Network Meta-Analysis of Diagnostic Test Accuracy Studies

  • Gerta RückerEmail author


Standard meta-analyses of diagnostic test accuracy studies synthesize evidence from a single diagnostic test, often using the bivariate model. For comparison of multiple tests in a meta-analysis, methodology has evolved only recently. In this chapter, we present a number of approaches designed to this aim, sometimes labeled “network meta-analysis of diagnostic test accuracy studies.” We point to an important difference between multiple tests and multiple interventions: whereas interventions are usually compared between independent groups, multiple tests are typically compared in the same subjects within a study. Thus, meta-analytic methods for comparing multiple tests cannot simply use methods of network meta-analysis but have to account for the different correlation structure in diagnostic accuracy data.


Bivariate model Diagnostic test accuracy Meta-analysis Multivariate meta-analysis Network meta-analysis Sensitivity Specificity 



The author gratefully thanks Philipp Doebler, Paul-Christian Bürkner, and Martin Schumacher for valuable hints and comments.


  1. 1.
    Rücker G. Network meta-analysis. Wiley StatsRef: Statistics Reference Online; 2016. p. 1–8. Stat07909. Accessed 29 June 2018.
  2. 2.
    Cipriani A, Furukawa TA, Salanti G, Geddes J, Higgins J, Churchill R, Watanabe N, Nakagawa A, Omori I, McGuire H, Tansella M, Barbui C. Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis. Lancet. 2009;373:746–58.CrossRefPubMedGoogle Scholar
  3. 3.
    Salanti G. Indirect and mixed-treatment comparison, network, or multiple-treatments meta-analysis: many names, many benefits, many concerns for the next generation evidence synthesis tool. Res Synth Methods. 2012;3:80–97.CrossRefPubMedGoogle Scholar
  4. 4.
    Biondi-Zoccai G, editor. Network meta-analysis: evidence synthesis with mixed treatment comparison. Hauppauge: Nova Science Publishers Inc.; 2014.Google Scholar
  5. 5.
    Dimou NL, Adam M, Bagos PG. A multivariate method for meta-analysis and comparison of diagnostic tests. Stat Med. 2016;35:3509–23.CrossRefPubMedGoogle Scholar
  6. 6.
    Chu H, Cole SR. Bivariate meta-analysis of sensitivity and specificity with sparse data: a generalized linear mixed approach. J Clin Epidemiol. 2006;59:1331–3.CrossRefPubMedGoogle Scholar
  7. 7.
    Reitsma J, Glas A, Rutjes A, Scholten R, Bossuyt P, Zwinderman A. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J Clin Epidemiol. 2005;58:982–90.CrossRefPubMedGoogle Scholar
  8. 8.
    Patrick D, Cheadle A, Thompson D, Diehr P, Koepsell T, Kinne S. The validity of self-reported smoking: a review and meta-analysis. Am J Public Health. 1994;84:1086–93.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Roberts E, Ludman A, Dworzynski K, Al-Mohammad A, Cowie M, McMurray J, Mant J, On behalf of the NICE Guideline Development Group for Acute Heart Failure. The diagnostic accuracy of the natriuretic peptides in heart failure: systematic review and diagnostic meta-analysis in the acute care setting. BMJ. 2015;350:h910.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cochrane Methods Screening and Diagnostic Tests: Handbook for DTA Reviews; 2016. Accessed 29 June 2018.
  11. 11.
    Dukic V, Gatsonis C. Meta-analysis of diagnostic test accuracy assessment studies with varying number of thresholds. Biometrics. 2003;59:936–46.CrossRefPubMedGoogle Scholar
  12. 12.
    Hamza TH, Arends LR, van Houwelingen HC, Stijnen T. Multivariate random effects meta-analysis of diagnostic tests with multiple thresholds. BMC Med Res Methodol. 2009;9:73.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Putter H, Fiocco M, Stijnen T. Meta-analysis of diagnostic test accuracy studies with multiple thresholds using survival methods. Biom J. 2010;52:95–110.CrossRefPubMedGoogle Scholar
  14. 14.
    Martínez-Camblor P. Fully non-parametric receiver operating characteristic curve estimation for random-effects meta-analysis. Stat Methods Med Res. 2014;26:5.CrossRefGoogle Scholar
  15. 15.
    Riley RD, Takwoingi Y, Trikalinos T, Guha A, Biswas A, Ensor J, Morris RK, Deeks JJ. Meta-analysis of test accuracy studies with multiple and missing thresholds: a multivariate-normal model. J Biomet Biostat. 2014;5:196.CrossRefGoogle Scholar
  16. 16.
    Riley RD, Ahmed I, Ensor J, Takwoingi Y, Kirkham A, Morris RK, Noordzij JP, Deeks JJ. Meta-analysis of test accuracy studies: an exploratory method for investigating the impact of missing thresholds. Syst Rev. 2015;4:12.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Riley RD, Elia EG, Malin G, Hemming K, Price MP. Multivariate meta-analysis of prognostic factor studies with multiple cut-points and/or methods of measurement. Stat Med. 2015;34:2481–96.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Steinhauser S, Schumacher M, Rücker G. Modelling multiple thresholds in meta-analysis of diagnostic test accuracy studies. BMC Med Res Methodol. 2016;16:97.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Doebler P, Holling H, Böhning D. A mixed model approach to meta-analysis of diagnostic studies with binary test outcome. Psychol Methods. 2012;17:418–36.CrossRefPubMedGoogle Scholar
  20. 20.
    Dias S, Ades AE. Absolute or relative effects? Arm-based synthesis of trial data. Res Synth Methods. 2016;7:23–8.CrossRefPubMedGoogle Scholar
  21. 21.
    Hawkins N, Scott D, Woods B. ‘arm-based’ parameterization for network meta-analysis. Res Synth Methods. 2016;7:306–13.CrossRefPubMedGoogle Scholar
  22. 22.
    Glas AS, Lijmer J, Prins M, Bonsel G, Bossuyt PM. The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol. 2003;56:1129–35.CrossRefPubMedGoogle Scholar
  23. 23.
    Charoensawat S, Böhning W, Böhning D, Holling H. Meta-analysis and meta-modelling for diagnostic problems. BMC Med Res Methodol. 2014;14:56.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hoyer A, Kuss O. Meta-analysis for the comparison of two diagnostic tests to a common gold standard: a generalized linear mixed model approach. Stat Methods Med Res. 2018;27:1410–21.CrossRefPubMedGoogle Scholar
  25. 25.
    Menten J, Lesaffre E. A general framework for comparative Bayesian meta-analysis of diagnostic studies. BMC Med Res Methodol. 2015;15:70.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Nyaga VN, Aerts M, Arbyn M. ANOVA model for network meta-analysis of diagnostic test accuracy data. Stat Methods Med Res. 2018;27:1766–84.CrossRefPubMedGoogle Scholar
  27. 27.
    Nyaga VN, Arbyn M, Aerts M. Beta-binomial analysis of variance model for network meta-analysis of diagnostic test accuracy data. Stat Methods Med Res. 2016. Accessed 29 June 2018.
  28. 28.
    Trikalinos TA, Hoaglin DC, Small KM, Terrin N, Schmid C. Methods for the joint meta-analysis of multiple tests. Res Synth Methods. 2014;5:294–312.CrossRefPubMedGoogle Scholar
  29. 29.
    Kuss O, Hoyer A, Solms A. Meta-analysis for diagnostic accuracy studies: a new statistical model using beta-binomial distributions and bivariate copulas. Stat Med. 2013;33:17.CrossRefPubMedGoogle Scholar
  30. 30.
    Mavridis D, Salanti G. A practical introduction to multivariate meta-analysis. Stat Methods Med Res. 2013;22:133–58.CrossRefPubMedGoogle Scholar
  31. 31.
    Achana FA, Cooper NJ, Bujkiewicz S, Hubbard SJ, Kendrick D, Jones DR, Sutton AJ. Network meta-analysis of multiple outcome measures accounting for borrowing of information across outcomes. BMC Med Res Methodol. 2014;14:92.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Efthimiou O, Mavridis D, Cipriani A, Leucht S, Bagos P, Salanti G. An approach for modelling multiple correlated outcomes in a network of interventions using odds ratios. Stat Med. 2014;33:2275–87.CrossRefPubMedGoogle Scholar
  33. 33.
    Efthimiou O, Mavridis D, Riley RD, Cipriani A, Salanti G. Joint synthesis of multiple correlated outcomes in networks of interventions. Biostatistics. 2015;16:84–97.CrossRefPubMedGoogle Scholar
  34. 34.
    Mitchell A. A meta-analysis of the accuracy of the mini-mental state examination in the detection of dementia and mild cognitive impairment. J Psychiatr Res. 2009;43:411–31.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Medical Biometry and Statistics, Faculty of Medicine, Medical Center—University of FreiburgFreiburgGermany

Personalised recommendations