Advertisement

Sampling Principles, Missingness Mechanisms, and Design Weighting

  • Seppo Laaksonen
Chapter

Abstract

The schemes of Chap.  2 showed that sample survey data can have some missingness, both intentional missingness and inevitable missingness. Intentional missingness is mostly because of sampling, while inevitable missingness arises from non-responses, ineligibility, undercoverage, and measurement errors. Intentional missingness is, or should be, mostly random, but inevitable missingness is virtually systematic or selective.

References

  1. Baker, R., Brick, J. M., Bates, N. A., Battaglia, M., Couper, M. P., Dever, J. A., et al. (2013). Summary report of the AAPOR task force on non-probability sampling. Journal of Survey Statistics and Methodology, 1(2), 90–143.  https://doi.org/10.1093/jssam/smt008.CrossRefGoogle Scholar
  2. Bethlehem, J. (2015). Essay. Sunday shopping—The case of three surveys. Survey Research Methods 9, 221–230. European Survey Research Association. Accessed May 2017, from http://www.surveymethods.org.  https://doi.org/10.18148/srm/2015.v9i3.6202.
  3. Heckathorn, D. D. (2002). Respondent-driven sampling II: Deriving valid estimates from chain-referral samples of hidden populations. Social Problems, 49(1), 11–34.  https://doi.org/10.1525/sp.2002.49.1.11.CrossRefGoogle Scholar
  4. Laaksonen, S., Kemppainen, T., Kortteinen, M., Vaattovaara, M., Stjernberg, M., & Lönnqvist, H. (2015). Tackling city-regional dynamics in a survey using grid sampling. Survey Research Methods, 9(1), 45–55.Google Scholar
  5. Lee, S., Suzer-Gurtekin, T., Wagner, J., & Valliant, R. (2017). Total survey error and respondent driven sampling: Focus on nonresponse and measurement errors in the recruitment process and the network size reports and implications for inferences. Journal of Official Statistics, 33(2), 335–366.  https://doi.org/10.1515/JOS-2017-0017.CrossRefGoogle Scholar
  6. Lohr, S. (2010). Sampling: Design and analysis (2nd ed.). Boston: Arizona State University, Cengage Learning.zbMATHGoogle Scholar
  7. Lundquist, P., & Särndal, C.-E. (2013). Aspects of responsive design with applications to the Swedish Living Conditions Survey. Journal of Official Statistics, 29(4), 557–582.  https://doi.org/10.2478/jos-2013-0040.CrossRefGoogle Scholar
  8. Valliant, R., Dever, J. A., & Kreuter, F. (2013). Practical tools for designing and weighting survey samples, Statistics for Social and Behavioral Sciences. New York: Springer.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Seppo Laaksonen
    • 1
  1. 1.Social Research, StatisticsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations