Advertisement

The Neuroimaging of Stroke: Structural and Functional Advances

  • Sara Regina Meira Almeida
  • Gabriela Castellano
  • Jessica Vicentini
  • Li Li Min
Chapter
Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

Advanced magnetic resonance imaging (MRI) techniques are improving our understanding of cerebrovascular diseases. Elucidation of the critical pathways in post-stroke recovery would not only provide important fundamental insight in brain function and plasticity but could also lead the way toward development of new rehabilitation strategies for recovering stroke patients. Improvements in hardware and pulse sequences that decrease scan time while maintaining resolution will continue to impact the field. Post-processing strategies must evolve to encompass these increasingly complicated data sets. It also seems clear that multimodal imaging strategies are necessary to develop more detailed patient profiles that can be used for precision medicine.

Keywords

Functional magnetic resonance imaging Stroke Structural connectivity Blood oxygenation level dependent Diffusion tensor imaging 

References

  1. 1.
    Van Horn JD, Pelphrey KA (2015) Neuroimaging of the developing brain. Brain Imaging Behav 9(1):1–4CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Dijkhuizen RM, van der Marel K, Otte WM, Hoff EI, van der Zijden JP, van der Toorn A et al (2012) Functional MRI and diffusion tensor imaging of brain reorganization after experimental stroke. Transl Stroke Res 3(1):36–43CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Corbetta M, Kincade MJ, Lewis C, Snyder AZ, Sapir A (2005) Neural basis and recovery of spatial attention deficits in spatial neglect. Nat Neurosci 8(11):1603–1610CrossRefPubMedGoogle Scholar
  4. 4.
    Farr TD, Wegener S (2010) Use of magnetic resonance imaging to predict outcome after stroke: a review of experimental and clinical evidence. J Cereb Blood Flow Metab 30(4):703–717CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ward NS (2005) Neural plasticity and recovery of function. Prog Brain Res 150:527–535CrossRefPubMedGoogle Scholar
  6. 6.
    Friston K (2002) Functional integration and inference in the brain. Prog Neurobiol 68(2):113–143CrossRefPubMedGoogle Scholar
  7. 7.
    Stephan KE, Harrison LM, Kiebel SJ, David O, Penny WD, Friston KJ (2007) Dynamic causal models of neural system dynamics:current state and future extensions. J Biosci 32(1):129–144CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Le Bihan D (2003) Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4(6):469–480CrossRefPubMedGoogle Scholar
  9. 9.
    Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis – a technical review. NMR Biomed 15(7–8):456–467CrossRefPubMedGoogle Scholar
  10. 10.
    Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87(24):9868–9872CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541CrossRefPubMedGoogle Scholar
  12. 12.
    Rehme AK, Grefkes C (2013) Cerebral network disorders after stroke: evidence from imaging-based connectivity analyses of active and resting brain states in humans. J Physiol 591(1):17–31CrossRefPubMedGoogle Scholar
  13. 13.
    He BJ, Snyder AZ, Zempel JM, Smyth MD, Raichle ME (2008) Electrophysiological correlates of the brain’s intrinsic large-scale functional architecture. Proc Natl Acad Sci U S A 105(41):16039–16044CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9):700–711CrossRefPubMedGoogle Scholar
  15. 15.
    Beckmann CF (2012) Modelling with independent components. NeuroImage 62(2):891–901CrossRefPubMedGoogle Scholar
  16. 16.
    Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198CrossRefGoogle Scholar
  17. 17.
    Fox MD, Greicius M (2010) Clinical applications of resting state functional connectivity. Front Syst Neurosci:17(4)Google Scholar
  18. 18.
    Auer DP (2008) Spontaneous low-frequency blood oxygenation level-dependent fluctuations and functional connectivity analysis of the ‘resting’ brain. Magn Reson Imaging 26(7):1055–1064CrossRefPubMedGoogle Scholar
  19. 19.
    Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1(1):13–36CrossRefPubMedGoogle Scholar
  20. 20.
    Friston KJ, Buechel C, Fink GR, Morris J, Rolls E, Dolan RJ (1997) Psychophysiological and modulatory interactions in neuroimaging. NeuroImage 6(3):218–229CrossRefGoogle Scholar
  21. 21.
    McLntosh AR, Gonzalez-Lima F (1994) Structural equation modelling and its application in network analysis in functional brain imaging. Hum Brain Mapp 2:2–22CrossRefGoogle Scholar
  22. 22.
    Roebroeck A, Formisano E, Goebel R (2005) Mapping directed influence over the brain using Granger causality and fMRI. NeuroImage 25:230–242CrossRefPubMedGoogle Scholar
  23. 23.
    Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. NeuroImage 19(4):1273–1302CrossRefPubMedGoogle Scholar
  24. 24.
    van Meer MP, van der Marel K, Wang K, Otte WM, El Bouazati S, Roeling TA et al (2010) Recovery of sensorimotor function after experimental stroke correlates with restoration of resting-state interhemispheric functional connectivity. J Neurosci 30(11):3964–3972CrossRefPubMedGoogle Scholar
  25. 25.
    Carter AR, Astafiev SV, Lang CE, Connor LT, Rengachary J, Strube MJ et al (2010) Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol 67(3):365–375Google Scholar
  26. 26.
    Park CH, Chang WH, Ohn SH, Kim ST, Bang OY, Pascual-Leone A et al (2011) Longitudinal changes of resting-state functional connectivity during motor recovery after stroke. Stroke 42(5):1357–1362CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Schaechter JD (2004) Motor rehabilitation and brain plasticity after hemiparetic stroke. Prog Neurobiol 73(1):61–72CrossRefPubMedGoogle Scholar
  28. 28.
    Xu HQW, Chen H, Jiang L, Li K, Yu C (2014) Contribution of the resting-state functional connectivity of the contralesional primary sensorimotor cortex to motor recovery after subcortical stroke. PLoS One 9:e84729CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Rehme AK, Eickhoff SB, Rottschy C, Fink GR, Grefkes C (2012) Activation likelihood estimation meta-analysis of motor-related neural activity after stroke. NeuroImage 59(3):2771–2782CrossRefPubMedGoogle Scholar
  30. 30.
    Golestani AM, Tymchuk S, Demchuk A, Goodyear BG, Group V-S (2013) Longitudinal evaluation of resting-state FMRI after acute stroke with hemiparesis. Neurorehabil Neural Repair 27(2):153–163CrossRefPubMedGoogle Scholar
  31. 31.
    van Meer MP, Otte WM, van der Marel K, Nijboer CH, Kavelaars A, van der Sprenkel JW et al (2012) Extent of bilateral neuronal network reorganization and functional recovery in relation to stroke severity. J Neurosci 32(13):4495–4507CrossRefPubMedGoogle Scholar
  32. 32.
    Wang LE, Tittgemeyer M, Imperati D, Diekhoff S, Ameli M, Fink GR et al (2012) Degeneration of corpus callosum and recovery of motor function after stroke: a multimodal magnetic resonance imaging study. Hum Brain Mapp 33(12):2941–2956CrossRefPubMedGoogle Scholar
  33. 33.
    Lu J, Liu H, Zhang M, Wang D, Cao Y, Ma Q et al (2011) Focal pontine lesions provide evidence that intrinsic functional connectivity reflects polysynaptic anatomical pathways. J Neurosci 31(42):15065–15071CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Almeida SR, Vicentini J, Bonilha L, De Campos BM, Casseb RF, Min LL (2016) Brain connectivity and functional recovery in patients with ischemic stroke. J Neuroimaging 27(1):65–70CrossRefPubMedGoogle Scholar
  35. 35.
    Buch ER, Modir Shanechi A, Fourkas AD, Weber C, Birbaumer N, Cohen LG (2012) Parietofrontal integrity determines neural modulation associated with grasping imagery after stroke. Brain 135(Pt 2):596–614CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Beharelle AR, Kovačević N, McIntosh AR, Levine B (2012) Brain signal variability relates to stability of behavior after recovery from diffuse brain injury. NeuroImage 60:1528–1537CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Grefkes C, Nowak DA, Eickhoff SB, Dafotakis M, Küst J, Karbe H et al (2008) Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 63(2):236–246CrossRefPubMedGoogle Scholar
  38. 38.
    Grefkes C, Nowak DA, Wang LE, Dafotakis M, Eickhoff SB, Fink GR (2010) Modulating cortical connectivity in stroke patients by rTMS assessed with fMRI and dynamic causal modeling. NeuroImage 50(1):233–242CrossRefPubMedGoogle Scholar
  39. 39.
    Rehme AK, Eickhoff SB, Wang LE, Fink GR, Grefkes C (2011) Dynamic causal modeling of cortical activity from the acute to the chronic stage after stroke. NeuroImage 55(3):1147–1158CrossRefPubMedGoogle Scholar
  40. 40.
    Astafiev SV, Shulman GL, Stanley CM, Snyder AZ, Van Essen DC, Corbetta M (2003) Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. J Neurosci 23(11):4689–4699CrossRefPubMedGoogle Scholar
  41. 41.
    Regnaux JP, David D, Daniel O, Smail DB, Combeaud M, Bussel B (2005) Evidence for cognitive processes involved in the control of steady state of walking in healthy subjects and after cerebral damage. Neurorehabil Neural Repair 19(2):125–132CrossRefPubMedGoogle Scholar
  42. 42.
    Vicentini JE, Weiler M, Almeida SR, de Campos BM, Valler L, Li LM (2016) Depression and anxiety symptoms are associated to disruption of default mode network in subacute ischemic stroke. Brain Imaging Behav 11(6):1571–1580CrossRefGoogle Scholar
  43. 43.
    Northoff G, Heinzel A, de Greck M, Bermpohl F, Dobrowolny H, Panksepp J (2006) Self-referential processing in our brain--a meta-analysis of imaging studies on the self. NeuroImage 31(1):440–457CrossRefPubMedGoogle Scholar
  44. 44.
    Liu Y, D'Arceuil HE, Westmoreland S, He J, Duggan M, Gonzalez RG et al (2007) Serial diffusion tensor MRI after transient and permanent cerebral ischemia in nonhuman primates. Stroke 38(1):138–145CrossRefPubMedGoogle Scholar
  45. 45.
    Assaf Y, Pasternak O (2008) Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci 34(1):51–61CrossRefPubMedGoogle Scholar
  46. 46.
    Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow WD (2007) Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain 130(Pt 1):170–180PubMedGoogle Scholar
  47. 47.
    Morita N, Harada M, Uno M, Furutani K, Nishitani H (2006) Change of diffusion anisotropy in patients with acute cerebral infarction using statistical parametric analysis. Radiat Med 24(4):253–259CrossRefPubMedGoogle Scholar
  48. 48.
    Schaechter JD, Fricker ZP, Perdue KL, Helmer KG, Vangel MG, Greve DN et al (2009) Microstructural status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke patients. Hum Brain Mapp 30(11):3461–3474CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Matsuoka K, Yasuno F, Taguchi A, Yamamoto A, Kajimoto K, Kazui H et al (2015) Delayed atrophy in posterior cingulate cortex and apathy after stroke. Int J Geriatr Psychiatry 30(6):566–572CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sara Regina Meira Almeida
    • 1
    • 2
  • Gabriela Castellano
    • 2
    • 3
  • Jessica Vicentini
    • 1
    • 2
  • Li Li Min
    • 1
    • 2
  1. 1.Department of NeurologySchool of Medical Sciences, University of Campinas (UNICAMP)CampinasBrazil
  2. 2.Brazilian Institute of Neuroscience and Neurotechnology (BRAINN)CampinasBrazil
  3. 3.Neurophysics Group, Institute of Physics Gleb WataghinUniversity of Campinas (UNICAMP)CampinasBrazil

Personalised recommendations