Advertisement

DNA Viruses in Autoimmune Rheumatic Diseases

  • Lazaros I. Sakkas
  • Dimitrios P. Bogdanos
Chapter

Abstract

Infections with DNA viruses are found in patients with autoimmune rheumatic diseases, but whether or not there is a causal link between the infectious agent and the rheumatic disease is not clear. For a few rheumatic diseases, such as polyarteritis nodosa and cryoglobulinemic vasculitis, the causal link between the disease and the virus, in these cases hepatitis B virus and hepatitis C virus, respectively, is obvious. In other diseases, there is more speculation rather than solid evidence that the diseases are indeed induced by a DNA virus. We must acknowledge, however, the tremendous work which is done in this field at the experimental level, either through research on experimental models of rheumatic diseases or through translational research performed in biological material obtained from patients. A significant pitfall for translational research is the inability to perform proper assessment in patients at the very early stages of the disease or even long before the disease appears as this would assist efforts to delineate the hierarchy of events leading to the induction of the disease as a consequence of viral infection. Irrespective of the pathogenic mechanisms at play between the virus and the host, an important issue is that of reactivation of the viral infection in immunosuppressed patients, especially those under biologic treatment.

Keywords

Autoimmunity Cytomegalovirus Epstein-Barr virus Herpesvirus Rheumatoid arthritis Systemic lupus erythematosus 

Abbreviations

AAV

ANCA-associated vasculitis

ACPA

Anti-citrullinated protein antibody

AIRD

Autoimmune rheumatic diseases

ANCA

Anti-neutrophil cytoplasmic antibody

ARD

Autoimmune rheumatic disease

CENP-B

Centromere protein B

CMV

Cytomegalovirus

DAS

Disease activity score

DRESS

Drug reaction with eosinophilia and systemic syndrome

dsDNA

Double-stranded DNA

EBV

Epstein-Barr virus

GC

Germinal center

GPA

Granulomatosis with polyangiitis

HBsAg

Hepatitis B surface antigen

HBV

Hepatitis B virus

HHV

Human herpesvirus

HPV

Human papilloma virus

HSV

Herpes simplex virus

IFN

Interferon

LN

Lupus nephritis

MPO

Myeloperoxidase

PBMC

Peripheral blood mononuclear cells

PR3

Proteinase-3

RA

Rheumatoid arthritis

SLE

Systemic lupus erythematosus

SS

Sjogren’s syndrome

SSc

Systemic sclerosis

TGF

Transforming growth factor

TNF

Tumor necrosis factor

References

  1. 1.
    Brito-Zeron P, Bosch X, Perez-de-Lis M, Perez-Alvarez R, Fraile G, Gheitasi H, et al. Infection is the major trigger of hemophagocytic syndrome in adult patients treated with biological therapies. Semin Arthritis Rheum. 2016;45(4):391–9.CrossRefPubMedGoogle Scholar
  2. 2.
    Descamps V, Ranger-Rogez S. DRESS syndrome. Joint Bone Spine. 2014;81(1):15–21.CrossRefPubMedGoogle Scholar
  3. 3.
    Thellman NM, Triezenberg SJ. Herpes simplex virus establishment, maintenance, and reactivation: in vitro modeling of latency. Pathogens. 2017;6(3):E28.CrossRefPubMedGoogle Scholar
  4. 4.
    Perrot S, Calvez V, Escande JP, Dupin N, Marcelin AG. Prevalences of herpesviruses DNA sequences in salivary gland biopsies from primary and secondary Sjogren’s syndrome using degenerated consensus PCR primers. J Clin Virol. 2003;28(2):165–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Douvas A, Sobelman S. Multiple overlapping homologies between two rheumatoid antigens and immunosuppressive viruses. Proc Natl Acad Sci U S A. 1991;88(14):6328–32.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Witt MN, Braun GS, Ihrler S, Schmid H. Occurrence of HSV-1-induced pneumonitis in patients under standard immunosuppressive therapy for rheumatic, vasculitic, and connective tissue disease. BMC Pulm Med. 2009;9:22.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhang L, Liu JJ, Li MT. Herpes simplex virus type 1 encephalitis and unusual retinitis in a patient with systemic lupus erythematosus. Lupus. 2013;22(13):1403–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Curtis JR, Xie F, Yun H, Bernatsky S, Winthrop KL. Real-world comparative risks of herpes virus infections in tofacitinib and biologic-treated patients with rheumatoid arthritis. Ann Rheum Dis. 2016;75(10):1843–7.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kuhn-Hallek I, Sage DR, Stein L, Groelle H, Fingeroth JD. Expression of recombination activating genes (RAG-1 and RAG-2) in Epstein–Barr virus-bearing B cells. Blood. 1995;85(5):1289–99.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Wagner HJ, Scott RS, Buchwald D, Sixbey JW. Peripheral blood lymphocytes express recombination-activating genes 1 and 2 during Epstein–Barr virus-induced infectious mononucleosis. J Infect Dis. 2004;190(5):979–84.CrossRefPubMedGoogle Scholar
  11. 11.
    Campion EM, Hakimjavadi R, Loughran ST, Phelan S, Smith SM, D’Souza BN, et al. Repression of the proapoptotic cellular BIK/NBK gene by Epstein–Barr virus antagonizes transforming growth factor beta1-induced B-cell apoptosis. J Virol. 2014;88(9):5001–13.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Liang CL, Chen JL, Hsu YP, Ou JT, Chang YS. Epstein–Barr virus BZLF1 gene is activated by transforming growth factor-beta through cooperativity of Smads and c-Jun/c-Fos proteins. J Biol Chem. 2002;277(26):23345–57.CrossRefPubMedGoogle Scholar
  13. 13.
    Iempridee T, Das S, Xu I, Mertz JE. Transforming growth factor beta-induced reactivation of Epstein–Barr virus involves multiple smad-binding elements cooperatively activating expression of the latent-lytic switch BZLF1 gene. J Virol. 2011;85(15):7836–48.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Capone G, Calabro M, Lucchese G, Fasano C, Girardi B, Polimeno L, et al. Peptide matching between Epstein–Barr virus and human proteins. Pathog Dis. 2013;69(3):205–12.CrossRefPubMedGoogle Scholar
  15. 15.
    Nielen MM, van Schaardenburg D, Reesink HW, van de Stadt RJ, van der Horst-Bruinsma IE, de Koning MH, et al. Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum. 2004;50(2):380–6.CrossRefPubMedGoogle Scholar
  16. 16.
    Barouta G, Katsiari CG, Alexiou I, Liaskos C, Varna A, Bogdanos DP, et al. Anti-MCV antibodies predict radiographic progression in Greek patients with very early (<3 months duration) rheumatoid arthritis. Clin Rheumatol. 2017;36(4):885–94.CrossRefPubMedGoogle Scholar
  17. 17.
    Sokolove J, Bromberg R, Deane KD, Lahey LJ, Derber LA, Chandra PE, et al. Autoantibody epitope spreading in the pre-clinical phase predicts progression to rheumatoid arthritis. PLoS One. 2012;7(5):e35296.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Conigliaro P, Chimenti MS, Triggianese P, Sunzini F, Novelli L, Perricone C, et al. Autoantibodies in inflammatory arthritis. Autoimmun Rev. 2016;15(7):673–83.CrossRefPubMedGoogle Scholar
  19. 19.
    Alexiou I, Germenis A, Koutroumpas A, Kontogianni A, Theodoridou K, Sakkas LI. Anti-cyclic citrullinated peptide-2 (CCP2) autoantibodies and extra-articular manifestations in Greek patients with rheumatoid arthritis. Clin Rheumatol. 2008;27(4):511–3.CrossRefPubMedGoogle Scholar
  20. 20.
    Balandraud N, Meynard JB, Auger I, Sovran H, Mugnier B, Reviron D, et al. Epstein–Barr virus load in the peripheral blood of patients with rheumatoid arthritis: accurate quantification using real-time polymerase chain reaction. Arthritis Rheum. 2003;48(5):1223–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Scotet E, David-Ameline J, Peyrat MA, Moreau-Aubry A, Pinczon D, Lim A, et al. T cell response to Epstein–Barr virus transactivators in chronic rheumatoid arthritis. J Exp Med. 1996;184(5):1791–800.CrossRefPubMedGoogle Scholar
  22. 22.
    Ball RJ, Avenell A, Aucott L, Hanlon P, Vickers MA. Systematic review and meta-analysis of the sero-epidemiological association between Epstein–Barr virus and rheumatoid arthritis. Arthritis Res Ther. 2015;17:274.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Pratesi F, Tommasi C, Anzilotti C, Chimenti D, Migliorini P. Deiminated Epstein–Barr virus nuclear antigen 1 is a target of anti-citrullinated protein antibodies in rheumatoid arthritis. Arthritis Rheum. 2006;54(3):733–41.CrossRefPubMedGoogle Scholar
  24. 24.
    Pratesi F, Tommasi C, Anzilotti C, Puxeddu I, Sardano E, Di Colo G, et al. Antibodies to a new viral citrullinated peptide, VCP2: fine specificity and correlation with anti-cyclic citrullinated peptide (CCP) and anti-VCP1 antibodies. Clin Exp Immunol. 2011;164(3):337–45.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Cornillet M, Sebbag M, Verrouil E, Magyar A, Babos F, Ruyssen-Witrand A, et al. The fibrin-derived citrullinated peptide beta60-74Cit(6)(0),(7)(2),(7)(4) bears the major ACPA epitope recognised by the rheumatoid arthritis-specific anticitrullinated fibrinogen autoantibodies and anti-CCP2 antibodies. Ann Rheum Dis. 2014;73(6):1246–52.CrossRefPubMedGoogle Scholar
  26. 26.
    Cornillet M, Verrouil E, Cantagrel A, Serre G, Nogueira L. In ACPA-positive RA patients, antibodies to EBNA35-58Cit, a citrullinated peptide from the Epstein–Barr nuclear antigen-1, strongly cross-react with the peptide beta60-74Cit which bears the immunodominant epitope of citrullinated fibrin. Immunol Res. 2015;61(1–2):117–25.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Croia C, Serafini B, Bombardieri M, Kelly S, Humby F, Severa M, et al. Epstein–Barr virus persistence and infection of autoreactive plasma cells in synovial lymphoid structures in rheumatoid arthritis. Ann Rheum Dis. 2013;72(9):1559–68.CrossRefPubMedGoogle Scholar
  28. 28.
    Sakkas LI, Bogdanos DP, Katsiari C, Platsoucas CD. Anti-citrullinated peptides as autoantigens in rheumatoid arthritis-relevance to treatment. Autoimmun Rev. 2014;13(11):1114–20.CrossRefPubMedGoogle Scholar
  29. 29.
    Roudier J, Petersen J, Rhodes GH, Luka J, Carson DA. Susceptibility to rheumatoid arthritis maps to a T-cell epitope shared by the HLA-Dw4 DR beta-1 chain and the Epstein–Barr virus glycoprotein gp110. Proc Natl Acad Sci U S A. 1989;86(13):5104–8.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Balandraud N, Roudier J, Roudier C. Epstein–Barr virus and rheumatoid arthritis. Autoimmun Rev. 2004;3(5):362–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Magnusson M, Brisslert M, Zendjanchi K, Lindh M, Bokarewa MI. Epstein–Barr virus in bone marrow of rheumatoid arthritis patients predicts response to rituximab treatment. Rheumatology (Oxford). 2010;49(10):1911–9.CrossRefGoogle Scholar
  32. 32.
    Fox RI, Pearson G, Vaughan JH. Detection of Epstein–Barr virus-associated antigens and DNA in salivary gland biopsies from patients with Sjogren’s syndrome. J Immunol. 1986;137(10):3162–8.PubMedGoogle Scholar
  33. 33.
    Kivity S, Arango MT, Ehrenfeld M, Tehori O, Shoenfeld Y, Anaya JM, et al. Infection and autoimmunity in Sjogren's syndrome: a clinical study and comprehensive review. J Autoimmun. 2014;51:17–22.CrossRefPubMedGoogle Scholar
  34. 34.
    Croia C, Astorri E, Murray-Brown W, Willis A, Brokstad KA, Sutcliffe N, et al. Implication of Epstein–Barr virus infection in disease-specific autoreactive B cell activation in ectopic lymphoid structures of Sjogren’s syndrome. Arthritis Rheumatol. 2014;66(9):2545–57.CrossRefPubMedGoogle Scholar
  35. 35.
    Gallo A, Jang SI, Ong HL, Perez P, Tandon M, Ambudkar I, et al. Targeting the Ca(2+) sensor STIM1 by exosomal transfer of Ebv-miR-BART13-3p is associated with Sjogren’s syndrome. EBioMedicine. 2016;10:216–26.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Toussirot E, Roudier J. Epstein–Barr virus in autoimmune diseases. Best Pract Res Clin Rheumatol. 2008;22(5):883–96.CrossRefPubMedGoogle Scholar
  37. 37.
    Draborg A, Izarzugaza JM, Houen G. How compelling are the data for Epstein–Barr virus being a trigger for systemic lupus and other autoimmune diseases? Curr Opin Rheumatol. 2016;28(4):398–404.CrossRefPubMedGoogle Scholar
  38. 38.
    Barzilai O, Sherer Y, Ram M, Izhaky D, Anaya JM, Shoenfeld Y. Epstein–Barr virus and cytomegalovirus in autoimmune diseases: are they truly notorious? A preliminary report. Ann N Y Acad Sci. 2007;1108:567–77.CrossRefPubMedGoogle Scholar
  39. 39.
    Fattal I, Shental N, Molad Y, Gabrielli A, Pokroy-Shapira E, Oren S, et al. Epstein–Barr virus antibodies mark systemic lupus erythematosus and scleroderma patients negative for anti-DNA. Immunology. 2014;141(2):276–85.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rasmussen NS, Draborg AH, Nielsen CT, Jacobsen S, Houen G. Antibodies to early EBV, CMV, and HHV6 antigens in systemic lupus erythematosus patients. Scand J Rheumatol. 2015;44(2):143–9.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Yu XX, Yao CW, Tao JL, Yang C, Luo MN, Li SM, et al. The expression of renal Epstein–Barr virus markers in patients with lupus nephritis. Exp Ther Med. 2014;7(5):1135–40.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Ding Y, He X, Liao W, Yi Z, Yang H, Xiang W. The expression of EBV-encoded LMP1 in young patients with lupus nephritis. Int J Clin Exp Med. 2015;8(4):6073–8.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Minamitani T, Yasui T, Ma Y, Zhou H, Okuzaki D, Tsai CY, et al. Evasion of affinity-based selection in germinal centers by Epstein–Barr virus LMP2A. Proc Natl Acad Sci U S A. 2015;112(37):11612–7.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wang H, Nicholas MW, Conway KL, Sen P, Diz R, Tisch RM, et al. EBV latent membrane protein 2A induces autoreactive B cell activation and TLR hypersensitivity. J Immunol. 2006;177(5):2793–802.CrossRefPubMedGoogle Scholar
  45. 45.
    Larson JD, Thurman JM, Rubtsov AV, Claypool D, Marrack P, van Dyk LF, et al. Murine gammaherpesvirus 68 infection protects lupus-prone mice from the development of autoimmunity. Proc Natl Acad Sci U S A. 2012;109(18):E1092–100.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Riemekasten G, Marell J, Trebeljahr G, Klein R, Hausdorf G, Haupl T, et al. A novel epitope on the C-terminus of SmD1 is recognized by the majority of sera from patients with systemic lupus erythematosus. J Clin Investig. 1998;102(4):754–63.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Poole BD, Gross T, Maier S, Harley JB, James JA. Lupus-like autoantibody development in rabbits and mice after immunization with EBNA-1 fragments. J Autoimmun. 2008;31(4):362–71.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Sundar K, Jacques S, Gottlieb P, Villars R, Benito ME, Taylor DK, et al. Expression of the Epstein–Barr virus nuclear antigen-1 (EBNA-1) in the mouse can elicit the production of anti-dsDNA and anti-Sm antibodies. J Autoimmun. 2004;23(2):127–40.CrossRefPubMedGoogle Scholar
  49. 49.
    Yadav P, Carr MT, Yu R, Mumbey-Wafula A, Spatz LA. Mapping an epitope in EBNA-1 that is recognized by monoclonal antibodies to EBNA-1 that cross-react with dsDNA. Immun Inflamm Dis. 2016;4(3):362–75.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Draborg AH, Sandhu N, Larsen N, Lisander Larsen J, Jacobsen S, Houen G. Impaired cytokine responses to Epstein–Barr virus antigens in systemic lupus erythematosus patients. J Immunol Res. 2016;2016:6473204.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Sakkas LI, Chikanza IC, Platsoucas CD. Mechanisms of disease: the role of immune cells in the pathogenesis of systemic sclerosis. Nat Clin Pract Rheumatol. 2006;2(12):679–85.CrossRefPubMedGoogle Scholar
  52. 52.
    Liaskos C, Marou E, Simopoulou T, Barmakoudi M, Efthymiou G, Scheper T, et al. Disease-related autoantibody profile in patients with systemic sclerosis. Autoimmunity. 2017;50:1–8.CrossRefGoogle Scholar
  53. 53.
    Sakkas LI, Bogdanos DP. Systemic sclerosis: new evidence re-enforces the role of B cells. Autoimmun Rev. 2016;15(2):155–61.CrossRefPubMedGoogle Scholar
  54. 54.
    Fang F, Shangguan AJ, Kelly K, Wei J, Gruner K, Ye B, et al. Early growth response 3 (Egr-3) is induced by transforming growth factor-beta and regulates fibrogenic responses. Am J Pathol. 2013;183(4):1197–208.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Sakkas LI, Xu B, Artlett CM, Lu S, Jimenez SA, Platsoucas CD. Oligoclonal T cell expansion in the skin of patients with systemic sclerosis. J Immunol. 2002;168(7):3649–59.CrossRefPubMedGoogle Scholar
  56. 56.
    York MR, Nagai T, Mangini AJ, Lemaire R, van Seventer JM, Lafyatis R. A macrophage marker, Siglec-1, is increased on circulating monocytes in patients with systemic sclerosis and induced by type I interferons and toll-like receptor agonists. Arthritis Rheum. 2007;56(3):1010–20.CrossRefPubMedGoogle Scholar
  57. 57.
    Kim D, Peck A, Santer D, Patole P, Schwartz SM, Molitor JA, et al. Induction of interferon-alpha by scleroderma sera containing autoantibodies to topoisomerase I: association of higher interferon-alpha activity with lung fibrosis. Arthritis Rheum. 2008;58(7):2163–73.CrossRefPubMedGoogle Scholar
  58. 58.
    Eloranta ML, Franck-Larsson K, Lovgren T, Kalamajski S, Ronnblom A, Rubin K, et al. Type I interferon system activation and association with disease manifestations in systemic sclerosis. Ann Rheum Dis. 2010;69(7):1396–402.CrossRefPubMedGoogle Scholar
  59. 59.
    Farina A, Cirone M, York M, Lenna S, Padilla C, McLaughlin S, et al. Epstein–Barr virus infection induces aberrant TLR activation pathway and fibroblast-myofibroblast conversion in scleroderma. J Investig Dermatol. 2014;134(4):954–64.CrossRefPubMedGoogle Scholar
  60. 60.
    Hu PQ, Fertig N, Medsger TA Jr, Wright TM. Molecular recognition patterns of serum anti-DNA topoisomerase I antibody in systemic sclerosis. J Immunol. 2004;173(4):2834–41.CrossRefPubMedGoogle Scholar
  61. 61.
    Cayrol C, Flemington EK. Identification of cellular target genes of the Epstein–Barr virus transactivator Zta: activation of transforming growth factor beta igh3 (TGF-beta igh3) and TGF-beta 1. J Virol. 1995;69(7):4206–12.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Naiki Y, Komatsu T, Koide N, Dagvadorj J, Yoshida T, Arditi M, et al. TGF-beta1 inhibits the production of IFN in response to CpG DNA via ubiquitination of TNF receptor-associated factor (TRAF) 6. Innate Immun. 2015;21(7):770–7.CrossRefPubMedGoogle Scholar
  63. 63.
    Tsai SC, Lin SJ, Chen PW, Luo WY, Yeh TH, Wang HW, et al. EBV Zta protein induces the expression of interleukin-13, promoting the proliferation of EBV-infected B cells and lymphoblastoid cell lines. Blood. 2009;114(1):109–18.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Farina A, Peruzzi G, Lacconi V, Lenna S, Quarta S, Rosato E, et al. Epstein–Barr virus lytic infection promotes activation of toll-like receptor 8 innate immune response in systemic sclerosis monocytes. Arthritis Res Ther. 2017;19(1):39.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Mahler M, Mierau R, Schlumberger W, Bluthner M. A population of autoantibodies against a centromere-associated protein A major epitope motif cross-reacts with related cryptic epitopes on other nuclear autoantigens and on the Epstein–Barr nuclear antigen 1. J Mol Med (Berl). 2001;79(12):722–31.CrossRefGoogle Scholar
  66. 66.
    Kallenberg CG. Advances in pathogenesis and treatment of ANCA-associated vasculitis. Discov Med. 2014;18(99):195–201.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Voswinkel J, Mueller A, Kraemer JA, Lamprecht P, Herlyn K, Holl-Ulrich K, et al. B lymphocyte maturation in Wegener's granulomatosis: a comparative analysis of VH genes from endonasal lesions. Ann Rheum Dis. 2006;65(7):859–64.CrossRefPubMedGoogle Scholar
  68. 68.
    Mayet WJ, Hermann E, Kiefer B, Lehmann H, Manns M, Meyer Zum Buschenfelde KH. In vitro production of anti-neutrophilocyte-cytoplasm-antibodies (ANCA) by Epstein–Barr virus-transformed B-cell lines in Wegener’s granulomatosis. Autoimmunity. 1991;11(1):13–9.CrossRefPubMedGoogle Scholar
  69. 69.
    Hermann J, Demel U, Stunzner D, Daghofer E, Tilz G, Graninger W. Clinical interpretation of antineutrophil cytoplasmic antibodies: parvovirus B19 infection as a pitfall. Ann Rheum Dis. 2005;64(4):641–3.CrossRefPubMedGoogle Scholar
  70. 70.
    Berman N, Belmont HM. Disseminated cytomegalovirus infection complicating active treatment of systemic lupus erythematosus: an emerging problem. Lupus. 2017;26(4):431–4.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Einsele H, Steidle M, Muller CA, Fritz P, Zacher J, Schmidt H, et al. Demonstration of cytomegalovirus (CMV) DNA and anti-CMV response in the synovial membrane and serum of patients with rheumatoid arthritis. J Rheumatol. 1992;19(5):677–81.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Pierer M, Rothe K, Quandt D, Schulz A, Rossol M, Scholz R, et al. Association of anticytomegalovirus seropositivity with more severe joint destruction and more frequent joint surgery in rheumatoid arthritis. Arthritis Rheum. 2012;64(6):1740–9.CrossRefPubMedGoogle Scholar
  73. 73.
    Hooper M, Kallas EG, Coffin D, Campbell D, Evans TG, Looney RJ. Cytomegalovirus seropositivity is associated with the expansion of CD4+CD28− and CD8+CD28− T cells in rheumatoid arthritis. J Rheumatol. 1999;26(7):1452–7.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Broadley I, Pera A, Morrow G, Davies KA, Kern F. Expansions of cytotoxic CD4+CD28− T cells drive excess cardiovascular mortality in rheumatoid arthritis and other chronic inflammatory conditions and are triggered by CMV infection. Front Immunol. 2017;8:195.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Davis JM 3rd, Knutson KL, Skinner JA, Strausbauch MA, Crowson CS, Therneau TM, et al. A profile of immune response to herpesvirus is associated with radiographic joint damage in rheumatoid arthritis. Arthritis Res Ther. 2012;14(1):R24.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Davis JM, Knutson KL, Strausbauch MA, Green AB, Crowson CS, Therneau TM, et al. Immune response profiling in early rheumatoid arthritis: discovery of a novel interaction of treatment response with viral immunity. Arthritis Res Ther. 2013;15(6):R199.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Ohyama Y, Carroll VA, Deshmukh U, Gaskin F, Brown MG, Fu SM. Severe focal sialadenitis and dacryoadenitis in NZM2328 mice induced by MCMV: a novel model for human Sjogren’s syndrome. J Immunol. 2006;177(10):7391–7.CrossRefPubMedGoogle Scholar
  78. 78.
    Rozenblyum EV, Allen UD, Silverman ED, Levy DM. Cytomegalovirus infection in childhood-onset systemic lupus erythematosus. Int J Clin Rheumtol. 2013;8(1):137–46.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Kahaleh MB, LeRoy EC. Autoimmunity and vascular involvement in systemic sclerosis (SSc). Autoimmunity. 1999;31(3):195–214.CrossRefPubMedGoogle Scholar
  80. 80.
    Hamamdzic D, Harley RA, Hazen-Martin D, LeRoy EC. MCMV induces neointima in IFN-gammaR−/− mice: intimal cell apoptosis and persistent proliferation of myofibroblasts. BMC Musculoskelet Disord. 2001;2:3.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Marou E, Liaskos C, Efthymiou G, Dardiotis E, Daponte A, Scheper T, et al. Increased immunoreactivity against human cytomegalovirus UL83 in systemic sclerosis. Clin Exp Rheumatol. 2017;106(4):31–4.Google Scholar
  82. 82.
    Marou E, Liaskos C, Simopoulou T, Efthymiou G, Dardiotis E, Katsiari C, et al. Human cytomegalovirus (HCMV) UL44 and UL57 specific antibody responses in anti-HCMV-positive patients with systemic sclerosis. Clin Rheumatol. 2017;36(4):863–9.CrossRefPubMedGoogle Scholar
  83. 83.
    Muryoi T, Kasturi KN, Kafina MJ, Cram DS, Harrison LC, Sasaki T, et al. Antitopoisomerase I monoclonal autoantibodies from scleroderma patients and tight skin mouse interact with similar epitopes. J Exp Med. 1992;175(4):1103–9.CrossRefPubMedGoogle Scholar
  84. 84.
    Lunardi C, Bason C, Navone R, Millo E, Damonte G, Corrocher R, et al. Systemic sclerosis immunoglobulin G autoantibodies bind the human cytomegalovirus late protein UL94 and induce apoptosis in human endothelial cells. Nat Med. 2000;6(10):1183–6.CrossRefPubMedGoogle Scholar
  85. 85.
    Traggiai E, Lunardi C, Bason C, Dolcino M, Tinazzi E, Corrocher R, et al. Generation of anti-NAG-2 mAb from patients’ memory B cells: implications for a novel therapeutic strategy in systemic sclerosis. Int Immunol. 2010;22(5):367–74.CrossRefPubMedGoogle Scholar
  86. 86.
    Morgan MD, Pachnio A, Begum J, Roberts D, Rasmussen N, Neil DA, et al. CD4+CD28− T cell expansion in granulomatosis with polyangiitis (Wegener’s) is driven by latent cytomegalovirus infection and is associated with an increased risk of infection and mortality. Arthritis Rheum. 2011;63(7):2127–37.CrossRefPubMedGoogle Scholar
  87. 87.
    Eriksson P, Sandell C, Backteman K, Ernerudh J. Expansions of CD4+CD28− and CD8+CD28− T cells in granulomatosis with polyangiitis and microscopic polyangiitis are associated with cytomegalovirus infection but not with disease activity. J Rheumatol. 2012;39(9):1840–3.CrossRefPubMedGoogle Scholar
  88. 88.
    Kerstein A, Schuler S, Cabral-Marques O, Fazio J, Hasler R, Muller A, et al. Environmental factor and inflammation-driven alteration of the total peripheral T-cell compartment in granulomatosis with polyangiitis. J Autoimmun. 2017;78:79–91.CrossRefPubMedGoogle Scholar
  89. 89.
    Chanouzas D, Dyall L, Dale J, Moss P, Morgan M, Harper L. CD4+CD28− T-cell expansions in ANCA-associated vasculitis and association with arterial stiffness: baseline data from a randomised controlled trial. Lancet. 2015;385(Suppl 1):S30.CrossRefPubMedGoogle Scholar
  90. 90.
    Broccolo F, Drago F, Cassina G, Fava A, Fusetti L, Matteoli B, et al. Selective reactivation of human herpesvirus 6 in patients with autoimmune connective tissue diseases. J Med Virol. 2013;85(11):1925–34.CrossRefPubMedGoogle Scholar
  91. 91.
    Tohyama M, Hashimoto K, Yasukawa M, Kimura H, Horikawa T, Nakajima K, et al. Association of human herpesvirus 6 reactivation with the flaring and severity of drug-induced hypersensitivity syndrome. Br J Dermatol. 2007;157(5):934–40.CrossRefPubMedGoogle Scholar
  92. 92.
    Balci DD, Peker E, Duran N, Dogramaci CA. Sulfasalazine-induced hypersensitivity syndrome in a 15-year-old boy associated with human herpesvirus-6 reactivation. Cutan Ocul Toxicol. 2009;28(1):45–7.CrossRefPubMedGoogle Scholar
  93. 93.
    von Kietzell K, Pozzuto T, Heilbronn R, Grossl T, Fechner H, Weger S. Antibody-mediated enhancement of parvovirus B19 uptake into endothelial cells mediated by a receptor for complement factor C1q. J Virol. 2014;88(14):8102–15.CrossRefGoogle Scholar
  94. 94.
    Woolf AD, Campion GV, Chishick A, Wise S, Cohen BJ, Klouda PT, et al. Clinical manifestations of human parvovirus B19 in adults. Arch Intern Med. 1989;149(5):1153–6.CrossRefPubMedGoogle Scholar
  95. 95.
    Seve P, Ferry T, Koenig M, Cathebras P, Rousset H, Broussolle C. Lupus-like presentation of parvovirus B19 infection. Semin Arthritis Rheum. 2005;34(4):642–8.CrossRefPubMedGoogle Scholar
  96. 96.
    Watanabe Y, Inoue Y, Takatani T, Arai H, Yasuda T. Self-limited lupus-like presentation of human parvovirus B19 infection in a 1-year-old girl. Pediatr Int. 2009;51(3):411–2.CrossRefPubMedGoogle Scholar
  97. 97.
    Narvaez Garcia FJ, Domingo-Domenech E, Castro-Bohorquez FJ, Biosca M, Garcia-Quintana A, Perez-Vega C, et al. Lupus-like presentation of parvovirus B19 infection. Am J Med. 2001;111(7):573–5.CrossRefPubMedGoogle Scholar
  98. 98.
    Lunardi C, Tinazzi E, Bason C, Dolcino M, Corrocher R, Puccetti A. Human parvovirus B19 infection and autoimmunity. Autoimmun Rev. 2008;8(2):116–20.CrossRefPubMedGoogle Scholar
  99. 99.
    Chou TN, Hsu TC, Chen RM, Lin LI, Tsay GJ. Parvovirus B19 infection associated with the production of anti-neutrophil cytoplasmic antibody (ANCA) and anticardiolipin antibody (aCL). Lupus. 2000;9(7):551–4.CrossRefPubMedGoogle Scholar
  100. 100.
    Poole BD, Kivovich V, Gilbert L, Naides SJ. Parvovirus B19 nonstructural protein-induced damage of cellular DNA and resultant apoptosis. Int J Med Sci. 2011;8(2):88–96.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Thammasri K, Rauhamaki S, Wang L, Filippou A, Kivovich V, Marjomaki V, et al. Human parvovirus B19 induced apoptotic bodies contain altered self-antigens that are phagocytosed by antigen presenting cells. PLoS One. 2013;8(6):e67179.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Naciute M, Mieliauskaite D, Rugiene R, Maciunaite G, Mauricas M, Murovska M, et al. Parvovirus B19 infection modulates the levels of cytokines in the plasma of rheumatoid arthritis patients. Cytokine. 2017;96:41–8.CrossRefPubMedGoogle Scholar
  103. 103.
    Hsu TC, Tsay GJ. Human parvovirus B19 infection in patients with systemic lupus erythematosus. Rheumatology (Oxford). 2001;40(2):152–7.CrossRefGoogle Scholar
  104. 104.
    De Stefano R, Frati E, De Quattro D, Menza L, Manganelli S. Low doses of etanercept can be effective to maintain remission in ankylosing spondylitis patients. Clin Rheumatol. 2014;33(5):707–11.PubMedPubMedCentralGoogle Scholar
  105. 105.
    Sugimoto T, Tsuda A, Uzu T, Kashiwagi A. Emerging lupus-like manifestations in acute parvovirus B19 infection. Clin Rheumatol. 2008;27(1):119–20.CrossRefPubMedGoogle Scholar
  106. 106.
    Chen DY, Chen YM, Lan JL, Tzang BS, Lin CC, Hsu TC. Significant association of past parvovirus B19 infection with cytopenia in both adult-onset Still’s disease and systemic lupus erythematosus patients. Clin Chim Acta. 2012;413(9–10):855–60.CrossRefPubMedGoogle Scholar
  107. 107.
    Cugler T, Carvalho LM, Facincani I, Yamamoto AY, Silva GE, Costa RS, et al. Severe glomerulonephritis and encephalopathy associated with parvovirus B19 infection mimicking systemic lupus erythematosus. Scand J Rheumatol. 2012;41(1):79–81.CrossRefPubMedGoogle Scholar
  108. 108.
    Cooray M, Manolakos JJ, Wright DS, Haider S, Patel A. Parvovirus infection mimicking systemic lupus erythematosus. CMAJ. 2013;185(15):1342–4.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Georges E, Rihova Z, Cmejla R, Decleire PY, Langen C. Parvovirus B19 induced lupus-like syndrome with nephritis. Acta Clin Belg. 2016;71(6):423–5.CrossRefPubMedGoogle Scholar
  110. 110.
    Chen DY, Chen YM, Tzang BS, Lan JL, Hsu TC. Th17-related cytokines in systemic lupus erythematosus patients with dilated cardiomyopathies: a possible linkage to parvovirus B19 infection. PLoS One. 2014;9(12):e113889.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Hod T, Zandman-Goddard G, Langevitz P, Rudnic H, Grossman Z, Rotman-Pikielny P, et al. Does parvovirus infection have a role in systemic lupus erythematosus? Immunol Res. 2017;65(2):447–53.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Ohtsuka T, Yamazaki S. Altered prevalence of human parvovirus B19 component genes in systemic sclerosis skin tissue. Br J Dermatol. 2005;152(5):1078–80.CrossRefPubMedGoogle Scholar
  113. 113.
    Magro CM, Nuovo G, Ferri C, Crowson AN, Giuggioli D, Sebastiani M. Parvoviral infection of endothelial cells and stromal fibroblasts: a possible pathogenetic role in scleroderma. J Cutan Pathol. 2004;31(1):43–50.CrossRefPubMedGoogle Scholar
  114. 114.
    Ferri C, Zakrzewska K, Longombardo G, Giuggioli D, Storino FA, Pasero G, et al. Parvovirus B19 infection of bone marrow in systemic sclerosis patients. Clin Exp Rheumatol. 1999;17(6):718–20.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Graham SV. The human papillomavirus replication cycle, and its links to cancer progression: a comprehensive review. Clin Sci (Lond). 2017;131(17):2201–21.CrossRefGoogle Scholar
  116. 116.
    Shi J, Sun X, Zhao Y, Zhao J, Li Z. Prevalence and significance of antibodies to citrullinated human papilloma virus-47 E2345-362 in rheumatoid arthritis. J Autoimmun. 2008;31(2):131–5.CrossRefPubMedGoogle Scholar
  117. 117.
    Segal Y, Dahan S, Calabro M, Kanduc D, Shoenfeld Y. HPV and systemic lupus erythematosus: a mosaic of potential crossreactions. Immunol Res. 2017;65(2):564–71.CrossRefPubMedGoogle Scholar
  118. 118.
    Nath R, Mant C, Luxton J, Hughes G, Raju KS, Shepherd P, et al. High risk of human papillomavirus type 16 infections and of development of cervical squamous intraepithelial lesions in systemic lupus erythematosus patients. Arthritis Rheum. 2007;57(4):619–25.CrossRefPubMedGoogle Scholar
  119. 119.
    Laohapand C, Arromdee E, Tanwandee T. Long-term use of methotrexate does not result in hepatitis B reactivation in rheumatologic patients. Hepatol Int. 2015;9(2):202–8.CrossRefPubMedGoogle Scholar
  120. 120.
    Koutsianas C, Thomas K, Vassilopoulos D. Hepatitis B reactivation in rheumatic diseases: screening and prevention. Rheum Dis Clin N Am. 2017;43(1):133–49.CrossRefGoogle Scholar
  121. 121.
    Pagnoux C, Seror R, Henegar C, Mahr A, Cohen P, Le Guern V, et al. Clinical features and outcomes in 348 patients with polyarteritis nodosa: a systematic retrospective study of patients diagnosed between 1963 and 2005 and entered into the French Vasculitis Study Group Database. Arthritis Rheum. 2010;62(2):616–26.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Michalak T. Immune complexes of hepatitis B surface antigen in the pathogenesis of periarteritis nodosa. A study of seven necropsy cases. Am J Pathol. 1978;90(3):619–32.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Mazzaro C, Dal Maso L, Urraro T, Mauro E, Castelnovo L, Casarin P, et al. Hepatitis B virus related cryoglobulinemic vasculitis: a multicentre open label study from the Gruppo Italiano di Studio delle Crioglobulinemie - GISC. Dig Liver Dis. 2016;48(7):780–4.CrossRefPubMedGoogle Scholar
  124. 124.
    Visentini M, Pascolini S, Mitrevski M, Marrapodi R, Del Padre M, Todi L, et al. Hepatitis B virus causes mixed cryoglobulinaemia by driving clonal expansion of innate B-cells producing a VH1-69-encoded antibody. Clin Exp Rheumatol. 2016;34(3 Suppl 97):S28–32.PubMedPubMedCentralGoogle Scholar
  125. 125.
    Lim MK, Sheen DH, Lee YJ, Mun YR, Park M, Shim SC. Anti-cyclic citrullinated peptide antibodies distinguish hepatitis B virus (HBV)-associated arthropathy from concomitant rheumatoid arthritis in patients with chronic HBV infection. J Rheumatol. 2009;36(4):712–6.CrossRefPubMedGoogle Scholar
  126. 126.
    Zhao J, Qiu M, Li M, Lu C, Gu J. Low prevalence of hepatitis B virus infection in patients with systemic lupus erythematosus in southern China. Rheumatol Int. 2010;30(12):1565–70.CrossRefPubMedGoogle Scholar
  127. 127.
    Yeh CC, Wang WC, Wu CS, Sung FC, Su CT, Shieh YH, et al. Association of Sjogrens syndrome in patients with chronic hepatitis virus infection: a population-based analysis. PLoS One. 2016;11(8):e0161958.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Arnson Y, Amital H, Guiducci S, Matucci-Cerinic M, Valentini G, Barzilai O, et al. The role of infections in the immunopathogensis of systemic sclerosis—evidence from serological studies. Ann N Y Acad Sci. 2009;1173:627–32.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health SciencesUniversity of ThessalyLarissaGreece

Personalised recommendations