Advertisement

Spondyloarthritis

  • Heleen Cypers
  • S. Louis BridgesJr.
  • Dirk Elewaut
Chapter

Abstract

Spondyloarthritis (SpA) indicates a group of clinically and genetically related disorders characterized by chronic inflammation of the axial skeleton (sacroiliitis and spondylitis), the peripheral joints, and/or the entheses. SpA comprises different subtypes, including ankylosing spondylitis (AS), psoriatic arthritis (PsA), juvenile-onset SpA (enthesitis-related arthritis, ERA), reactive arthritis (ReA), and inflammatory bowel disease (IBD)-related arthritis. Convincing evidence has emerged for implicating the intestinal microbiota in SpA pathogenesis. This hypothesis is supported by clinical data, such as the triggering of reactive arthritis by gastrointestinal infections, the close relationship between gut and joint inflammation in SpA, and the overlap between SpA and IBD. In addition, genetic susceptibility factors linked with SpA might affect the response to microorganisms. Most compellingly, in certain animal models for SpA, disease does not develop in germ-free conditions. This chapter provides an overview of microbiota analyses performed in SpA patients, of underlying immunological mechanisms, and of possible therapeutic implications. The main focus will be on ankylosing spondylitis/axial SpA, as ReA, PsA, and ERA are covered elsewhere in this book.

Keywords

HLA-B27 Microbiota Pattern recognition receptor Spondyloarthritis 

Abbreviations

ANKENT

Ankylosing enthesopathy mouse model

AS

Ankylosing spondylitis

ASCA

Anti-saccharomyces antibody

ASDAS

Ankylosing spondylitis disease activity scale

ATG16L1

Autophagy-related 16-like 1

CD

Crohn’s disease

CTLA-4

Cytotoxic T lymphocyte antigen 4

DC

Dendritic cell

DGGE

Denaturing gradient gel electrophoresis

ER

Endoplasmic reticulum

ERA

Enthesitis-related arthritis

ERAP

Endoplasmic receptor aminopeptidase

FISH

Fluorescent in situ hybridization

FMT

Fecal microbial transplantation

HLA

Human leukocyte antigen

IBD

Inflammatory bowel disease

IL

Interleukin

IL-23R

Interleukin 23 receptor

ILC

Innate lymphoid cell

LPS

Lipopolysaccharide

MAIT

Mucosal-associated invariant T (cell)

MHC

Major histocompatibility complex

mNY

Modified New York

MRI

Magnetic resonance imaging

NF-κB

Nuclear factor-κB

NOD

Nucleotide oligomerization domain

Nr-axSpA

Non-radiographic axial spondyloarthritis

OMP

Outer membrane protein

PAMP

Pathogen-associated molecular pattern

pANCA

Peripheral antineutrophil cytoplasmic antibody

PBMC

Peripheral blood mononuclear cell

PRR

Pattern recognition receptor

PsA

Psoriatic arthritis

RA

Rheumatoid arthritis

ReA

Reactive arthritis

rRNA

Ribosomal ribonucleic acid

SCFA

Short-chain fatty acids

SF

Synovial fluid

SFB

Segmented filamentous bacteria

SFMC

Synovial fluid mononuclear cell

sIgA

Secretory immunoglobulin A

SpA

Spondyloarthritis

SPF

Specific pathogen-free

Spp

Subspecies

STAT3

Signal transducer and activator of transcription 3

TGF

Transforming growth factor

TLR

Toll-like receptor

Treg

Regulatory T cell

UPR

Unfolded protein response

References

  1. 1.
    Rudwaleit M, Sieper J. Referral strategies for early diagnosis of axial spondyloarthritis. Nat Rev Rheumatol. 2012;8(5):262–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Poddubnyy D, Rudwaleit M. Early spondyloarthritis. Rheum Dis Clin N Am. 2012;38(2):387.CrossRefGoogle Scholar
  3. 3.
    Sieper J, van der Heijde D. Review: nonradiographic axial spondyloarthritis: new definition of an old disease? Arthritis Rheum. 2013;65(3):543–51.CrossRefPubMedGoogle Scholar
  4. 4.
    van Tubergen A, Heuft-Dorenbosch L, Schulpen G, Landewe R, Wijers R, van der Heijde D, et al. Radiographic assessment of sacroiliitis by radiologists and rheumatologists: does training improve quality? Ann Rheum Dis. 2003;62(6):519–25.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Leirisalo-Repo M. Prognosis, course of disease, and treatment of the spondyloarthropathies. Rheum Dis Clin N Am. 1998;24(4):737.CrossRefGoogle Scholar
  6. 6.
    Cuvelier C, Barbatis C, Mielants H, De Vos M, Roels H, Veys E. Histopathology of intestinal inflammation related to reactive arthritis. Gut. 1987;28(4):394–401.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Schatteman L, Mielants H, Veys EM, Cuvelier C, De Vos M, Gyselbrecht L, et al. Gut inflammation in psoriatic arthritis: a prospective ileocolonoscopic study. J Rheumatol. 1995;22(4):680–3.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Mielants H, Veys EM, Cuvelier C, De Vos M, Goemaere S, Maertens M, et al. Gut inflammation in children with late onset pauciarticular juvenile chronic arthritis and evolution to adult spondyloarthropathy – a prospective study. J Rheumatol. 1993;20(9):1567–72.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Van Praet L, Van den Bosch FE, Jacques P, Carron P, Jans L, Colman R, et al. Microscopic gut inflammation in axial spondyloarthritis: a multiparametric predictive model. Ann Rheum Dis. 2013;72(3):414–7.CrossRefPubMedGoogle Scholar
  10. 10.
    DeVos M, Mielants H, Cuvelier C, Elewaut A, Veys E. Long-term evolution of gut inflammation in patients with spondyloarthropathy. Gastroenterology. 1996;110(6):1696–703.CrossRefGoogle Scholar
  11. 11.
    Van Praet L, Jans L, Carron P, Jacques P, Glorieus E, Colman R, et al. Degree of bone marrow oedema in sacroiliac joints of patients with axial spondyloarthritis is linked to gut inflammation and male sex: results from the GIANT cohort. Ann Rheum Dis. 2014;73(6):1186–9.CrossRefPubMedGoogle Scholar
  12. 12.
    Grillet B, de Clerck L, Dequeker J, Rutgeerts P, Geboes K. Systematic ileocolonoscopy and bowel biopsy study in spondylarthropathy. Br J Rheumatol. 1987;26(5):338–40.CrossRefPubMedGoogle Scholar
  13. 13.
    Lee YH, Ji JD, Kim JS, Bak YT, Lee CH, Kim CH, et al. Ileocolonoscopic and histologic studies of Korean patients with ankylosing spondylitis. Scand J Rheumatol. 1997;26(6):473–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Leirisalo-Repo M, Turunen U, Stenman S, Helenius P, Seppala K. High frequency of silent inflammatory bowel disease in spondylarthropathy. Arthritis Rheum. 1994;37(1):23–31.CrossRefPubMedGoogle Scholar
  15. 15.
    Porzio V, Biasi G, Corrado A, De Santi M, Vindigni C, Viti S, et al. Intestinal histological and ultrastructural inflammatory changes in spondyloarthropathy and rheumatoid arthritis. Scand J Rheumatol. 1997;26(2):92–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Simenon G, Van Gossum A, Adler M, Rickaert F, Appelboom T. Macroscopic and microscopic gut lesions in seronegative spondyloarthropathies. J Rheumatol. 1990;17(11):1491–4.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Smale S, Natt RS, Orchard TR, Russell AS, Bjarnason I. Inflammatory bowel disease and spondylarthropathy. Arthritis Rheum. 2001;44(12):2728–36.CrossRefPubMedGoogle Scholar
  18. 18.
    Nagalingam NA, Lynch SV. Role of the microbiota in inflammatory bowel diseases. Inflamm Bowel Dis. 2012;18(5):968–84.CrossRefPubMedGoogle Scholar
  19. 19.
    Taurog JD, Richardson JA, Croft JT, Simmons WA, Zhou M, Fernandez-Sueiro JL, et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med. 1994;180(6):2359–64.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rehakova Z, Capkova J, Stepankova R, Sinkora J, Louzecka A, Ivanyi P, et al. Germ-free mice do not develop ankylosing enthesopathy, a spontaneous joint disease. Hum Immunol. 2000;61(6):555–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Ruutu M, Thomas G, Steck R, Degli-Esposti MA, Zinkernagel MS, Alexander K, et al. β-glucan triggers spondylarthritis and Crohn’s disease-like ileitis in SKG mice. Arthritis Rheum. 2012;64(7):2211–22.CrossRefPubMedGoogle Scholar
  22. 22.
    Stebbings S, Munro K, Simon MA, Tannock G, Highton J, Harmsen H, et al. Comparison of the faecal microflora of patients with ankylosing spondylitis and controls using molecular methods of analysis. Rheumatology. 2002;41(12):1395–401.CrossRefPubMedGoogle Scholar
  23. 23.
    Costello ME, Ciccia F, Willner D, Warrington N, Robinson PC, Gardiner B, et al. Intestinal dysbiosis in ankylosing spondylitis. Arthritis Rheumatol. 2014;67(3):686–91.CrossRefGoogle Scholar
  24. 24.
    Tito RY, Cypers H, Joossens M, Varkas G, Van Praet L, Glorieus E, et al. Dialister as microbial marker of disease activity in spondyloarthritis. Arthritis Rheumatol. 2016;69(1):114–21.CrossRefPubMedGoogle Scholar
  25. 25.
    Bisanz JE, Suppiah P, Thomson WM, Milne T, Yeoh N, Nolan A, et al. The oral microbiome of patients with axial spondyloarthritis compared to healthy individuals. PeerJ. 2016;4:e2095.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Stoll ML, Kumar R, Morrow CD, Lefkowitz EJ, Cui X, Genin A, et al. Altered microbiota associated with abnormal humoral immune responses to commensal organisms in enthesitis-related arthritis. Arthritis Res Ther. 2014;16(6):486.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Asquith M, Stauffer P, Davin S, Mitchell C, Lin MP, Rosenbaum JT. Perturbed mucosal immunity and dysbiosis accompany clinical disease in a rat model of spondyloarthritis. Arthritis Rheumatol. 2016;68(9):2151–62.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lin P, Bach M, Asquith M, Lee AY, Akileswaran L, Stauffer P, et al. HLA-B27 and human beta2-microglobulin affect the gut microbiota of transgenic rats. PLoS One. 2014;9(8):e105684.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Erickson AR, Cantarel BL, Lamendella R, Darzi Y, Mongodin EF, Pan C, et al. Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn’s disease. PLoS One. 2012;7(11):e49138.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Scher JU, Ubeda C, Artacho A, Attur M, Isaac S, Reddy SM, et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 2015;67(1):128–39.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Rocas IN, Siqueira JF Jr. Characterization of dialister species in infected root canals. J Endod. 2006;32(11):1057–61.CrossRefPubMedGoogle Scholar
  32. 32.
    Morotomi M, Nagai F, Sakon H, Tanaka R. Dialister succinatiphilus sp. nov. and Barnesiella intestinihominis sp. nov., isolated from human faeces. Int J Syst Evol Microbiol. 2008;58(Pt 12):2716–20.CrossRefPubMedGoogle Scholar
  33. 33.
    Gevers D, Kugathasan S, Denson LA, Vazquez-Baeza Y, Van Treuren W, Ren B, et al. The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014;15(3):382–92.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Frank DN, Robertson CE, Hamm CM, Kpadeh Z, Zhang T, Chen H, et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm Bowel Dis. 2011;17(1):179–84.CrossRefPubMedGoogle Scholar
  35. 35.
    Ahmadi K, Wilson C, Tiwana H, Binder A, Ebringer A. Antibodies to Klebsiella pneumoniae lipopolysaccharide in patients with ankylosing spondylitis. Br J Rheumatol. 1998;37(12):1330–3.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Maki-Ikola O, Lehtinen K, Nissila M, Granfors K. IgM, IgA and IgG class serum antibodies against Klebsiella pneumoniae and Escherichia coli lipopolysaccharides in patients with ankylosing spondylitis. Br J Rheumatol. 1994;33(11):1025–9.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Stone MA, Payne U, Schentag C, Rahman P, Pacheco-Tena C, Inman RD. Comparative immune responses to candidate arthritogenic bacteria do not confirm a dominant role for Klebsiella pneumonia in the pathogenesis of familial ankylosing spondylitis. Rheumatology (Oxford). 2004;43(2):148–55.CrossRefGoogle Scholar
  38. 38.
    Landers CJ, Cohavy O, Misra R, Yang H, Lin YC, Braun J, et al. Selected loss of tolerance evidenced by Crohn’s disease-associated immune responses to auto- and microbial antigens. Gastroenterology. 2002;123(3):689–99.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Targan SR, Landers CJ, Yang H, Lodes MJ, Cong Y, Papadakis KA, et al. Antibodies to CBir1 flagellin define a unique response that is associated independently with complicated Crohn’s disease. Gastroenterology. 2005;128(7):2020–8.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hoffman IEA, Demetter P, Peeters M, De Vos M, Mielants H, Veys EM, et al. Anti-Saccharomyces cerevisiae IgA antibodies are raised in ankylosing spondylitis and undifferentiated spondyloarthropathy. Ann Rheum Dis. 2003;62(5):455–9.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Aydin SZ, Atagunduz P, Temel M, Bicakcigil M, Tasan D, Direskeneli H. Anti-Saccharomyces cerevisiae antibodies (ASCA) in spondyloarthropathies: a reassessment. Rheumatology (Oxford). 2008;47(2):142–4.CrossRefGoogle Scholar
  42. 42.
    de Vries M, van der Horst-Bruinsma I, van Hoogstraten I, van Bodegraven A, von Blomberg BM, Ratnawati H, et al. pANCA, ASCA, and OmpC antibodies in patients with ankylosing spondylitis without inflammatory bowel disease. J Rheumatol. 2010;37(11):2340–4.CrossRefPubMedGoogle Scholar
  43. 43.
    Mundwiler ML, Mei L, Landers CJ, Reveille JD, Targan S, Weisman MH. Inflammatory bowel disease serologies in ankylosing spondylitis patients: a pilot study. Arthritis Res Ther. 2009;11(6):R177.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Torok HP, Glas J, Gruber R, Brumberger V, Strasser C, Kellner H, et al. Inflammatory bowel disease-specific autoantibodies in HLA-B27-associated spondyloarthropathies: increased prevalence of ASCA and pANCA. Digestion. 2004;70(1):49–54.CrossRefPubMedGoogle Scholar
  45. 45.
    Wallis D, Asaduzzaman A, Weisman M, Haroon N, Anton A, McGovern D, et al. Elevated serum anti-flagellin antibodies implicate subclinical bowel inflammation in ankylosing spondylitis: an observational study. Arthritis Res Ther. 2013;15(5):R166.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Riente L, Chimenti D, Pratesi F, Delle Sedie A, Tommasi S, Tommasi C, et al. Antibodies to tissue transglutaminase and Saccharomyces cerevisiae in ankylosing spondylitis and psoriatic arthritis. J Rheumatol. 2004;31(5):920–4.PubMedGoogle Scholar
  47. 47.
    Hammer RE, Maika SD, Richardson JA, Tang JP, Taurog JD. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: an animal model of HLA-B27-associated human disorders. Cell. 1990;63(5):1099–112.CrossRefPubMedGoogle Scholar
  48. 48.
    Rath HC, Herfarth HH, Ikeda JS, Grenther WB, Hamm TE Jr, Balish E, et al. Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. J Clin Invest. 1996;98(4):945–53.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Benham H, Rehaume LM, Hasnain SZ, Velasco J, Baillet AC, Ruutu M, et al. Interleukin-23 mediates the intestinal response to microbial beta-1,3-glucan and the development of spondyloarthritis pathology in SKG mice. Arthritis Rheumatol. 2014;66(7):1755–67.CrossRefPubMedGoogle Scholar
  50. 50.
    Rehaume LM, Mondot S, Aguirre de Carcer D, Velasco J, Benham H, Hasnain SZ, et al. ZAP-70 genotype disrupts the relationship between microbiota and host, leading to spondyloarthritis and ileitis in SKG mice. Arthritis Rheumatol. 2014;66(10):2780–92.CrossRefPubMedGoogle Scholar
  51. 51.
    Baillet AC, Rehaume LM, Benham H, O’Meara CP, Armitage CW, Ruscher R, et al. High Chlamydia burden promotes tumor necrosis factor-dependent reactive arthritis in SKG mice. Arthritis Rheumatol. 2015;67(6):1535–47.CrossRefPubMedGoogle Scholar
  52. 52.
    Weinreich S, Eulderink F, Capkova J, Pla M, Gaede K, Heesemann J, et al. HLA-B27 as a relative risk factor in ankylosing enthesopathy in transgenic mice. Hum Immunol. 1995;42(2):103–15.CrossRefPubMedGoogle Scholar
  53. 53.
    Sinkorova Z, Capkova J, Niederlova J, Stepankova R, Sinkora J. Commensal intestinal bacterial strains trigger ankylosing enthesopathy of the ankle in inbred B10.BR (H-2(k)) male mice. Hum Immunol. 2008;69(12):845–50.CrossRefPubMedGoogle Scholar
  54. 54.
    Capkova J, Hrncir T, Kubatova A, Tlaskalova-Hogenova H. Lipopolysaccharide treatment suppresses spontaneously developing ankylosing enthesopathy in B10.BR male mice: the potential role of interleukin-10. BMC Musculoskelet Disord. 2012;13:110.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Abraham C, Medzhitov R. Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenterology. 2011;140(6):1729–37.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Sun M, He C, Cong Y, Liu Z. Regulatory immune cells in regulation of intestinal inflammatory response to microbiota. Mucosal Immunol. 2015;8(5):969–78.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Ciccia F, Bombardieri M, Rizzo A, Principato A, Giardina AR, Raiata F, et al. Over-expression of paneth cell-derived anti-microbial peptides in the gut of patients with ankylosing spondylitis and subclinical intestinal inflammation. Rheumatology. 2010;49(11):2076–83.CrossRefPubMedGoogle Scholar
  58. 58.
    Collado A, Sanmarti R, Serra C, Gallart T, Canete JD, Gratacos J, et al. Serum levels of secretory IgA in ankylosing spondylitis. Scand J Rheumatol. 1991;20(3):153–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Wendling D, Didier JM, Seilles E. Serum secretory immunoglobulins in ankylosing spondylitis. Clin Rheumatol. 1996;15(6):590–3.CrossRefPubMedGoogle Scholar
  60. 60.
    Asquith M, Elewaut D, Lin P, Rosenbaum JT. The role of the gut and microbes in the pathogenesis of spondyloarthritis. Best Pract Res Clin Rheumatol. 2014;28(5):687–702.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Adam R, Sturrock RD, Gracie JA. TLR4 mutations (Asp299Gly and Thr399Ile) are not associated with ankylosing spondylitis. Ann Rheum Dis. 2006;65(8):1099–101.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    De Rycke L, Vandooren B, Kruithof E, De Keyser F, Veys EM, Baeten D. Tumor necrosis factor alpha blockade treatment down-modulates the increased systemic and local expression of toll-like receptor 2 and toll-like receptor 4 in spondylarthropathy. Arthritis Rheum. 2005;52(7):2146–58.CrossRefPubMedGoogle Scholar
  63. 63.
    Crane AM, Bradbury L, van Heel DA, McGovern DP, Brophy S, Rubin L, et al. Role of NOD2 variants in spondylarthritis. Arthritis Rheum. 2002;46(6):1629–33.CrossRefPubMedGoogle Scholar
  64. 64.
    Laukens D, Georges M, Libioulle C, Sandor C, Mni M, Vander Cruyssen B, et al. Evidence for significant overlap between common risk variants for Crohn’s disease and Ankylosing spondylitis. PLoS One. 2010;5(11):e13795.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Cortes A, Hadler J, Pointon JP, Robinson PC, Karaderi T, Leo P, et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet. 2013;45(7):730–8.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Lees CW, Barrett JC, Parkes M, Satsangi J. New IBD genetics: common pathways with other diseases. Gut. 2011;60(12):1739–53.CrossRefPubMedGoogle Scholar
  67. 67.
    Sokol H, Conway KL, Zhang M, Choi M, Morin B, Cao Z, et al. Card9 mediates intestinal epithelial cell restitution, T-helper 17 responses, and control of bacterial infection in mice. Gastroenterology. 2013;145(3):591–601 e3.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Baeten D, Demetter P, Cuvelier CA, Kruithof E, Van Damme N, De Vos M, et al. Macrophages expressing the scavenger receptor CD163: a link between immune alterations of the gut and synovial inflammation in spondyloarthropathy. J Pathol. 2002;196(3):343–50.CrossRefPubMedGoogle Scholar
  69. 69.
    Baeten D, Moller HJ, Delanghe J, Veys EM, Moestrup SK, De Keyser F. Association of CD163+ macrophages and local production of soluble CD163 with decreased lymphocyte activation in spondylarthropathy synovitis. Arthritis Rheum. 2004;50(5):1611–23.CrossRefPubMedGoogle Scholar
  70. 70.
    Zeng L, Lindstrom MJ, Smith JA. Ankylosing spondylitis macrophage production of higher levels of interleukin-23 in response to lipopolysaccharide without induction of a significant unfolded protein response. Arthritis Rheum. 2011;63(12):3807–17.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Qian BF, Tonkonogy SL, Sartor RB. Aberrant innate immune responses in TLR-ligand activated HLA-B27 transgenic rat cells. Inflamm Bowel Dis. 2008;14(10):1358–65.CrossRefPubMedGoogle Scholar
  72. 72.
    Stebbings SM, Taylor C, Tannock GW, Baird MA, Highton J. The immune response to autologous bacteroides in ankylosing spondylitis is characterized by reduced interleukin 10 production. J Rheumatol. 2009;36(4):797–800.CrossRefPubMedGoogle Scholar
  73. 73.
    De Wilde K, Martens A, Lambrecht S, Jacques P, Drennan MB, Debusschere K, et al. A20 inhibition of STAT1 expression in myeloid cells: a novel endogenous regulatory mechanism preventing development of enthesitis. Ann Rheum Dis. 2017;76(3):585–92.CrossRefPubMedGoogle Scholar
  74. 74.
    Eberl G, Colonna M, Di Santo JP, McKenzie AN. Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology. Science. 2015;348(6237):aaa6566.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Murphy KP. The mucosal immune system. In:Janeway’s immunobiology. 8th ed. London: Garland Science; 2012. p. 465–508.Google Scholar
  76. 76.
    Hepworth MR, Fung TC, Masur SH, Kelsen JR, McConnell FM, Dubrot J, et al. Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4(+) T cells. Science. 2015;348(6238):1031–5.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Ciccia F, Guggino G, Rizzo A, Saieva L, Peralta S, Giardina A, et al. Type 3 innate lymphoid cells producing IL-17 and IL-22 are expanded in the gut, in the peripheral blood, synovial fluid and bone marrow of patients with ankylosing spondylitis. Ann Rheum Dis. 2015;74(9):1739–47.CrossRefPubMedGoogle Scholar
  78. 78.
    Brewerton DA, Hart FD, Nicholls A, Caffrey M, James DC, Sturrock RD. Ankylosing spondylitis and HL-A 27. Lancet. 1973;1(7809):904–7.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Hermann E, Yu DT, Meyer zum Buschenfelde KH, Fleischer B. HLA-B27-restricted CD8 T cells derived from synovial fluids of patients with reactive arthritis and ankylosing spondylitis. Lancet. 1993;342(8872):646–50.CrossRefPubMedGoogle Scholar
  80. 80.
    Kuon W, Holzhutter HG, Appel H, Grolms M, Kollnberger S, Traeder A, et al. Identification of HLA-B27-restricted peptides from the Chlamydia trachomatis proteome with possible relevance to HLA-B27-associated diseases. J Immunol. 2001;167(8):4738–46.CrossRefPubMedGoogle Scholar
  81. 81.
    Ugrinovic S, Mertz A, Wu P, Braun J, Sieper JA. Single nonamer from the Yersinia 60-kDa heat shock protein is the target of HLA-B27-restricted CTL response in Yersinia-induced reactive arthritis. J Immunol. 1997;159(11):5715–23.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Atagunduz P, Appel H, Kuon W, Wu P, Thiel A, Kloetzel PM, et al. HLA-B27-restricted CD8+ T cell response to cartilage-derived self peptides in ankylosing spondylitis. Arthritis Rheum. 2005;52(3):892–901.CrossRefPubMedGoogle Scholar
  83. 83.
    May E, Dorris ML, Satumtira N, Iqbal I, Rehman MI, Lightfoot E, et al. CD8 alpha beta T cells are not essential to the pathogenesis of arthritis or colitis in HLA-B27 transgenic rats. J Immunol. 2003;170(2):1099–105.CrossRefPubMedGoogle Scholar
  84. 84.
    Thiel A, Wu P, Lauster R, Braun J, Radbruch A, Sieper J. Analysis of the antigen-specific T cell response in reactive arthritis by flow cytometry. Arthritis Rheum. 2000;43(12):2834–42.CrossRefPubMedGoogle Scholar
  85. 85.
    Frauendorf E, von Goessel H, May E, Marker-Hermann E. HLA-B27-restricted T cells from patients with ankylosing spondylitis recognize peptides from B*2705 that are similar to bacteria-derived peptides. Clin Exp Immunol. 2003;134(2):351–9.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Boyle LH, Goodall JC, Opat SS, Gaston JS. The recognition of HLA-B27 by human CD4(+) T lymphocytes. J Immunol. 2001;167(5):2619–24.CrossRefPubMedGoogle Scholar
  87. 87.
    Alvarez-Navarro C, Cragnolini JJ, Dos Santos HG, Barnea E, Admon A, Morreale A, et al. Novel HLA-B27-restricted epitopes from Chlamydia trachomatis generated upon endogenous processing of bacterial proteins suggest a role of molecular mimicry in reactive arthritis. J Biol Chem. 2013;288(36):25810–25.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Scofield RH, Warren WL, Koelsch G, Harley JB. A hypothesis for the HLA-B27 immune dysregulation in spondyloarthropathy: contributions from enteric organisms, B27 structure, peptides bound by B27, and convergent evolution. Proc Natl Acad Sci U S A. 1993;90(20):9330–4.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Huang F, Hermann E, Wang J, Cheng XK, Tsai WC, Wen J, et al. A patient-derived cytotoxic T-lymphocyte clone and two peptide-dependent monoclonal antibodies recognize HLA-B27-peptide complexes with low stringency for peptide sequences. Infect Immun. 1996;64(1):120–7.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Syrbe U, Scheer R, Wu P, Sieper J. Differential synovial Th1 cell reactivity towards Escherichia coli antigens in patients with ankylosing spondylitis and rheumatoid arthritis. Ann Rheum Dis. 2012;71(9):1573–6.CrossRefPubMedGoogle Scholar
  91. 91.
    Singh YP, Singh AK, Aggarwal A, Misra R. Evidence of cellular immune response to outer membrane protein of Salmonella typhimurium in patients with enthesitis-related arthritis subtype of juvenile idiopathic arthritis. J Rheumatol. 2011;38(1):161–6.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Baeten D, Van Damme N, Van den Bosch F, Kruithof E, De Vos M, Mielants H, et al. Impaired Th1 cytokine production in spondyloarthropathy is restored by anti-TNFalpha. Ann Rheum Dis. 2001;60(8):750–5.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Evans DM, Spencer CC, Pointon JJ, Su Z, Harvey D, Kochan G, et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat Genet. 2011;43(8):761–7.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Reveille JD. Genetics of spondyloarthritis – beyond the MHC. Nat Rev Rheumatol. 2012;8(5):296–304.CrossRefPubMedGoogle Scholar
  95. 95.
    Ambarus C, Yeremenko N, Tak PP, Baeten D. Pathogenesis of spondyloarthritis: autoimmune or autoinflammatory? Curr Opin Rheumatol. 2012;24(4):351–8.CrossRefPubMedGoogle Scholar
  96. 96.
    Colbert RA, Tran TM, Layh-Schmitt G. HLA-B27 misfolding and ankylosing spondylitis. Mol Immunol. 2014;57(1):44–51.CrossRefPubMedGoogle Scholar
  97. 97.
    Neerinckx B, Carter S, Lories RJ. No evidence for a critical role of the unfolded protein response in synovium and blood of patients with ankylosing spondylitis. Ann Rheum Dis. 2014;73(3):629–30.CrossRefPubMedGoogle Scholar
  98. 98.
    Glatigny S, Fert I, Blaton MA, Lories RJ, Araujo LM, Chiocchia G, et al. Proinflammatory Th17 cells are expanded and induced by dendritic cells in spondylarthritis-prone HLA-B27-transgenic rats. Arthritis Rheum. 2012;64(1):110–20.CrossRefPubMedGoogle Scholar
  99. 99.
    Penttinen MA, Heiskanen KM, Mohapatra R, DeLay ML, Colbert RA, Sistonen L, et al. Enhanced intracellular replication of Salmonella enteritidis in HLA-B27-expressing human monocytic cells: dependency on glutamic acid at position 45 in the B pocket of HLA-B27. Arthritis Rheum. 2004;50(7):2255–63.CrossRefPubMedGoogle Scholar
  100. 100.
    Ge S, Danino V, He Q, Hinton JC, Granfors K. Microarray analysis of response of Salmonella during infection of HLA-B27- transfected human macrophage-like U937 cells. BMC Genomics. 2010;11:456.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Rahman P, Inman RD, Gladman DD, Reeve JP, Peddle L, Maksymowych WP. Association of interleukin-23 receptor variants with ankylosing spondylitis. Arthritis Rheum. 2008;58(4):1020–5.CrossRefPubMedGoogle Scholar
  102. 102.
    Langrish CL, McKenzie BS, Wilson NJ, de Waal Malefyt R, Kastelein RA, Cua DJ. IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev. 2004;202:96–105.CrossRefPubMedGoogle Scholar
  103. 103.
    Abraham C, Cho J. InterIeukin-23/Th17 pathways and inflammatory bowel disease. Inflamm Bowel Dis. 2009;15(7):1090–100.CrossRefPubMedGoogle Scholar
  104. 104.
    Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol. 2014;14(9):585–600.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Sutton CE, Mielke LA, Mills KH. IL-17-producing gammadelta T cells and innate lymphoid cells. Eur J Immunol. 2012;42(9):2221–31.CrossRefPubMedGoogle Scholar
  106. 106.
    Treiner E. Mucosal-associated invariant T cells in inflammatory bowel diseases: bystanders, defenders, or offenders? Front Immunol. 2015;6:27.PubMedPubMedCentralGoogle Scholar
  107. 107.
    Goodall JC, Wu C, Zhang Y, McNeill L, Ellis L, Saudek V, et al. Endoplasmic reticulum stress-induced transcription factor, CHOP, is crucial for dendritic cell IL-23 expression. Proc Natl Acad Sci U S A. 2010;107(41):17698–703.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Cerutti A, Rescigno M. The biology of intestinal immunoglobulin A responses. Immunity. 2008;28(6):740–50.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Cong Y, Feng T, Fujihashi K, Schoeb TR, Elson CO. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc Natl Acad Sci U S A. 2009;106(46):19256–61.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Appel H, Wu P, Scheer R, Kedor C, Sawitzki B, Thiel A, et al. Synovial and peripheral blood CD4+FoxP3+ T cells in spondyloarthritis. J Rheumatol. 2011;38(11):2445–51.CrossRefPubMedGoogle Scholar
  111. 111.
    Ciccia F, Accardo-Palumbo A, Giardina A, Di Maggio P, Principato A, Bombardieri M, et al. Expansion of intestinal CD4+CD25(high) Treg cells in patients with ankylosing spondylitis a putative role for Interleukin-10 in preventing intestinal Th17 response. Arthritis Rheum. 2010;62(12):3625–34.CrossRefPubMedGoogle Scholar
  112. 112.
    Danoy P, Pryce K, Hadler J, Bradbury LA, Farrar C, Pointon J, et al. Association of variants at 1q32 and STAT3 with ankylosing spondylitis suggests genetic overlap with Crohn’s disease. PLoS Genet. 2010;6(12):e1001195.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Chaudhry A, Rudra D, Treuting P, Samstein RM, Liang Y, Kas A, et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science. 2009;326(5955):986–91.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–98.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G, Pieraccini G, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via Interleukin-22. Immunity. 2013;39(2):372–85.CrossRefPubMedGoogle Scholar
  116. 116.
    Qiu J, Guo X, Chen ZM, He L, Sonnenberg GF, Artis D, et al. Group 3 innate lymphoid cells inhibit T-cell-mediated intestinal inflammation through aryl hydrocarbon receptor signaling and regulation of microflora. Immunity. 2013;39(2):386–99.CrossRefPubMedGoogle Scholar
  117. 117.
    Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 2011;331(6015):337–41.CrossRefPubMedGoogle Scholar
  118. 118.
    Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A. 2010;107(27):12204–9.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Rowan FE, Docherty NG, Coffey JC, O’Connell PR. Sulphate-reducing bacteria and hydrogen sulphide in the aetiology of ulcerative colitis. Br J Surg. 2009;96(2):151–8.CrossRefPubMedGoogle Scholar
  120. 120.
    Peng L, He Z, Chen W, Holzman IR, Lin J. Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier. Pediatr Res. 2007;61(1):37–41.CrossRefPubMedGoogle Scholar
  121. 121.
    Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446–50.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40(1):128–39.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Segain JP, Raingeard de la Bletiere D, Bourreille A, Leray V, Gervois N, Rosales C, et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease. Gut. 2000;47(3):397–403.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Huttenhower C, Kostic AD, Xavier RJ. Inflammatory bowel disease as a model for translating the Microbiome. Immunity. 2014;40(6):843–54.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Gaston JS, Cox C, Granfors K. Clinical and experimental evidence for persistent Yersinia infection in reactive arthritis. Arthritis Rheum. 1999;42(10):2239–42.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Gerard HC, Branigan PJ, Schumacher HR Jr, Hudson AP. Synovial chlamydia trachomatis in patients with reactive arthritis/Reiter’s syndrome are viable but show aberrant gene expression. J Rheumatol. 1998;25(4):734–42.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Granfors K, Jalkanen S, Lindberg AA, Maki-Ikola O, von Essen R, Lahesmaa-Rantala R, et al. Salmonella lipopolysaccharide in synovial cells from patients with reactive arthritis. Lancet. 1990;335(8691):685–8.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Granfors K, Jalkanen S, von Essen R, Lahesmaa-Rantala R, Isomaki O, Pekkola-Heino K, et al. Yersinia antigens in synovial-fluid cells from patients with reactive arthritis. N Engl J Med. 1989;320(4):216–21.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    May E, Marker-Hermann E, Wittig BM, Zeitz M, Meyer zum Buschenfelde KH, Duchmann R. Identical T-cell expansions in the colon mucosa and the synovium of a patient with enterogenic spondyloarthropathy. Gastroenterology. 2000;119(6):1745–55.CrossRefPubMedGoogle Scholar
  130. 130.
    Cox CJ, Kempsell KE, Gaston JS. Investigation of infectious agents associated with arthritis by reverse transcription PCR of bacterial rRNA. Arthritis Res Ther. 2003;5(1):R1–8.CrossRefPubMedGoogle Scholar
  131. 131.
    Siala M, Jaulhac B, Gdoura R, Sibilia J, Fourati H, Younes M, et al. Analysis of bacterial DNA in synovial tissue of Tunisian patients with reactive and undifferentiated arthritis by broad-range PCR, cloning and sequencing. Arthritis Res Ther. 2008;10(2):R40.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Gerard HC, Wang Z, Wang GF, El-Gabalawy H, Goldbach-Mansky R, Li Y, et al. Chromosomal DNA from a variety of bacterial species is present in synovial tissue from patients with various forms of arthritis. Arthritis Rheum. 2001;44(7):1689–97.CrossRefPubMedGoogle Scholar
  133. 133.
    Olmez N, Wang GF, Li Y, Zhang H, Schumacher HR. Chlamydial nucleic acids in synovium in osteoarthritis: what are the implications? J Rheumatol. 2001;28(8):1874–80.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Pacheco-Tena C, Alvarado De La Barrera C, Lopez-Vidal Y, Vazquez-Mellado J, Richaud-Patin Y, Amieva RI, et al. Bacterial DNA in synovial fluid cells of patients with juvenile onset spondyloarthropathies. Rheumatology (Oxford). 2001;40(8):920–7.CrossRefGoogle Scholar
  135. 135.
    van der Heijden IM, Wilbrink B, Tchetverikov I, Schrijver IA, Schouls LM, Hazenberg MP, et al. Presence of bacterial DNA and bacterial peptidoglycans in joints of patients with rheumatoid arthritis and other arthritides. Arthritis Rheum. 2000;43(3):593–8.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Sieper J, Fendler C, Laitko S, Sorensen H, Gripenberg-Lerche C, Hiepe F, et al. No benefit of long-term ciprofloxacin treatment in patients with reactive arthritis and undifferentiated oligoarthritis: a three-month, multicenter, double-blind, randomized, placebo-controlled study. Arthritis Rheum. 1999;42(7):1386–96.CrossRefPubMedGoogle Scholar
  137. 137.
    Smieja M, MacPherson DW, Kean W, Schmuck ML, Goldsmith CH, Buchanan W, et al. Randomised, blinded, placebo controlled trial of doxycycline for chronic seronegative arthritis. Ann Rheum Dis. 2001;60(12):1088–94.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Salmi M, Andrew DP, Butcher EC, Jalkanen S. Dual binding capacity of mucosal immunoblasts to mucosal and synovial endothelium in humans: dissection of the molecular mechanisms. J Exp Med. 1995;181(1):137–49.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Salmi M, Jalkanen S. Human leukocyte subpopulations from inflamed gut bind to joint vasculature using distinct sets of adhesion molecules. J Immunol. 2001;166(7):4650–7.CrossRefPubMedGoogle Scholar
  140. 140.
    Morton AM, Sefik E, Upadhyay R, Weissleder R, Benoist C, Mathis D. Endoscopic photoconversion reveals unexpectedly broad leukocyte trafficking to and from the gut. Proc Natl Acad Sci U S A. 2014;111(18):6696–701.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, et al. The long-term stability of the human gut microbiota. Science. 2013;341(6141):1237439.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 2011;5(2):220–30.CrossRefPubMedGoogle Scholar
  143. 143.
    Jernberg C, Lofmark S, Edlund C, Jansson JK. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 2007;1(1):56–66.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Khoruts A, Dicksved J, Jansson JK, Sadowsky MJ. Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J Clin Gastroenterol. 2010;44(5):354–60.PubMedPubMedCentralGoogle Scholar
  145. 145.
    Wang ZK, Yang YS, Chen Y, Yuan J, Sun G, Peng LH. Intestinal microbiota pathogenesis and fecal microbiota transplantation for inflammatory bowel disease. World J Gastroenterol. 2014;20(40):14805–20.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Dieleman LA, Goerres MS, Arends A, Sprengers D, Torrice C, Hoentjen F, et al. Lactobacillus GG prevents recurrence of colitis in HLA-B27 transgenic rats after antibiotic treatment. Gut. 2003;52(3):370–6.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Schultz M, Veltkamp C, Dieleman LA, Grenther WB, Wyrick PB, Tonkonogy SL, et al. Lactobacillus plantarum 299V in the treatment and prevention of spontaneous colitis in interleukin-10-deficient mice. Inflamm Bowel Dis. 2002;8(2):71–80.CrossRefPubMedGoogle Scholar
  148. 148.
    Noto Llana M, Sarnacki SH, Aya Castaneda Mdel R, Bernal MI, Giacomodonato MN, Cerquetti MC. Consumption of lactobacillus casei fermented milk prevents Salmonella reactive arthritis by modulating IL-23/IL-17 expression. PLoS One. 2013;8(12):e82588.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Hoentjen F, Welling GW, Harmsen HJ, Zhang X, Snart J, Tannock GW, et al. Reduction of colitis by prebiotics in HLA-B27 transgenic rats is associated with microflora changes and immunomodulation. Inflamm Bowel Dis. 2005;11(11):977–85.CrossRefPubMedGoogle Scholar
  150. 150.
    Jenks K, Stebbings S, Burton J, Schultz M, Herbison P, Highton J. Probiotic therapy for the treatment of spondyloarthritis: a randomized controlled trial. J Rheumatol. 2010;37(10):2118–25.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Shukla A, Gaur P, Aggarwal A. Double blind placebo controlled randomized trial of probiotics in Enthesitis-related-arthritis category of JIA: effect on clinical and immunological parameters. Arthritis Rheum. 2015;67:S10.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Heleen Cypers
    • 1
  • S. Louis BridgesJr.
    • 2
  • Dirk Elewaut
    • 1
    • 3
  1. 1.Department of RheumatologyGhent University HospitalGhentBelgium
  2. 2.Division of Clinical Immunology and Rheumatology, Comprehensive Arthritis, Musculoskeletal, Bone and Autoimmunity CenterUniversity of Alabama at BirminghamBirminghamUSA
  3. 3.Unit for Molecular Immunology and Inflammation, VIB Inflammation Research CenterGhent UniversityGhentBelgium

Personalised recommendations