Advertisement

Olive Olea europaea L.

  • Carolina Sánchez-Romero
Chapter
Part of the Forestry Sciences book series (FOSC, volume 85)

Abstract

The olive is a very important tree crop species cultivated by its fruits, which constitute a very valuable food product. The economic importance of olive have greatly increased the demand for improved cultivars. Somatic embryogenesis is the regeneration method normally used in olive and, therefore, it is at the base of application of important biotechnological tools such as genetic transformation, somaclonal variation, in vitro mutagenesis, in vitro selection, protoplast manipulation or somatic hybridization. It also constitutes an important complement of conventional breeding programs due to its utilization for large-scale clonal propagation and germplasm cryopreservation. In this chapter, protocols for olive somatic embryogenesis are described. Due to different requirements for inducing somatic embryogenesis from juvenile and mature tissues, protocols for both types of initial explants are detailed. The more common procedures currently used for executing the subsequent phases of proliferation, development and maturation of somatic embryos and embryo germination are also described. In vivo establishment of olive plants regenerated via somatic embryogenesis is pointed out, detailing the protocols normally used for shoots micropropagation, root induction and plant acclimatization. Quality of obtained plants and their genetic stability are discussed.

Abbreviations

2iP

6-(ɣ,ɣ-dimethylallylamino)purine

BAP

6-benzylaminopurine

IBA

indole-3-butyric acid

MS/2

MS mineral formulation at half strength

NAA

1-naphthaleneacetic acid

SE

somatic embryogenesis

TDZ

thidiazuron

References

  1. Acebedo MM, Lavee S, Liñan J, Troncoso A (1997) In vitro germination of embryos for speeding up seedling development in olive breeding programmes. Sci Hortic 69:207–215CrossRefGoogle Scholar
  2. Baldoni L, Belaj A (2009) Olive. In: Vollmann J, Rajcan I (eds) Oil crops. Springer, New York, pp 397–421CrossRefGoogle Scholar
  3. Benelli C, Fabri A, Grassi S, Lambardi M, Rugini E (2001) Histology of somatic embryogenesis in mature tissue of olive (Olea europaea L.). J Hortic Sci Biotechnol 76:112–119CrossRefGoogle Scholar
  4. Benzekri H, Sánchez-Romero C (2012) Maturation of olive somatic embryos. Acta Hortic 961:441–447CrossRefGoogle Scholar
  5. Bradaï F, Pliego-Alfaro F, Sánchez-Romero C (2016a) Long-term somatic embryogenesis in olive (Olea europaea L.): influence on regeneration capability and quality of regenerated plants. Sci Hortic 199:23–31CrossRefGoogle Scholar
  6. Bradaï F, Pliego-Alfaro F, Sánchez-Romero C (2016b) Somaclonal variation in olive (Olea europaea L.) plants regenerated via somatic embryogenesis: influence of genotype and culture age on phenotypic stability. Sci Hortic 213:208–215CrossRefGoogle Scholar
  7. Brar DS, Jain SM (1998) Somaclonal variation: mechanism and application in crop improvement. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations in crop improvement. Kluwer Academic Publishers, Dordrecht, pp 15–37CrossRefGoogle Scholar
  8. Brooks RM, Olmo HP (1997) The Brooks and Olmo register of fruits and nut varieties. ASHS Press, Alexandria, VAGoogle Scholar
  9. Cañas LA, Benbadis A (1988) In vitro plant regeneration from cotyledon fragments of the olive tree (Olea europaea L.). Plant Sci 54:65–74CrossRefGoogle Scholar
  10. Capelo AM, Silva S, Brito G, Santos D (2010) Somatic embryogenesis induction in leaves and petioles of a mature wild olive. Plant Cell Tiss Org Cult 103:237–242CrossRefGoogle Scholar
  11. Cerezo S, Mercado JA, Pliego-Alfaro F (2011) An efficient regeneration system via somatic embryogenesis in olive. Plant Cell Tiss Org Cult 106:337–344CrossRefGoogle Scholar
  12. Clavero-Ramírez I, Pliego-Alfaro F (1990) Germinación in vitro de embriones maduros de olivo (Olea europaea). Actas de Horticultura 1:512–516Google Scholar
  13. Driver JA, Kuniyuki AH (1984) In vitro propagation of paradox walnut rootstock. Hortic Sci 19:507–509Google Scholar
  14. Fabbri A, Lambardi M, Ozden-Tokatli Y (2009) Olive breeding. In: Jain SM, Priyadarshan PM (eds) Breeding plantation tree crops: tropical species. Springer, New York, pp 423–465Google Scholar
  15. FAOSTAT (2014) Online database available at link. http://fao.org/faostat
  16. Guan Y, Li SG, Fan XF, Su ZH (2016) Application of somatic embryogenesis in woody plants. Front Plant Sci 7:908Google Scholar
  17. Leva A, Muleo R, Petrucelli R (1995) Long-term somatic embryogenesis from immature olive cotyledons. J Hortic Sci 70:417–421CrossRefGoogle Scholar
  18. Lo Schiavo F (1995) Early events in embryogenesis. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Somatic embryogenesis and synthetic seeds. Springer, Berlin, vol 30, pp 20–29Google Scholar
  19. Maalej M, Chaari-Rkhiss A, Drira N (2006) Contribution to the improvement of olive somatic embryogenesis by mineral and organic analysis of zygotic embryos. Euphytica 151:31–37CrossRefGoogle Scholar
  20. Mazri MA, Elbakkali A, Belkoura M, Belkoura I (2011) Embryogenic competence of calli and embryos regeneration from various explants of Dahbia cv, a Moroccan olive tree (Olea europaea L.). Afr J Biotechnol 10:19089–19095Google Scholar
  21. Mazri MA, Belkoura I, Pliego-Alfaro F, Belkoura M (2013) Somatic embryogenesis from leaf and petiole explants of the Moroccan olive cultivar Dahbia. Sci Hortic 159:88–95CrossRefGoogle Scholar
  22. Mitrakos K, Alexaki A, Papadimitrou P (1992) Dependence of olive morphogenesis on callus origin and age. J Plant Physiol 139:269–273CrossRefGoogle Scholar
  23. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  24. Orinos T, Mitrakos K (1991) Rhizogenesis and somatic embryogenesis in calli from wild olive [Olea europaea var. sylvestris (Miller) Lehr] mature zygotic embryos. Plant Cell Tiss Org Cult 27:183–187CrossRefGoogle Scholar
  25. Pérez-Barranco G, Mercado JA, Pliego-Alfaro F, Sánchez-Romero C (2007) Genetic transformation of olive somatic embryos through biolistic. Acta Hortic 738:473–477CrossRefGoogle Scholar
  26. Pérez-Barranco G, Torreblanca R, Padilla IMG, Sánchez-Romero C, Pliego-Alfaro F, Mercado JA (2009) Studies on genetic transformation of olive (Olea europaea L.) somatic embryos: I. Evaluation of different aminoglycoside antibiotics for nptII selection; II. Transient transformation via particle bombardment. Plant Cell Tiss Org Cult 97:243–251CrossRefGoogle Scholar
  27. Pinto G, Correia S, Corredoira E, Ballester A, Correia B, Neves L, Canhoto J (2016) In vitro culture of Eucalyptus: where do we stand?. In: Park YS, Bonga JM, Moon HK (eds) Vegetative propagation of trees. National Institute of Forest Sciences, Korea, pp 441–462Google Scholar
  28. Rallo L, El Riachy M, Rallo P (2011) The time and place for fruit quality in olive breeding. In: Jenks MA, Bebeli PJ (eds) Breeding for fruit quality. Wiley-Blackwell, USA, pp 323–465CrossRefGoogle Scholar
  29. Rapoport HF, Fabbri A, Sebastiani L (2016) Olive biology. In: Rugini E, Baldoni L, Muleo R, Sebastiani L (eds) The olive tree genome. Springer, Cham, pp 13–25Google Scholar
  30. Revilla MA, Pacheco J, Casares A, Rodríguez R (1996) In vitro reinvigoration of mature olive trees (Olea europaea L.) through micrografting. In Vitro Cell Dev Biol Plant 32: 257–261CrossRefGoogle Scholar
  31. Rugini E (1984) In vitro propagation of some olive (Olea europaea L.) cultivars with different root-ability, and medium development using analytical data from developing shoots and embryos. Sci Hortic 24:123–134CrossRefGoogle Scholar
  32. Rugini E (1988) Somatic embryogenesis and plant regeneration in olive (Olea europaea L.). Plant Cell Tiss Org Cult 14:207–214CrossRefGoogle Scholar
  33. Rugini E, Caricato G (1995) Somatic embryogenesis and plant recovery from mature tissues of olive cultivars (Olea europaea L.) ‘Canino’ and ‘Moraiolo’. Plant Cell Rep 14:257–260CrossRefPubMedGoogle Scholar
  34. Rugini E, Gutiérrez-Pesce P (2006) Genetic improvement of olive. Pomologia Croatica 12:43–74Google Scholar
  35. Rugini E, De Pace C (2016) Olive breeding with classical and modern approaches. In: Rugini E, Baldoni L, Muleo R, Sebastiani L (eds) The olive tree genome. Springer, Cham, pp 163–192Google Scholar
  36. Rugini E, Silvestri C (2016) Somatic embryogenesis in olive (Olea europaea L. subsp. europaea var. sativa and var. sylvestris). In: Germanà MA, Lambardi M (eds) In vitro embryogenesis in higher plants. Methods in molecular biology. Springer, New York, vol 1359, pp 341–349CrossRefGoogle Scholar
  37. San José MC, Couselo JL, Martínez MT, Mansilla P, Corredoira E (2016) Somatic embryogenesis in Camellia japonica L.: challenges and future prospects. In: Mujib A (ed) Somatic embryogenesis in ornamentals and its applications. Springer, New Delhi, pp 91–105Google Scholar
  38. Sánchez-Romero C, Swennen R, Panis B (2009) Cryopreservation of olive embryogenic cultures. CryoLetters 30:359–372PubMedGoogle Scholar
  39. Sghir S, Chatelet P, Ouazzani N, Dosba F, Belkoura I (2005) Micropropagation of eight Moroccan and French olive cultivars. HortScience 40:193–196Google Scholar
  40. Shibli RA, Shatnawi M, Abu-Ein, Al-Juboory KH (2001) Somatic embryogenesis and plant recovery from callus of ‘Nabali’ olive (Olea europaea L.). Sci Hortic 88:243–256CrossRefGoogle Scholar
  41. Toufik I, Guenoun F, Belkoura I (2014) Embryogenesis expression from somatic embryos of olive (Olea europaea L.) cv. Picual. Moroccan J Biol 11:17–25Google Scholar
  42. Trabelsi EB, Bouzid S, Bouzid M, Elloumi N, Belfeleh Z, Benabdakkah A, Ghezel R (2003) In-vitro regeneration of olive tree by somatic embryogenesis. J Plant Biol 46:173–180CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Biología VegetalUniversidad de MálagaMálagaSpain

Personalised recommendations