicero SM (2010) Novembre, A. D. L. C. Conservação de sementes de açaí (Euterpe oleracea Mart.). Rev Bras Sementes 32(1):024–033. http://dx.doi.org/10.1590/S0101-31222010000100003CrossRefGoogle Scholar
  58. Nic-Can GI, Loyola-Vargas VM (2016) The role of the auxins during somatic embryogenesis. In: Loyola-Vargas VM, Ochoa-Alejo (eds) Somatic embryogenesis: fundamental aspects and applications. Springer, Switzerland, pp 171–182CrossRefGoogle Scholar
  59. Oliveira MSP (2002) Biologia floral do açaizeiro em Belém do Pará. Embrapa Amazônia Oriental, Boletim de Pesquisa 08, Belém, 26 pGoogle Scholar
  60. O’Brien TP, Feder N, Mccylly ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373. https://doi.org/10.1007/BF01248568CrossRefGoogle Scholar
  61. Perera PIP, Vidhanaarachchi VRM, Gunathilake TR, Yakandawala DMD, Hocher V, Verdeil JL, Weerakoon LK (2009) Effect of plant growth regulators on ovary culture of coconut (Cocos nucifera L.). Plant Cell Tissue Organ Cult 99:73–81. https://doi.org/10.1007/s11240-009-9577-zCrossRefGoogle Scholar
  62. Pescador R, Kerbauy GB, Viviani D, Kraus JE (2008) Anomalous somatic embryos in Acca sellowiana (O. Berg) Burret (Myrtaceae). Rev Bras Bot 31(1):155–164. http://dx.doi.org/10.1590/S0100-84042008000100014
  63. Poulose SM, Fisher DR, Larson J, Bielinski DF, Rimando AM, Carey AN, Schauss AG, Shukitt-Hale B (2012) Anthocyanin-rich acai (Euterpe oleracea Mart.) fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells. J Agric Food Chem 60:1084–1093. https://doi.org/10.1021/jf203989kCrossRefPubMedGoogle Scholar
  64. Quiroz-Figueroa F, Rojas-Herrera R, Galaz-Avalos RM, Loyola- Vargas VM (2006) Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tissue Organ Cult 86:285–301. https://doi.org/10.1007/s11240-006-9139-6CrossRefGoogle Scholar
  65. Ree JF, Guerra MP (2015) Palm (Arecaceae) somatic embryogenesis. Vitro Cell Dev Biol Plant. 51(6):589–602. https://doi.org/10.1007/s11627-015-9722-9CrossRefGoogle Scholar
  66. Ribeiro JC, Antunes LM, Aissa AF, Darin JD, De Rosso VV, Mercadante AZ, Bianchi MLP (2010) Evaluation of the genotoxic and antigenotoxic effects after acute and subacute treatments with acai pulp (Euterpe oleracea Mart.) on mice using the erythrocytes micronucleus test and the comet assay. Mutat Res 695:22–28. https://doi.org/10.1016/j.mrgentox.2009.10.009CrossRefPubMedGoogle Scholar
  67. Ribeiro LM, Oliveira DMT, Garcia QS (2012) Structural evaluations of zygotic embryos and seedlings of the macaw palm (Acrocomia aculeata, Arecaceae) during in vitro germination. Trees. 26:851–863. https://doi.org/10.1007/s00468-011-0659-2CrossRefGoogle Scholar
  68. Rocha AP, Carvalho LC, Sousa MA, Madeira SV, Sousa PJ, Tano T, Schini-Kerth VB, Resende AC, Moura RS (2007) Endothelium-dependent vasodilator effect of Euterpe oleracea Mart. (acai) extracts in mesenteric vascular bed of the rat. Vascul Pharmacol 46:97–104. https://doi.org/10.1016/j.vph.2006.08.411CrossRefPubMedGoogle Scholar
  69. Rodriguez APM, Wetzstein HY (1998) A morphological and histological comparison of the initiation and development of pecan (Carya illinoinensis) somatic embryogenic cultures induced with naphthaleneacetic acid or 2,4-dichlorophenoxyacetic acid. Protoplasma. 204:71–83. https://doi.org/10.1007/BF01282295CrossRefGoogle Scholar
  70. Ronchi VN, Giorgeiti L (1995) The Cell’s Commitment to Somatic Embryogenesis. In: Bajaj YPS (ed), Biotechnology in agriculture and forestry: somatic embryogenesis and synthetic Seed. Springer—Verlag, Berlin, pp 3–19Google Scholar
  71. Sabbe S, Verbeke W, Deliza R, Matta VM, Damme PV (2009) Consumer liking of fruit juices with different açaí (Euterpe oleracea Mart.) concentrations. J Food Sci 74(5):171–176. https://doi.org/10.1111/j.1750-3841.2009.01146.xCrossRefGoogle Scholar
  72. Saldanha CW, Martins-Corder MP (2012) In vitro germination and embryogenic competence acquisition of Euterpe edulis Martius immature zygotic embryos. Crop Breed Appl Biotechnol 12:171–178. https://doi.org/10.1590/S1984-70332012000300002CrossRefGoogle Scholar
  73. Scherwinski-Pereira JE, Guedes RS, Da Silva RA, Fermino PCP Jr, Luis ZG, Freitas EO (2012) Somatic embryogenesis and plant regeneration in açaí palm (Euterpe oleracea). Plant Cell Tissue Organ Cult 109:501–508. https://doi.org/10.1007/s11240-012-0115-zCrossRefGoogle Scholar
  74. Schumann G, Ryschka U, Schulze J, Klocke E (1995) Anatomy of Somatic Embryogenesis. In: Bajaj YPS (ed), Biotechnology in agriculture and forestry: somatic embryogenesis and synthetic seed. Springer—Verlag, Berlin, pp 71–86Google Scholar
  75. Silva AKN, Beckman JC, Rodrigues AMC, Silva LHM (2017) Avaliação da composição nutricional e capacidade antioxidante de compostos bioativos da polpa de açaí. R Bras Tecnol Agroindustr 11(1):2205–2216Google Scholar
  76. Silva RC, Luis ZG, Scherwinski-Pereira JE (2014) The histodifferentiation events involved during the acquisition and development of somatic embryogenesis in oil palm (Elaeis guineensis Jacq.). Plant Growth Regul 72:67–80. https://doi.org/10.1007/s10725-013-9837-0CrossRefGoogle Scholar
  77. Silvestre WVD, Silva PA, Palheta LF, Neto CFO, Souza RORM, Festucci-Buselli RA, Pinheir HA (2017) Differential tolerance to water deficit in two açaí (Euterpe oleracea Mart.) plant materials. Acta Physiol Plant 39:4. https://doi.org/10.1007/s11738-016-2301-9CrossRefGoogle Scholar
  78. Staritsky G (1970) Tissue culture of the oil palm (Elaeis guineensis Jacq.) as a tool for vegetative propagation. Euphytica 19:288–292CrossRefGoogle Scholar
  79. Steinmacher DA, Cangahuala-Inocente GC, Clement CR, Guerra MP (2007a) Somatic embryogenesis from peach palm zygotic embryos. Vitro Cell Dev Biol Plant 43:124–132. https://doi.org/10.1007/s11627-007-9032-yCrossRefGoogle Scholar
  80. Steinmacher DA, Clement CR, Guerra MP (2007b) Somatic embryogenesis from immature peach palm inflorescence explants: towards development of an efficient protocol. Plant Cell Tissue Organ Cult 89:15–22. https://doi.org/10.1007/s11240-007-9207-6CrossRefGoogle Scholar
  81. Steinmacher DA, Krohn NG, Dantas ACM, Stefenon VM, Clement CR, Guerra MP (2007c) Somatic embryogenesis in peach palm using the thin cell layer technique: Induction, morphohistological aspects and AFLP analysis of somaclonal variation. Ann Bot 100:699–709. https://doi.org/10.1093/aob/mcm153CrossRefPubMedPubMedCentralGoogle Scholar
  82. Sun X, Seeberger J, Alberico T, Wang C, Wheeler CT, Schauss AG, Zou S (2010) Açaí palm fruit (Euterpe oleracea Mart.) pulp improves survival of flies on high fat diet. Exp Gerontol 45:243–251. https://doi.org/10.1016/j.exger.2010.01.008CrossRefPubMedPubMedCentralGoogle Scholar
  83. Taylor L (2017) Tropical plant database: Açaí. Carson City, NV. https://www.rain-tree.com/açaí.htm. Accessed on Aug 7, 2017
  84. Teixeira JB, Söndahl MR, Kirby EG (1994) Somatic embryogenesis from immature inflorescences of oil palm. Plant Cell Rep 13:247–250. https://doi.org/10.1007/BF00233313CrossRefPubMedGoogle Scholar
  85. Tomlinson, P. B.; Huggett, B. A. Cell longevity and sustained primary growth in palm stems. Am J Bot 99(12):1891–1902. http://dx.doi.org/10.3732/ajb.1200089CrossRefPubMedGoogle Scholar
  86. Valverde R, Arias O, Thorpe TA (1987) Picloram-induced somatic embryogenesis in pejibaye palm (Bactris gasipaes HBK). Plant Cell Tissue Organ Cult 10:149–150. https://doi.org/10.1007/BF00035913CrossRefGoogle Scholar
  87. Viñas M, Jiménez VM (2011) Factores que influyen en la embriogénesis somática in vitro de palmas (Arecaceae). Rev Colomb Biotecnol 13:229–242. http://dx.doi.org/10.15446/rev.colomb.biote
  88. Von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult 69:233–249. https://doi.org/10.1023/A:1015673200621CrossRefGoogle Scholar
  89. Williams ES, Maheswaran B (1985) Origin and development of somatic embryoids formed directly on immature embryos of Trifolium repens in vitro. Ann Bot 56:619–630. https://doi.org/10.1093/oxfordjournals.aob.a087052CrossRefGoogle Scholar
  90. Winkelmann T (2016) Somatic versus zygotic embryogenesis: learning from seeds. In: Germanà MA, Lambardi M (eds) In vitro embryogenesis in higher plants - Methods in molecular biology. Springer, New York, pp 25–46CrossRefGoogle Scholar
  91. Xie C, Kang J, Lic Z, Schauss AG, Badgera TM, Nagarajana S, Wu T, Wua X (2012) The açaí flavonoid velutin is a potent anti-inflammatory agent: blockade of LPS-mediated TNF-α and IL-6 production through inhibiting NF-κB activation and MAPK pathway. J Nutr Biochem 23:1184–1191. https://doi.org/10.1016/j.jnutbio.2011.06.013CrossRefPubMedGoogle Scholar
  92. Yamaguchi KKL, Pereira LFR, Lamarão CV, Lima ES, Veiga-Junior VF (2015) Review Amazon acai: chemistry and biological activities: A review. Food Chem 179:137–151. https://doi.org/10.1016/j.foodchem.2015.01.055CrossRefPubMedGoogle Scholar
  93. Zavattieri MA, Frederico AM, Lima M, Sabino R, Arnholdt-Schmitt B (2010) Induction of somatic embryogenesis as an example of stress-related plant reactions. Electron J Biotechnol 13(1):1–9. https://doi.org/10.2225/vol13-issue1-fulltext-4CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Elínea de Oliveira Freitas
    • 1
  • Inaê Mariê de Araújo Silva-Cardoso
    • 1
  • Jéssica Cristina Barbosa Ferreira
    • 1
  • Frederico Henrique da Silva Costa
    • 2
  • Jonny Everson Scherwinski-Pereira
    • 3
  1. 1.Department of Forest Engineering (PG/EFL)University of BrasíliaBrasíliaBrazil
  2. 2.Center for Biological and Natural Sciences (CCBN), Federal University of AcreRio BrancoBrazil
  3. 3.Embrapa Genetic Resources and BiotechnologyBrasíliaBrazil

Personalised recommendations