Lattice-Based Signcryption Without Random Oracles

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10786)

Abstract

Signcryption is a scheme that achieves both functionalities of public key encryption and digital signatures, and hence it is an important and fundamental protocol in cryptography. On the other hand, it is interesting to efficiently construct a signcryption scheme based on lattice-based problems, since lattice-based construction is expected to have resistance against quantum computing. The contribution of this paper is to construct an efficient lattice-based signcryption satisfying strong security without random oracles. We propose such a construction based on the problems of the learning with errors (LWE) and small integer solution (SIS). The public-key size and ciphertext size in our construction are shorter than any other schemes, and there is no disadvantage for ours in other parameters compared to other ones in terms of public/secret-key and ciphertext sizes.

Keywords

Signcryption Lattice problems LWE SIS 

References

  1. 1.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13190-5_28CrossRefGoogle Scholar
  2. 2.
    Albrecht, M.R., Cid, C., Faugère, J., Fitzpatrick, R., Perret, L.: On the complexity of the BKW algorithm on LWE. Des. Codes Crypt. 74(2), 325–354 (2015)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-46035-7_6CrossRefGoogle Scholar
  4. 4.
    Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption. J. Cryptol. 20(2), 203–235 (2007)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions and analysis of the generic composition paradigm. J. Cryptol. 21(4), 469–491 (2008)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Böhl, F., Hofheinz, D., Jager, T., Koch, J., Striecks, C.: Confined guessing: new signatures from standard assumptions. J. Cryptol. 28(1), 176–208 (2015)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Boyen, X.: Lattice mixing and vanishing trapdoors: a framework for fully secure short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13013-7_29CrossRefGoogle Scholar
  9. 9.
    Boyen, X., Li, Q.: Towards tightly secure lattice short signature and Id-based encryption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 404–434. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_14CrossRefGoogle Scholar
  10. 10.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. J. Cryptol. 25(4), 601–639 (2012)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Chiba, D., Matsuda, T., Schuldt, J.C.N., Matsuura, K.: Efficient generic constructions of signcryption with insider security in the multi-user setting. In: Lopez, J., Tsudik, G. (eds.) ACNS 2011. LNCS, vol. 6715, pp. 220–237. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-21554-4_13CrossRefGoogle Scholar
  12. 12.
    Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and bimodal Gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 40–56. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40041-4_3CrossRefGoogle Scholar
  13. 13.
    Ducas, L., Micciancio, D.: Improved short lattice signatures in the standard model. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 335–352. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44371-2_19CrossRefGoogle Scholar
  14. 14.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC 2008, pp. 197–206. ACM (2008)Google Scholar
  15. 15.
    Goldreich, O., Goldwasser, S., Halevi, S.: Collision-free hashing from lattice problems. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 3, no. 42 (1996)Google Scholar
  16. 16.
    Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89255-7_23CrossRefGoogle Scholar
  17. 17.
    Kiltz, E.: Chosen-ciphertext security from tag-based encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 581–600. Springer, Heidelberg (2006).  https://doi.org/10.1007/11681878_30CrossRefGoogle Scholar
  18. 18.
    Libert, B., Quisquater, J.-J.: Efficient signcryption with key privacy from gap Diffie-Hellman groups. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 187–200. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24632-9_14CrossRefGoogle Scholar
  19. 19.
    Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19074-2_21CrossRefGoogle Scholar
  20. 20.
    Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_43CrossRefGoogle Scholar
  21. 21.
    Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital signatures. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 37–54. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78524-8_3CrossRefGoogle Scholar
  22. 22.
    Matsuda, T., Matsuura, K., Schuldt, J.C.N.: Efficient constructions of signcryption schemes and signcryption composability. In: Roy, B., Sendrier, N. (eds.) INDOCRYPT 2009. LNCS, vol. 5922, pp. 321–342. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-10628-6_22CrossRefGoogle Scholar
  23. 23.
    Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_41CrossRefGoogle Scholar
  24. 24.
    Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Nakano, R., Shikata, J.: Constructions of signcryption in the multi-user setting from identity-based encryption. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 324–343. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-45239-0_19CrossRefGoogle Scholar
  26. 26.
    Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: STOC 2009, pp. 333–342. ACM (2009)Google Scholar
  27. 27.
    Peikert, C.: An efficient and parallel Gaussian sampler for lattices. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_5CrossRefGoogle Scholar
  28. 28.
    Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85174-5_31CrossRefGoogle Scholar
  29. 29.
    Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: STOC 2008, pp. 187–196. ACM (2008)Google Scholar
  30. 30.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 34:1–34:40 (2009)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Rückert, M.: Strongly unforgeable signatures and hierarchical identity-based signatures from lattices without random oracles. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 182–200. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-12929-2_14CrossRefGoogle Scholar
  32. 32.
    Tan, C.H.: Signcryption scheme in multi-user setting without random oracles. In: Matsuura, K., Fujisaki, E. (eds.) IWSEC 2008. LNCS, vol. 5312, pp. 64–82. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-89598-5_5CrossRefGoogle Scholar
  33. 33.
    Yamada, S.: Adaptively secure identity-based encryption from lattices with asymptotically shorter public parameters. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 32–62. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_2CrossRefGoogle Scholar
  34. 34.
    Yan, J., Wang, L., Wang, L., Yang, Y., Yao, W.: Efficient lattice-based signcryption in standard model. Math. Prob. Eng. 2013 (2013)Google Scholar
  35. 35.
    Zhang, J., Chen, Y., Zhang, Z.: Programmable hash functions from lattices: short signatures and IBEs with small key sizes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 303–332. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53015-3_11CrossRefGoogle Scholar
  36. 36.
    Zheng, Y.: Digital signcryption or how to achieve cost(signature & encryption) \({\ll }\) cost(signature) + cost(encryption). In: Kaliski B.S. (eds) Advances in Cryptology – CRYPTO 1997, CRYPTO 1997. LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0052234

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School of Environment and Information SciencesYokohama National UniversityYokohamaJapan
  2. 2.Institute of Advanced SciencesYokohama National UniversityYokohamaJapan

Personalised recommendations