Advertisement

Tea (Camellia sinensis L.)

  • Behzad Kaviani
Chapter
Part of the Forestry Sciences book series (FOSC, volume 85)

Abstract

Auxin 2,4-dichlorophenoxyacetic acid (2,4-D) was assessed individually for its effectiveness to induce somatic embryogenesis in tea (Camellia sinenesis L.). Embryonic axes as explants were cultured on Murashige and Skoog (MS) medium containing 0, 1 and 5 μM 2,4-D. Somatic embryos were observed in embryonic axes explants cultured on MS medium enriched with 1 μM 2,4-D.

References

  1. Akula A, Becker D, Bateson M (2000) High-yielding repetitive somatic embryogenesis and plant recovery in a selected tea clone, ‘TRI-2025’, by temporary immersion. Plant Cell Rep 19(12):1140–1145CrossRefGoogle Scholar
  2. Begum A, Ahmad I, Prodhan SH, Azad AK, Sikder MBH, Ara MR (2015) Study on in vitro propagation of tea [Camellia sinensis (L.) O. Kuntze] through different explants. J Glob Biosci 4(7):2878–2887Google Scholar
  3. Benelli C, Fabbri A, Grassi S, Lambardi M, Rugini E (2001) Histology of somatic embryogenesis in mature tissue of olive (Olea europaea L.). J Hortic Sci Biotechnol 76:112–119CrossRefGoogle Scholar
  4. Diettrich B, Schneider V, Luckner M (1991) High variation in cardenolide content of plants regenerated from protoplasts of the embryogenic cell strain VII of Digitalis lanata. J Plant Physiol 139:199–204CrossRefGoogle Scholar
  5. Faisal M, Alatar A, Ahmad N, Anis M, Hegazy AK (2012) Assessment of genetic fidelity in Rauvolfia serpentina plantlets grown from synthetic (encapsulated) seeds following in vitro storage at 4 °C. Mol 17:5050–5061CrossRefPubMedGoogle Scholar
  6. Germana MA, Chiancone B (2003) Improvement of Citrus clementine Hort. ex Tan. Microspore-derived embryoid production and regeneration. Plant Cell Rep 22:181–187Google Scholar
  7. Ghanati F, Ragmati Ishka M (2009) Investigation of the interaction between abscisic acid (ABA) and excess benzy-adenine (BA) on the formation of shoot in tissue culture of tea (Camellia sinensis L.). J Plant Prod 3(4):735–743Google Scholar
  8. Jain SM, Ochatt SJ (2010) Protocols for in vitro propagation of ornamental plants. Humana Press, Springer ProtocolsCrossRefGoogle Scholar
  9. Kothari SL, Joshi A, Kachhwaha S, Ochoa-Alejo N (2010) Chilli peppers—a review on tissue culture and transgenesis. Biotech Adv 28:35–48CrossRefGoogle Scholar
  10. Litz RE, Gray DJ (1995) Somatic embryogenesis for agricultural improvement. World J Microbiol Biotechnol 11:416–425CrossRefPubMedGoogle Scholar
  11. Merkle SA (1997) Somatic embryogenesis in ornamentals. In: Geneve RL et al (eds) Biotechnol ornam plants. CAB International, Wallingford, pp 13–33Google Scholar
  12. Mondal TK, Bhattacharya A, Sood A, Ahuja PS (1998) Micropropagation of tea (Camellia sinensis (L.) O. Kuntze) using thidiazuron. Plant Growth Reg 26:57–61CrossRefGoogle Scholar
  13. Mondal TK, Bhattacharya A, Ahuja PS (2001) Induction of synchronous secondary somatic embryogenesis in Camellia sinensis (L.) O. Kuntze. J Plant Physiol 158(7):945–951CrossRefGoogle Scholar
  14. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:73–497CrossRefGoogle Scholar
  15. Pedroso CM, Pais MS (1995) Factors controlling somatic embryogenesis. Plant Cell Tiss Org Cult 43:147–154CrossRefGoogle Scholar
  16. Pierik RLM (1987) In vitro propagation of higher plants. Martinus Nizhoof Publishers, BostonCrossRefGoogle Scholar
  17. Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tiss Org Cult 74:15–35CrossRefGoogle Scholar
  18. Suganthi M, Arvinth S, Raj Kumar R (2012) Impact of osmotic and abscisic acid on direct somatic embryogenesis in tea. Int J Plant Res 2(2):22–27CrossRefGoogle Scholar
  19. Wang YH, Bhalla PL (2004) Somatic embryogenesis from leaf explants of Australian fan flower, Scaevola aemula R. Br Plant Cell Rep 22:408–414CrossRefPubMedGoogle Scholar
  20. Yaacob JS, Yussof AIM, Taha RM, Mohajer S (2012) Somatic embryogenesis and plant regeneration from bulb, leaf and root explants of African blue lily (Agapanthus praecox ssp. Minimus). Aus J Crop Sci 6(10):1462–1470Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Horticultural ScienceRasht Branch, Islamic Azad UniversityRashtIran

Personalised recommendations