Grapevine (Vitis spp.)

  • Ivana GribaudoEmail author
  • Giorgio Gambino
Part of the Forestry Sciences book series (FOSC, volume 85)


Grapevine somatic embryogenesis is a precious tool in breeding programs as well as in functional genomics studies, embryo tissues being the best sources for regeneration of genetically modified plants. It has also been proposed as a strategy aimed at induction of somaclonal variation, separation of periclinal chimeras, cryopreservation, virus eradication. A reliable technique for the production of somatic embryos and regenerated plantlets from an ample number of Vitis genotypes is an essential pre-requisite for any application of somatic embryogenesis. Main developmental phases can be identified: (a) Induction of callogenesis and embryogenic competence in cultured explants; (b) Culture of embryogenic calli and expression of the embryogenic program; (c) Long term culture of embryogenic callus and preservation of the embryogenic ability of the cultures or re-initiation of embryogenic calli from somatic embryos; (d) Development of somatic embryos into plantlets. The protocol for grapevine plant regeneration via somatic embryogenesis described in this chapter proved efficient for many cultivars; details are also given on the steps requiring further protocol refinements.


  1. Bouamama B, Ben Salem-Fnayou A, Ben Jouira H, Ghorbel A, Mliki A (2007) Influence of the flower stage and culture medium on the induction of somatic embryogenesis from anther culture in Tunisian grapevine cultivars. J Int Sci Vigne Vin 41:185–192Google Scholar
  2. Dhekney SA, Li ZT, Grant TNL, Gray DJ (2016) Somatic embryogenesis and genetic modification of Vitis. In: Germanà MA, Lambardi M (eds) In vitro embryogenesis in higher plants, methods in molecular biology, Springer Science + Business Media, USA, pp 263–277CrossRefGoogle Scholar
  3. Dodeman VL, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryo-genesis. J Exp Bot 48:1493–1509Google Scholar
  4. Faure O, Aarrouf J, Nougarède A (1996) Ontogenesis, differentiation and precocious germination in anther-derived somatic embryos of grapevine (Vitis vinifera L.): proembryogenesis. Ann Bot 78:23–28CrossRefGoogle Scholar
  5. Faure O, Dewitte W, Nougarède A, VanOnckelen H (1998) Precociously germinating somatic embryos of Vitis vinifera have lower ABA and IAA levels than their germinating zygotic counterparts. Physiol Plant 102:591–595CrossRefGoogle Scholar
  6. Finkelstein RR, Crouch ML (1984) Precociously germinating rapeseed embryos retain characteristics of embryogeny. Planta 162:125–131CrossRefPubMedGoogle Scholar
  7. Franks T, He DG, Thomas M (1998) Regeneration of transgenic Vitis vinifera L. Sultana plants: genotypic and phenotypic analysis. Mol Breed 4:321–333Google Scholar
  8. Franks T, Botta R, Thomas M, Franks J (2002) Chimerism in grapevines: implications for cultivar identity, ancestry and genetic improvement. Theor Appl Genet 104:192–199CrossRefPubMedGoogle Scholar
  9. Gambino G, Gribaudo I (2012) Genetic transformation of fruit trees: current status and remaining challenges. Transgenic Res 21:1163–1181CrossRefPubMedGoogle Scholar
  10. Gambino G, Gribaudo I, Leopold S, Schartl A, Laimer M (2005) Molecular characterization of grapevine plants transformed with GFLV resistance genes: I. Plant Cell Rep 24:655–662CrossRefPubMedGoogle Scholar
  11. Gambino G, Bondaz J, Gribaudo I (2006) Detection and elimination of viruses in callus, somatic embryos and regenerated plantlets of grapevine. Eur J Plant Pathol 114:397–404CrossRefGoogle Scholar
  12. Gambino G, Ruffa P, Vallania R, Gribaudo I (2007) Somatic embryogenesis from whole flowers, anthers and ovaries of grapevine (Vitis spp.). Plant Cell Tiss Organ Cult 90:79–83CrossRefGoogle Scholar
  13. Gambino G, Pagliarani C, Gribaudo I (2014) Functional genomics in fruit trees. In: Ramawat KG, Mérillon JM, Ahuja MR (eds) Tree Biotechnology. CRC Press, USA, pp 583–613Google Scholar
  14. Goebel-Tourand I, Mauro MC, Sossountazov L, Miginiac E, Deloire A (1993) Arrest of somatic embryo development in grapevine: histological characterization and the effect of ABA, BAP and zeatin in stimulating plantlet development. Plant Cell Tiss Org Cult 33:91–103CrossRefGoogle Scholar
  15. González-Benito ME, Martín C, Vidal JR (2009) Cryopreservation of embryogenic cell suspensions of the Spanish grapevine cultivars ‘Albariño’ and ‘Tempranillo’. Vitis 48:131–136Google Scholar
  16. Gray DJ, Li ZT, Dhekney SA (2014) Precision breeding of grapevine (Vitis vinifera L.) for improved traits. Plant Sci 228:3–10CrossRefPubMedGoogle Scholar
  17. Gribaudo I, Gambino G, Vallania R (2004) Somatic embryogenesis from grapevine anthers: the optimal developmental stage for collecting explant. Am J Enol Vitic 55:427–430Google Scholar
  18. Gribaudo I, Gambino G, Boccacci P, Perrone I, Cuozzo D (2017) A multi-year study on the regenerative potential of several Vitis genotypes. Acta Hortic 1155:45–50CrossRefGoogle Scholar
  19. Jaillon O et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–468CrossRefPubMedGoogle Scholar
  20. Kikkert JR, Striem MJ, Vidal JR, Wallace PG, Barnard JB, Reisch BI (2005) Long-term study of somatic embryogenesis from anthers and ovaries of 12 grapevine (Vitis sp) genotypes. In vitro Cell Dev Biol-Plant 41:232–239CrossRefGoogle Scholar
  21. Kuksova VB, Piven NM, Gleba YY (1997) Somaclonal variation and in vitro induced mutagenesis in grapevine. Plant Cell Tiss Organ Cult 49:17–27CrossRefGoogle Scholar
  22. Larrouy J, Jaksons P, Bicknell R (2017) Response interactions in grape somatic embryogenic cultures to cold and gibberellic acid treatments to overcome embryo dormancy. Plant Cell Tiss Organ Cult 129:45–52CrossRefGoogle Scholar
  23. Martinelli L, Gribaudo I (2009) Strategies for effective somatic embryogenesis in grapevine (Vitis spp.). An appraisal. In: Roubelakis-Angelakis KA (ed) Grapevine molecular physiology & biotechnology, Springer Science + Business Media, NL, pp 461–493CrossRefGoogle Scholar
  24. Martinelli L, Gribaudo I, Bertoldi I, Candioli E, Poletti V (2001) High efficiency somatic embryogenesis and plant germination in grapevine cultivars Chardonnay and Brachetto a grappolo lungo. Vitis 40:111–115Google Scholar
  25. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497CrossRefGoogle Scholar
  26. Nakano M, Sakakibara T, Watanabe Y, Mii M (1997) Establishment of embryogenesis cultures in several cultivars of Vitis vinifera and V. labruscana. Vitis 36:141–145Google Scholar
  27. Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87CrossRefPubMedGoogle Scholar
  28. Oláh R, Zok A, Pedryc A, Howard S, Kovács LG (2009) Somatic embryogenesis in a broad spectrum of grape genotyes. Sci Hortic 120:134–137CrossRefGoogle Scholar
  29. Prado MJ, Grueiro MP, González V, Testillano PS, Domínguez C, López M, Rey M (2010) Efficient plant regeneration through somatic embryogenesis from anthers and ovaries of six autochthonous grapevine cultivars from Galicia (Spain). Sci Hortic 125:342–352CrossRefGoogle Scholar
  30. Redenbaugh K, Paasch BD, Nichol JW, Kossler ME, Viss PR, Walker KA (1986) Somatic seeds: encapsulation of asexual plant embryos. Bio/Technol 4:797–801Google Scholar
  31. Reustle GM, Buchholz G (2009) Recent trends in grapevine genetic engineering. In: Roubelakis-Angelakis KA (ed) Grapevine molecular physiology & biotechnology. Springer Publisher, The Netherlands, pp 495–508CrossRefGoogle Scholar
  32. Vasanth K, Vivier MA (2011) Improved cryopreservation procedure for long term storage of synchronised culture of grapevine. Biol Plant 55:365CrossRefGoogle Scholar
  33. Vidal JR, Rama J, Taboada L, Martin C, Ibañez M, Segura A, González-Benito ME (2009) Improved somatic embryogenesis of grapevine (Vitis vinifera) with focus on induction parameters and efficient plant regeneration. Plant Cell Tiss Organ Cult 96:85–94CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Sustainable Plant Protection, National Research Council of ItalyTurinItaly

Personalised recommendations