Advertisement

Animal Models of Rheumatoid Arthritis

  • David R. Webb
Chapter

Abstract

Animal models of rheumatoid arthritis (RA) have been key to understanding the underlying pathology in RA. For over 50 years, the most common models have been based on the use of adjuvants that contain bacteria (mycobacteria) or that rely on the use of collagen type II to induce the disease. The role of microbes in the etiology of RA has long been hypothesized, and the existing data, while correlative and circumstantial, suggest this hypothesis is correct. The animal models, however, as valuable as they have been, are acute in their initiation, onset, and outcomes unlike the disease that occurs in humans. This chapter focuses on the major animal models of RA currently in use and their advantages and disadvantages and offers suggestions for future directions including the use of transgenic and/or humanized mice.

Keywords

Animal models Germ-free Rheumatoid arthritis 

Abbreviations

AI

Autoimmune

APCA

Anti-parietal cell antibodies

BSA

Bovine serum albumin

CAIA

Collagen antibody-induced arthritis

CFA

Complete Freund’s adjuvant

CIA

Collagen-induced arthritis

GF

Germ-free

IBD

Inflammatory bowel disease

Ig RF

RF-like immunoglobulin

IL

Interleukin

LPS

Lipopolysaccharide

mAB

Monoclonal antibody

MS

Multiple sclerosis

NSAID

Nonsteroidal anti-inflammatory drug

PMN

Polymorphonuclear cell

RA

Rheumatoid arthritis

RF

Rheumatoid factor

SCID

Severe combined immunodeficiency

References

  1. 1.
    Feldmann M, Maini RN. Anti-TNFα therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol. 2001;19:163–96.  https://doi.org/10.1146/annurev.immunol.19.1.163.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol. 2003;3:521–33.  https://doi.org/10.1038/nri1132.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wirtz S, Neufert C, Weigmann B, Neurath MF. Chemically induced mouse models of intestinal inflammation. Nat Protoc. 2007;2:541–6.  https://doi.org/10.1038/nprot.2007.41.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Honda K, Littman DR. The microbiome in infectious disease and inflammation. Annu Rev Immunol. 2012;30:759–95.  https://doi.org/10.1146/annurev-immunol-020711-074937.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Webb DR. Animal models of human disease: inflammation. Biochem Pharmacol. 2014;87:121–30.  https://doi.org/10.1016/j.bcp.2013.06.014.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sundberg JP, Ward JM, HogenEsch H, Nikitin AY, Treuting PM, Macauley JB, et al. Training pathologists in mouse pathology. Vet Pathol. 2012;49:393–7.  https://doi.org/10.1177/0300985810381244.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Mestas J, Hughes CCW. Of mice and not men: differences between mouse and human immunology. J Immunol. 2004;172:2731–8.  https://doi.org/10.4049/jimmunol.172.5.2731.CrossRefPubMedGoogle Scholar
  8. 8.
    Rice J. Animal models: not close enough. Nature. 2012;484:S9.  https://doi.org/10.1038/nature11102. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    van der Worp HB, Howells DW, Sena ES, Porritt MJ, Rewell S, O’Collins V, et al. Can animal models of disease reliably inform human studies? PLoS Med. 2010;7:1–8.  https://doi.org/10.1371/journal.pmed.1000245. CrossRefGoogle Scholar
  10. 10.
    Williams RO. Rodent models of arthritis: relevance for human disease. Clin Exp Immunol. 1998;114:330–2.  https://doi.org/10.1046/j.1365-2249.1998.00785.x.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Araujo VMA, Melo IM, Lima V. Relationship between periodontitis and rheumatoid arthritis: review of the literature. Mediat Inflamm. 2015;2015:259074.  https://doi.org/10.1155/2015/259074.CrossRefGoogle Scholar
  12. 12.
    Brusca SB, Abramson SB, Scher JU. Microbiome and mucosal inflammation as extra-articular triggers for rheumatoid arthritis and autoimmunity. Curr Opin Rheumatol. 2014;26:101–7.  https://doi.org/10.1097/BOR.0000000000000008.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Izui S, Eisenberg RA, Dixon FJ. IgM rheumatoid factors in mice injected with bacterial lipopolysaccharides. J Immunol. 1979;122:2096–102. http://www.ncbi.nlm.nih.gov/pubmed/376732.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Bendele A. Animal models of rheumatoid arthritis. J Musculoskelet Neuronal Interact. 2001;1:377–85.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Rosen A, Casciola-Rosen L. Autoantigens as partners in initiation and propagation of autoimmune rheumatic diseases. Annu Rev Immunol. 2016;34:395–420.  https://doi.org/10.1146/annurev-immunol-032414-112205.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jacobson DL, Gange SJ, Rose NR, Graham NMH. Epidemiology and estimated population burden of selected autoimmune diseases in the United States. Clin Immunol Immunopathol. 1997;84:223–43.  https://doi.org/10.1006/clin.1997.4412.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Traherne JA. Human MHC architecture and evolution: implications for disease association studies. Int J Immunogenet. 2008;35:179–92.  https://doi.org/10.1111/j.1744-313X.2008.00765.x.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Firestein G, Panayi G, Wollheim F, editors. Rheumatoid arthritis. 2nd ed. New York: Oxford University Press; 2006.Google Scholar
  19. 19.
    Fries JF, Williams CA, Morfeld D, Singh G, Sibley J. Reduction in long-term disability in patients with rheumatoid arthritis by disease-modifying antirheumatic drug-based treatment strategies. Arthritis Rheum. 1996;39:616–22.  https://doi.org/10.1002/art.1780390412.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Asquith DL, Miller AM, McInnes IB, Liew FY. Animal models of rheumatoid arthritis. Eur J Immunol. 2009;39:2040–4.  https://doi.org/10.1002/eji.200939578.CrossRefPubMedGoogle Scholar
  21. 21.
    Wooley PH, Luthra HS, Stuart JM, David CS. Type II collagen-induced arthritis in mice. I. Major histocompatibility complex (I region) linkage and antibody correlates. J Exp Med. 1981;154:688–700.  https://doi.org/10.1002/art.1780270907. CrossRefPubMedGoogle Scholar
  22. 22.
    Seki N, Sudo Y, Yoshioka T. Type II collagen-induced murine arthritis. I. Induction and perpetuation of arthritis require synergy between humoral and cell-mediated immunity. J Immunol. 1988;140:1477–84. http://www.jimmunol.org/content/140/5/1477.short.PubMedGoogle Scholar
  23. 23.
    Kollias G, Papadaki P, Apparailly F, Vervoordeldonk MJ, Holmdahl R, Baumans V, et al. Animal models for arthritis: innovative tools for prevention and treatment. Ann Rheum Dis. 2011;70:1357–62.  https://doi.org/10.1136/ard.2010.148551.CrossRefPubMedGoogle Scholar
  24. 24.
    Trombone APF, Ferreira SB, Raimundo FM, De Moura KCR, Avila-Campos MJ, Silva JS, et al. Experimental periodontitis in mice selected for maximal or minimal inflammatory reactions: increased inflammatory immune responsiveness drives increased alveolar bone loss without enhancing the control of periodontal infection. J Periodontal Res. 2009;44:443–51.  https://doi.org/10.1111/j.1600-0765.2008.01133.x.CrossRefPubMedGoogle Scholar
  25. 25.
    Hörmannsperger G, Schaubeck M, Haller D. Intestinal microbiota in animal models of inflammatory diseases. ILAR J. 2015;56:179–91.  https://doi.org/10.1093/ilar/ilv019.CrossRefPubMedGoogle Scholar
  26. 26.
    Rath HC, Herfarth HH, Ikeda JS, Grenther WB, Hamm TE, Balish E, et al. Normal luminal bacteria, especially bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human β2 microglobulin transgenic rats. J Clin Investig. 1996;98:945–53.  https://doi.org/10.1172/JCI118878.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Berer K, Mues M, Koutrolos M, Rasbi ZA, Boziki M, Johner C, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination - with comments. Nature. 2011;479:538–41.  https://doi.org/10.1038/nature10554. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012;3:4–14.  https://doi.org/10.4161/gmic.19320.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Rehaume L, Mondot S, De Carcer DA, Velasco J, Benham H, Hasnain S, et al. Host genetic background disrupts the relationship between microbiota and gut mucosal tolerance leading to spondyloarthritis and ileitis after a dectin-1 trigger. Arthritis Rheum. 2013;65:S1152. http://bf4dv7zn3u.search.serialssolutions.com.myaccess.library.utoronto.ca/?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rfr_id=info:sid/Ovid:emed12&rft.genre=article&rft_id=info:doi/10.1002%2Fart.38216&rft_id=info:pmid/&rft.issn=0004-3591.Google Scholar
  30. 30.
    Alam C, Bittoun E, Bhagwat D, Valkonen S, Saari A, Jaakkola U, et al. Effects of a germ-free environment on gut immune regulation and diabetes progression in non-obese diabetic (NOD) mice. Diabetologia. 2011;54:1398–406.  https://doi.org/10.1007/s00125-011-2097-5.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bjork J, Kleinau S, Midtvedt T, Klareskog L, Smedegard G. Role of the bowel flora for development of immunity to hsp 65 and arthritis in three experimental models. Scand J Immunol. 1994;40:648–52.  https://doi.org/10.1111/j.1365-3083.1994.tb03518.x.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Taurog JD, Richardson JA, Croft JT, Simmons WA, Zhou M, Fernández-Sueiro JL, et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med. 1994;180:2359–64.  https://doi.org/10.1084/jem.180.6.2359.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Breban M. Immunopathologie actuelle. Rev Rhum Monogr. 2014;81:235–9.  https://doi.org/10.1016/j.monrhu.2014.06.002.CrossRefGoogle Scholar
  34. 34.
    Liu X, Zeng B, Zhang J, Li W, Mou F, Wang H, et al. Role of the gut microbiome in modulating arthritis progression in mice. Sci Rep. 2016;6:30594.  https://doi.org/10.1038/srep30594.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kohashi O, Kohashi Y, Takahashi T, Ozawa A, Shigematsu N. Reverse effect of gram positive bacteria vs. gram negative Bacteria on adjuvant induced arthritis in germfree rats. Microbiol Immunol. 1985;29:487–97.  https://doi.org/10.1111/j.1348-0421.1985.tb00851.x.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Van Den Broek MF, Van Bruggen MCJ, Koopman JP, Hazenberg MP, Van Den Berg WB. Gut flora induces and maintains resistance against streptococcal cell wall-induced arthritis in F344 rats. Clin Exp Immunol. 1992;88:313–7.  https://doi.org/10.1111/j.1365-2249.1992.tb03079.x. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Pils MC, Bleich A, Prinz I, Fasnacht N, Bollati-Fogolin M, Schippers A, et al. Commensal gut flora reduces susceptibility to experimentally induced colitis via T-cell-derived interleukin-10. Inflamm Bowel Dis. 2011;17:2038–46.  https://doi.org/10.1002/ibd.21587. CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Thompson SJ, Thompson HS, Harper N, Day MJ, Coad AJ, Elson CJ, et al. Prevention of pristane-induced arthritis by the oral administration of type II collagen. Immunology. 1993;79:152–7. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1422061&tool=pmcentrez&rendertype=abstract.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Thompson SJ, Elson CJ. Susceptibility to pristane-induced arthritis is altered with changes in bowel flora. Immunol Lett. 1993;36:227–31.  https://doi.org/10.1016/0165-2478(93)90057-9.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey KA, et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature. 2016;532:512–6.  https://doi.org/10.1038/nature17655.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Roudier J. Association of MHC and rheumatoid arthritis. Association of RA with HLA-DR4: the role of repertoire selection. Arthritis Res. 2000;2:217–20.  https://doi.org/10.1186/ar91.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Department of Integrated Structural and Computational BiologyThe Scripps Research InstituteLa JollaUSA

Personalised recommendations