Advertisement

Gene Therapy in Cartilage Repair and Regeneration

  • Sheri Wang
  • Bing Wang
Chapter

Abstract

Clinical and translational research for the treatment of articular cartilage disease and injury has demonstrated a continued need for the development of molecular approaches in the last decade. New technological breakthroughs in combining gene and cell therapy have revolutionized cartilage regeneration, resulting in advances never before thought possible. This review covers recent progress in recombinant adeno-associated viral (rAAV) vector-mediated approaches for gene and cell therapy in vivo and ex vivo. In particular, we will discuss the application of the AAV vector for in vivo gene therapy and AAV-based genetic modification of stem cells ex vivo. Moreover, we will also discuss the various approaches to clinical trials.

Keywords

Recombinant adeno-associated viral vector In vivo and ex vivo gene therapy Cartilage tissue regeneration 

Notes

Acknowledgments

We gratefully acknowledge Ms. Anna T. Dzuricky, University of Pittsburgh Swanson School of Engineering, for reviewing and editing this manuscript.

References

  1. 1.
    Warrington KH Jr, Herzog RW. Treatment of human disease by adeno-associated viral gene transfer. Hum Genet. 2006;119(6):571–603.CrossRefPubMedGoogle Scholar
  2. 2.
    Zhang X, Godbey WT. Viral vectors for gene delivery in tissue engineering. Adv Drug Deliv Rev. 2006;58(4):515–34.CrossRefPubMedGoogle Scholar
  3. 3.
    Dai J, Rabie AB. The use of recombinant adeno-associated virus for skeletal gene therapy. Orthod Craniofac Res. 2007;10(1):1–14.CrossRefPubMedGoogle Scholar
  4. 4.
    Atchison RW, Casto BC, Hammon WM. Adenovirus-associated defective virus particles. Science. 1965;149:754–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Xie Q, Bu W, Bhatia S, Hare J, Somasundaram T, Azzi A, et al. The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc Natl Acad Sci U S A. 2002;99(16):10405–10.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Weitzman MD, Kyostio SR, Kotin RM, Owens RA. Adeno-associated virus (AAV) rep proteins mediate complex formation between AAV DNA and its integration site in human DNA. Proc Natl Acad Sci U S A. 1994;91(13):5808–12.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Flotte TR, Afione SA, Zeitlin PL. Adeno-associated virus vector gene expression occurs in nondividing cells in the absence of vector DNA integration. Am J Respir Cell Mol Biol. 1994;11(5):517–21.CrossRefPubMedGoogle Scholar
  8. 8.
    Cone RD, Mulligan RC. High-efficiency gene transfer into mammalian cells: generation of helper-free recombinant retrovirus with broad mammalian host range. Proc Natl Acad Sci U S A. 1984;81(20):6349–53.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Luk KD, Chen Y, Cheung KM, Kung HF, Lu WW, Leong JC. Adeno-associated virus-mediated bone morphogenetic protein-4 gene therapy for in vivo bone formation. Biochem Biophys Res Commun. 2003;308(3):636–45.CrossRefPubMedGoogle Scholar
  10. 10.
    Ye X, Rivera VM, Zoltick P, Cerasoli F Jr, Schnell MA, Gao G, et al. Regulated delivery of therapeutic proteins after in vivo somatic cell gene transfer. Science. 1999;283(5398):88–91.CrossRefPubMedGoogle Scholar
  11. 11.
    Rivera VM, Gao GP, Grant RL, Schnell MA, Zoltick PW, Rozamus LW, et al. Long-term pharmacologically regulated expression of erythropoietin in primates following AAV-mediated gene transfer. Blood. 2005;105(4):1424–30.  https://doi.org/10.1182/blood-2004-06-2501.CrossRefPubMedGoogle Scholar
  12. 12.
    Grimm D, Kay MA. From virus evolution to vector revolution: use of naturally occurring serotypes of adeno-associated virus (AAV) as novel vectors for human gene therapy. Curr Gene Ther. 2003;3(4):281–304.CrossRefPubMedGoogle Scholar
  13. 13.
    Mori S, Wang L, Takeuchi T, Kanda T. Two novel adeno-associated viruses from cynomolgus monkey: pseudotyping characterization of capsid protein. Virology. 2004;330(2):375–83.CrossRefPubMedGoogle Scholar
  14. 14.
    Ding W, Zhang L, Yan Z, Engelhardt JF. Intracellular trafficking of adeno-associated viral vectors. Gene Ther. 2005;12(11):873–80.CrossRefPubMedGoogle Scholar
  15. 15.
    Schaffer DV, Maheshri N. Directed evolution of AAV mutants for enhanced gene delivery. Conf Proc IEEE Eng Med Biol Soc. 2004;5:3520–3.PubMedGoogle Scholar
  16. 16.
    Asuri P, Bartel MA, Vazin T, Jang JH, Wong TB, Schaffer DV. Directed evolution of adeno-associated virus for enhanced gene delivery and gene targeting in human pluripotent stem cells. Mol Ther. 2012;20(2):329–38.  https://doi.org/10.1038/mt.2011.255.CrossRefPubMedGoogle Scholar
  17. 17.
    Grimm D, Lee JS, Wang L, Desai T, Akache B, Storm TA, et al. In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J Virol. 2008;82(12):5887–911.  https://doi.org/10.1128/JVI.00254-08.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Koerber JT, Jang JH, Schaffer DV. DNA shuffling of adeno-associated virus yields functionally diverse viral progeny. Mol Ther. 2008;16(10):1703–9.  https://doi.org/10.1038/mt.2008.167.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Adachi K, Nakai H. A new recombinant adeno-associated virus (Aav)-based random peptide display library system: infection-defective Aav1.9-3 as a novel detargeted platform for vector evolution. Gene Ther Regul. 2010;5(1):31–55.  https://doi.org/10.1142/S1568558610000197.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Jang JH, Koerber JT, Kim JS, Asuri P, Vazin T, Bartel M, et al. An evolved adeno-associated viral variant enhances gene delivery and gene targeting in neural stem cells. Mol Ther. 2011;19(4):667–75.  https://doi.org/10.1038/mt.2010.287.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhang HG, Xie J, Yang P, Wang Y, Xu L, Liu D, et al. Adeno-associated virus production of soluble tumor necrosis factor receptor neutralizes tumor necrosis factor alpha and reduces arthritis. Hum Gene Ther. 2000;11(17):2431–42.CrossRefPubMedGoogle Scholar
  22. 22.
    Pan RY, Chen SL, Xiao X, Liu DW, Peng HJ, Tsao YP. Therapy and prevention of arthritis by recombinant adeno-associated virus vector with delivery of interleukin-1 receptor antagonist. Arthritis Rheum. 2000;43(2):289–97.CrossRefPubMedGoogle Scholar
  23. 23.
    Tak PP, Gerlag DM, Aupperle KR, van de Geest DA, Overbeek M, Bennett BL, et al. Inhibitor of nuclear factor kappaB kinase beta is a key regulator of synovial inflammation. Arthritis Rheum. 2001;44(8):1897–907.CrossRefPubMedGoogle Scholar
  24. 24.
    Cucchiarini M, Madry H, Ma C, Thurn T, Zurakowski D, Menger MD, et al. Improved tissue repair in articular cartilage defects in vivo by rAAV-mediated overexpression of human fibroblast growth factor 2. Mol Ther. 2005;12(2):229–38.CrossRefPubMedGoogle Scholar
  25. 25.
    Hiraide A, Yokoo N, Xin KQ, Okuda K, Mizukami H, Ozawa K, et al. Repair of articular cartilage defect by intraarticular administration of basic fibroblast growth factor gene, using adeno-associated virus vector. Hum Gene Ther. 2005;16(12):1413–21.CrossRefPubMedGoogle Scholar
  26. 26.
    Ulrich-Vinther M, Stengaard C, Schwarz EM, Goldring MB, Soballe K. Adeno-associated vector mediated gene transfer of transforming growth factor-beta1 to normal and osteoarthritic human chondrocytes stimulates cartilage anabolism. Eur Cell Mater. 2005;10:40–50.CrossRefPubMedGoogle Scholar
  27. 27.
    Izal I, Acosta CA, Ripalda P, Zaratiegui M, Ruiz J, Forriol F. IGF-1 gene therapy to protect articular cartilage in a rat model of joint damage. Arch Orthop Trauma Surg. 2008;128(2):239–47.CrossRefPubMedGoogle Scholar
  28. 28.
    Bakker AC, Joosten LA, Arntz OJ, Helsen MM, Bendele AM, van de Loo FA, et al. Prevention of murine collagen-induced arthritis in the knee and ipsilateral paw by local expression of human interleukin-1 receptor antagonist protein in the knee. Arthritis Rheum. 1997;40(5):893–900.CrossRefPubMedGoogle Scholar
  29. 29.
    Kim JM, Jeong JG, Ho SH, Hahn W, Park EJ, Kim S, et al. Protection against collagen-induced arthritis by intramuscular gene therapy with an expression plasmid for the interleukin-1 receptor antagonist. Gene Ther. 2003;10(18):1543–50.CrossRefPubMedGoogle Scholar
  30. 30.
    Cottard V, Mulleman D, Bouille P, Mezzina M, Boissier MC, Bessis N. Adeno-associated virus-mediated delivery of IL-4 prevents collagen-induced arthritis. Gene Ther. 2000;7(22):1930–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Goater J, Muller R, Kollias G, Firestein GS, Sanz I, O'Keefe RJ, et al. Empirical advantages of adeno associated viral vectors in vivo gene therapy for arthritis. J Rheumatol. 2000;27(4):983–9.PubMedGoogle Scholar
  32. 32.
    Saidenberg-Kermanac'h N, Bessis N, Deleuze V, Bloquel C, Bureau M, Scherman D, et al. Efficacy of interleukin-10 gene electrotransfer into skeletal muscle in mice with collagen-induced arthritis. J Gene Med. 2003;5(2):164–71.CrossRefPubMedGoogle Scholar
  33. 33.
    Apparailly F, Millet V, Noel D, Jacquet C, Sany J, Jorgensen C. Tetracycline-inducible interleukin-10 gene transfer mediated by an adeno-associated virus: application to experimental arthritis. Hum Gene Ther. 2002;13(10):1179–88.CrossRefPubMedGoogle Scholar
  34. 34.
    Handel ML, Girgis L. Transcription factors. Best Pract Res Clin Gastroenterol. 2001;15(5):657–75.CrossRefGoogle Scholar
  35. 35.
    Roshak AK, Callahan JF, Blake SM. Small-molecule inhibitors of NF-kappaB for the treatment of inflammatory joint disease. Curr Opin Pharmacol. 2002;2(3):316–21.CrossRefPubMedGoogle Scholar
  36. 36.
    Tas SW, Adriaansen J, Hajji N, Bakker AC, Firestein GS, Vervoordeldonk MJ, et al. Amelioration of arthritis by intraarticular dominant negative Ikk beta gene therapy using adeno-associated virus type 5. Hum Gene Ther. 2006;17(8):821–32.CrossRefPubMedGoogle Scholar
  37. 37.
    Firestein GS, Zvaifler NJ. Anticytokine therapy in rheumatoid arthritis. N Engl J Med. 1997;337(3):195–7.CrossRefPubMedGoogle Scholar
  38. 38.
    Bessis N, Doucet C, Cottard V, Douar AM, Firat H, Jorgensen C, et al. Gene therapy for rheumatoid arthritis. J Gene Med. 2002;4(6):581–91.CrossRefPubMedGoogle Scholar
  39. 39.
    Payne KA, Lee HH, Haleem AM, Martins C, Yuan Z, Qiao C, et al. Single intra-articular injection of adeno-associated virus results in stable and controllable in vivo transgene expression in normal rat knees. Osteoarthr Cartil. 2011;19(8):1058–65.  https://doi.org/10.1016/j.joca.2011.04.009.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Peng H, Huard J. Muscle-derived stem cells for musculoskeletal tissue regeneration and repair. Transpl Immunol. 2004;12(3–4):311–9.  https://doi.org/10.1016/j.trim.2003.12.009.CrossRefPubMedGoogle Scholar
  41. 41.
    Zheng B, Cao B, Crisan M, Sun B, Li G, Logar A, et al. Prospective identification of myogenic endothelial cells in human skeletal muscle. Nat Biotechnol. 2007;25(9):1025–34.CrossRefPubMedGoogle Scholar
  42. 42.
    Salgado AJ, Oliveira JT, Pedro AJ, Reis RL. Adult stem cells in bone and cartilage tissue engineering. Curr Stem Cell Res Ther. 2006;1(3):345–64.CrossRefPubMedGoogle Scholar
  43. 43.
    Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med. 2007;13(10):1219–27.  https://doi.org/10.1038/nm1630.CrossRefPubMedGoogle Scholar
  44. 44.
    Korbling M, Estrov Z. Adult stem cells for tissue repair - a new therapeutic concept? N Engl J Med. 2003;349(6):570–82.  https://doi.org/10.1056/NEJMra022361.CrossRefPubMedGoogle Scholar
  45. 45.
    Hall VJ, Stojkovic P, Stojkovic M. Using therapeutic cloning to fight human disease: a conundrum or reality? Stem Cells. 2006;24(7):1628–37.  https://doi.org/10.1634/stemcells.2005-0592.CrossRefPubMedGoogle Scholar
  46. 46.
    Kimelman N, Pelled G, Helm GA, Huard J, Schwarz EM, Gazit D. Review: gene- and stem cell-based therapeutics for bone regeneration and repair. Tissue Eng. 2007;13(6):1135–50.CrossRefPubMedGoogle Scholar
  47. 47.
    Yokoo N, Saito T, Uesugi M, Kobayashi N, Xin KQ, Okuda K, et al. Repair of articular cartilage defect by autologous transplantation of basic fibroblast growth factor gene-transduced chondrocytes with adeno-associated virus vector. Arthritis Rheum. 2005;52(1):164–70.  https://doi.org/10.1002/art.20739.CrossRefPubMedGoogle Scholar
  48. 48.
    Pagnotto MR, Wang Z, Karpie JC, Ferretti M, Xiao X, Chu CR. Adeno-associated viral gene transfer of transforming growth factor-beta1 to human mesenchymal stem cells improves cartilage repair. Gene Ther. 2007;14(10):804–13.CrossRefPubMedGoogle Scholar
  49. 49.
    Frisch J, Venkatesan JK, Rey-Rico A, Schmitt G, Madry H, Cucchiarini M. Influence of insulin-like growth factor I overexpression via recombinant adeno-associated vector gene transfer upon the biological activities and differentiation potential of human bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther. 2014;5(4):103.  https://doi.org/10.1186/scrt491.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Tang Y, Wang B. Gene- and stem cell-based therapeutics for cartilage regeneration and repair. Stem Cell Res Ther. 2015;6:78.  https://doi.org/10.1186/s13287-015-0058-5.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Moutsatsos IK, Turgeman G, Zhou S, Kurkalli BG, Pelled G, Tzur L, et al. Exogenously regulated stem cell-mediated gene therapy for bone regeneration. Mol Ther. 2001;3(4):449–61.  https://doi.org/10.1006/mthe.2001.0291.CrossRefPubMedGoogle Scholar
  52. 52.
    Allay JA, Sleep S, Long S, Tillman DM, Clark R, Carney G, et al. Good manufacturing practice production of self-complementary serotype 8 adeno-associated viral vector for a hemophilia B clinical trial. Hum Gene Ther. 2011;22(5):595–604.  https://doi.org/10.1089/hum.2010.202.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Anklesaria P, Heald EA, Mease JP. Intra-articular administration of a recombinant adeno-associated vector containing a TNF antagonist gene was safe, well tolerated and demonstrated trend in clinical response in subjects with inflammatory arthritis. In: 11th American Society of Gene Therapy annual meeting; May 28–June 1; Boston, MA, US; 2008.Google Scholar
  54. 54.
    Mease PJ, Hobbs K, Chalmers A, El-Gabalawy H, Bookman A, Keystone E, et al. Local delivery of a recombinant adenoassociated vector containing a tumour necrosis factor alpha antagonist gene in inflammatory arthritis: a phase 1 dose-escalation safety and tolerability study. Ann Rheum Dis. 2009;68(8):1247–54.  https://doi.org/10.1136/ard.2008.089375.CrossRefPubMedGoogle Scholar
  55. 55.
    Kaiser J. Clinical research. Death prompts a review of gene therapy vector. Science. 2007;317(5838):580.  https://doi.org/10.1126/science.317.5838.580.CrossRefPubMedGoogle Scholar
  56. 56.
    Evans CH, Ghivizzani SC, Robbins PD. Arthritis gene therapy's first death. Arthritis Res Ther. 2008;10(3):110.  https://doi.org/10.1186/ar2411.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Frank KM, Hogarth DK, Miller JL, Mandal S, Mease PJ, Samulski RJ, et al. Investigation of the cause of death in a gene-therapy trial. N Engl J Med. 2009;361(2):161–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Evans CH, Ghivizzani SC, Robbins PD. Getting arthritis gene therapy into the clinic. Nat Rev Rheumatol. 2011;7(4):244–9.  https://doi.org/10.1038/nrrheum.2010.193.CrossRefPubMedGoogle Scholar
  59. 59.
    Evans CH, Ghivizzani SC, Gouze E, Rediske JJ, Schwarz EM, Robbins PD. The 3rd International Meeting on Gene Therapy in Rheumatology and Orthopaedics. Arthritis Res Ther. 2005;7(6):273–8.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of PittsburghPittsburghUSA
  2. 2.Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghUSA

Personalised recommendations