The Implications of Brain Plasticity and Task Selectivity for Visual Rehabilitation of Blind and Visually Impaired Individuals

  • Daniel-Robert ChebatEmail author
  • Benedetta Heimler
  • Shir Hofsetter
  • Amir AmediEmail author
Part of the Contemporary Clinical Neuroscience book series (CCNE)


The human brain is a formidably complex and adaptable organ capable of rewiring itself or adjusting existing connections in order to learn and to maximize its survival edge. Studies using sensory substitution devices have had a big impact on the uncovering of the mechanisms subtending brain organization. Sensory substitution devices are capable of conveying information typically received through a specific sensory modality (e.g., vision) and transferring it to the user via a different sense (e.g., audition or touch). Experimental research exploring the perceptual learning of sensory substitution devices has revealed the ability of users to recognize movement and shapes, to navigate routes, to detect and avoid obstacles, and to perceive colors or depth via touch or sound, even in cases of full and congenital blindness. Using a combination of functional and anatomical neuroimaging techniques, the comparisons of performances between congenitally blind people and sighted people using sensory substitution devices in perceptual and sensory-motor tasks as well as in several recognition tasks uncovered the striking ability of the brain to rewire itself during perceptual learning and to learn to interpret novel sensory information even during adulthood. This review discusses the impact of invasive and noninvasive forms of artificial vision on brain organization with a special emphasis on sensory substitution devices and also discusses the implications of these findings for the visual rehabilitation of congenitally and late blind and partially sighted individuals while applying insights from neuroimaging and psychophysics.


Cross modal plasticity Visual rehabilitation Brain imaging and connectivity Blindness Sensory substitution Minimalistic sensory substitution Sight restoration Task selectivity Amodality Brain reorganization 


  1. 1.
    Heimler B, Baruffaldi F, Bonmassar C, Venturini M, Pavani F (2017) Multisensory interference in early deaf adults. J Deaf Stud Deaf Educ 22(4):422–433PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Amedi A, Hofstetter S, Maidenbaum S, Heimler B (2017) Task selectivity as a comprehensive principle for brain organization. Trends Cogn Sci 21(5):307–310PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Heimler B, Striem-Amit E, Amedi A (2015) Origins of task-specific sensory-independent organization in the visual and auditory brain: neuroscience evidence, open questions and clinical implications. Curr Opin Neurobiol 35:169–177PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Kupers R, Ptito M (2011) Insights from darkness: what the study of blindness has taught us about brain structure and function. In: Progress in brain research, vol 192. Elsevier, Amsterdam, pp 17–31Google Scholar
  5. 5.
    Reich L, Maidenbaum S, Amedi A (2012) The brain as a flexible task machine: implications for visual rehabilitation using noninvasive vs. invasive approaches. Curr Opin Neurol 25(1):86–95PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Cecchetti L, Kupers R, Ptito M, Pietrini P, Ricciardi E (2016) Are supramodality and cross-modal plasticity the yin and yang of brain development? From blindness to rehabilitation. Front Syst Neurosci 10:89PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Ptito M, Chebat DR, Kupers R (2008a) The blind get a taste of vision. In: Human haptic perception: basics and applications. Birkhäuser, Basel, pp 481–489CrossRefGoogle Scholar
  8. 8.
    Bach-y-Rita P, Kercel SW (2003) Sensory substitution and the human–machine interface. Trends Cogn Sci 7(12):541–546PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Chebat DR, Harrar V, Kupers R, Maidenbaum S, Amedi A, Ptito M (2018) Sensory substitution and the neural correlates of navigation in blindness. In: Mobility of Visually Impaired People. Springer, Cham, pp 167–200CrossRefGoogle Scholar
  10. 10.
    Proulx MJ, Ptito M, Amedi A (2014) Multisensory integration, sensory substitution and visual rehabilitation. Neurosci Biobehav Rev 41:1PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Fine I, Boynton GM (2015) Pulse trains to percepts: the challenge of creating a perceptually intelligible world with sight recovery technologies. Philos Trans R Soc Lond B Biol Sci 370(1677):20140208PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Fine I, Cepko CL, Landy MS (2015) Vision research special issue: sight restoration: prosthetics, optogenetics and gene therapy. Vis Res 111(Pt B):115PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Arabi K, Sawan MA (1999) Electronic design of a multichannel programmable implant for neuromuscular electrical stimulation. J IEEE Trans Rehabil Eng 7:204–214CrossRefGoogle Scholar
  14. 14.
    Sawan M, Hu Y, Coulombe J (2005) Wireless smart implants dedicated to multichannel monitoring and microstimulation. IEEE Circuits Syst Mag 5:21–39CrossRefGoogle Scholar
  15. 15.
    Delbeke J, Pins D, Michaux G, Wanet-Defalque MC, Parrini S, Veraart C (2001) Electrical stimulation of anterior visual pathways in retinitis pigmentosa. Invest Ophthalmol Vis Sci 42(1):291–297PubMedPubMedCentralGoogle Scholar
  16. 16.
    Dobelle WH (2000) Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO J 46(1):3–9PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Dobelle WH, Quest DO, Antunes JL, Roberts TS, Girvin JP (1979) Artificial vision for the blind by electrical stimulation of the visual cortex. Neurosurgery 5(4):521–527PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Veraart C, Raftopoulos C, Mortimer JT, Delbeke J, Pins D, Michaux G, Vanlierde A, Parrini S, Wanet-Defalque MC (1998) Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Res 813(1):181–186PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Merabet LB, Rizzo JF III, Pascual-Leone A, Fernandez E (2007) ‘Who is the ideal candidate?’: Decisions and issues relating to visual neuroprosthesis development, patient testing and neuroplasticity. J Neural Eng 4(1):S130PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Neville H, Bavelier D (2002) Human brain plasticity: evidence from sensory deprivation and altered language experience. Prog Brain Res 138:177–188PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Gekeler F, Messias A, Ottinger M, Bartz-Schmidt KU, Zrenner E (2006) Phosphenes electrically evoked with DTL electrodes: a study in patients with retinitis pigmentosa, glaucoma, and homonymous visual field loss and normal subjects. Invest Ophthalmol Vis Sci 47(11):4966–4974PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Veraart C, Wanet-Defalque MC, Gerard B, Vanlierde A, Delbeke J (2003) Pattern recognition with the optic nerve visual prosthesis. Artif Organs 27(11):996–1004PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Humayun MS, Dorn JD, Da Cruz L, Dagnelie G, Sahel JA, Stanga PE, Ho AC (2012) Interim results from the international trial of second Sight's visual prosthesis. Ophthalmology 119(4):779–788PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Luo YHL, da Cruz L (2016) The Argus® II retinal prosthesis system. Prog Retin Eye Res 50:89–107PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Matet A, Amar N, Mohand-Said S, Sahel JA, Barale PO (2016) Argus II retinal prosthesis implantation with scleral flap and autogenous temporalis fascia as alternative patch graft material: a 4-year follow-up. Clin Ophthalmol (Auckland, NZ) 10:1565CrossRefGoogle Scholar
  26. 26.
    Dagnelie G, Christopher P, Arditi A, Cruz L, Duncan JL, Ho AC et al (2017) Performance of real-world functional vision tasks by blind subjects improves after implantation with the Argus® II retinal prosthesis system. Clin Experiment Ophthalmol 45(2):152–159PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Barry MP, Dagnelie G, Argus IISG (2012) Use of the Argus II retinal prosthesis to improve visual guidance of fine hand movements. Invest Ophthalmol Vis Sci 53(9):5095±101. PMID: 22661464; PubMed Central PMCID: PMCPMC3416020CrossRefGoogle Scholar
  28. 28.
    Chader GJ, Weiland J, Humayun MS (2009) Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis. Prog Brain Res 175:317±32. PMID: 19660665CrossRefGoogle Scholar
  29. 29.
    da Cruz L, Coley BF, Dorn J, Merlini F, Filley E, Christopher P et al (2013) The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss. Br J Ophthalmol 97(5):632±6. PMID: 23426738; PubMed Central PMCID: PMCPMC3632967CrossRefGoogle Scholar
  30. 30.
    Dorn JD, Ahuja AK, Caspi A, da Cruz L, Dagnelie G, Sahel JA et al (2013) The detection of motion by blind subjects with the Epiretinal 60-electrode (Argus II) retinal prosthesis. JAMA Ophthalmol 131(2):183±9. PMID: 23544203; PubMed Central PMCID: PMCPMC3924899CrossRefGoogle Scholar
  31. 31.
    Rizzo S, Belting C, Cinelli L, Allegrini L, Genovesi-Ebert F, Barca F et al (2014) The Argus II retinal prosthesis: 12-month outcomes from a single-study center. Am J Ophthalmol 157(6):1282±90. PMID: 24560994CrossRefGoogle Scholar
  32. 32.
    Kotecha A, Zhong J, Stewart D, da Cruz L (2014) The Argus II prosthesis facilitates reaching and grasping tasks: a case series. BMC Ophthalmol 14(1):71PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Luo YHL, Zhong JJ, Da Cruz L (2015) The use of Argus® II retinal prosthesis by blind subjects to achieve localisation and prehension of objects in 3-dimensional space. Graefes Arch Clin Exp Ophthalmol 253(11):1907–1914PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Sabbah N, Authié CN, Sanda N, Mohand-Said S, Sahel JA, Safran AB (2014) Importance of eye position on spatial localization in blind subjects wearing an Argus II retinal prosthesis eye position, localization, and retinal prosthesis. Invest Ophthalmol Vis Sci 55(12):8259–8266PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Castaldi E, Cicchini GM, Cinelli L, Biagi L, Rizzo S, Morrone MC (2016) Visual BOLD response in late blind subjects with Argus II retinal prosthesis. PLoS Biol 14(10):e1002569PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Huber E, Webster JM, Brewer AA, MacLeod DI, Wandell BA, Boynton GM, Fine I (2015) A lack of experience-dependent plasticity after more than a decade of recovered sight. Psychol Sci.
  37. 37.
    Sabbah N, Sanda N, Authié CN, Mohand-Saïd S, Sahel JA, Habas C, Amedi A, Safran AB (2017) Reorganization of early visual cortex functional connectivity following selective peripheral and central visual loss. Scientific Reports 7:43223PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Heimler B, Weisz N, Collignon O (2014) Revisiting the adaptive and maladaptive effects of crossmodal plasticity. Neurosci 283:44–63CrossRefGoogle Scholar
  39. 39.
    Ptito M, Fumal A, de Noordhout AM, Schoenen J, Gjedde A, Kupers R (2008) TMS of the occipital cortex induces tactile sensations in the fingers of blind braille readers. Exp Brain Res 184:193–200PubMedCrossRefGoogle Scholar
  40. 40.
    Kupers R, Fumal A, De Noordhout AM, Gjedde A, Schoenen J, Ptito M (2006) Transcranial magnetic stimulation of the visual cortex induces somatotopically organized qualia in blind subjects. Proc Natl Acad Sci 103(35):13256–13260PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Busskamp V, Duebel J, Balya D, Fradot M, Viney TJ, Siegert S et al (2010) Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329(5990):413–417PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Yang Y, Mohand-Said S, Léveillard T, Fontaine V, Simonutti M, Sahel JA (2010) Transplantation of photoreceptor and total neural retina preserves cone function in P23H rhodopsin transgenic rat. PLoS One 5(10):e13469PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Davis MF, Velez DXF, Guevarra RP, Yang MC, Habeeb M, Carathedathu MC, Gandhi SP (2015) Inhibitory neuron transplantation into adult visual cortex creates a new critical period that rescues impaired vision. Neuron 86(4):1055–1066PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Deidda G, Allegra M, Cerri C, Naskar S, Bony G, Zunino G, Bozzi Y, Caleo M, Cancedda L (2014) Early depolarizing GABA controls critical-period plasticity in the rat visual cortex. Nat Neurosci 18:87PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Lunghi C, Emir UE, Morrone MC, Bridge H (2015) Short-term monocular deprivation alters GABA in the adult human visual cortex. Curr Biol 25:1496–1501PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Sengpiel F (2014) Plasticity of the visual cortex and treatment of amblyopia. Curr Biol 24(18):R936–R940PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Borisoff JF, Elliott SL, Hocaloski S, Birch GE (2010) The development of a sensory substitution system for the sexual rehabilitation of men with chronic spinal cord injury. J Sex Med 7(11):3647–3658PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Sadeghi SG, Minor LB, Cullen KE (2012) Neural correlates of sensory substitution in vestibular pathways following complete vestibular loss. J Neurosci 32(42):14685–14695PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Vuillerme N, Hlavackova P, Franco C, Diot B, Demongeot J, Payan Y (2011) Can an electro-tactile vestibular substitution system improve balance in patients with unilateral vestibular loss under altered somatosensory conditions from the foot and ankle? In: Engineering in medicine and biology society, EMBC, 2011 annual international conference of the IEEE. IEEE, pp 1323–1326Google Scholar
  50. 50.
    Kärcher SM, Fenzlaff S, Hartmann D, Nagel SK, König P (2012) Sensory augmentation for the blind. Front Hum Neurosci 6:37PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Ward J, Meijer P (2010) Visual experiences in the blind induced by an auditory sensory substitution device. Conscious Cogn 19(1):492–500PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Fornazzari L, Fischer CE, Ringer L, Schweizer TA (2012) “Blue is music to my ears”: multimodal synesthesias after a thalamic stroke. Neurocase 18(4):318–322PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Ione A, Tyler C (2004) Neuroscience, history and the arts synesthesia: is F-sharp colored violet? J Hist Neurosci 13(1):58–65PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Marks LE (1975) On colored-hearing synesthesia: cross-modal translations of sensory dimensions. Psychol Bull 82(3):303PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Tyler CW (2005) Varieties of synesthetic experience. In: Robertson LC, Sagiv N (eds) Synesthesia: Perspectives from Cognitive Neuroscience. Oxford University Press, New YorkGoogle Scholar
  56. 56.
    Zamm A, Schlaug G, Eagleman DM, Loui P (2013) Pathways to seeing music: enhanced structural connectivity in colored-music synesthesia. NeuroImage 74:359–366PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Chiou R, Stelter M, Rich AN (2013) Beyond colour perception: auditory–visual synaesthesia induces experiences of geometric objects in specific locations. Cortex 49(6):1750–1763PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Proulx MJ (2010) Synthetic synaesthesia and sensory substitution. Conscious Cogn 19(1):501–503PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Ward J, Wright T (2014) Sensory substitution as an artificially acquired synaesthesia. Neurosci Biobehav Rev 41:26–35PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Buchs G, Maidenbaum S, Amedi A (2014) Obstacle identification and avoidance using the ‘EyeCane’: a tactile sensory substitution device for blind individuals. In: International conference on LBHuman haptic sensing and touch enabled computer applications. Springer, Berlin/Heidelberg, pp 96–103Google Scholar
  61. 61.
    Chebat DR, Schneider FC, Kupers R, Ptito M (2011) Navigation with a sensory substitution device in congenitally blind individuals. Neuroreport 22(7):342–347PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Gagnon L, Schneider FC, Siebner HR, Paulson OB, Kupers R, Ptito M (2012) Activation of the hippocampal complex during tactile maze solving in congenitally blind subjects. Neuropsychologia 50(7):1663–1671PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Kupers R, Chebat DR, Madsen KH, Paulson OB, Ptito M (2010) Neural correlates of virtual route recognition in congenital blindness. Proc Natl Acad Sci 107(28):12716–12721PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Chebat DR, Maidenbaum S, Amedi A (2015) Navigation using sensory substitution in real and virtual mazes. PLoS One 10(6):e0126307PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Matteau I, Kupers R, Ricciardi E, Pietrini P, Ptito M (2010) Beyond visual, aural and haptic movement perception: hMT+ is activated by electrotactile motion stimulation of the tongue in sighted and in congenitally blind individuals. Brain Res Bull 82(5):264–270PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Striem-Amit E, Dakwar O, Reich L, Amedi A (2011b) The large-scale organization of “visual” streams emerges without visual experience. Cereb Cortex 22(7):1698–1709PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Striem-Amit E, Amedi A (2014) Visual cortex extrastriate body-selective area activation in congenitally blind people “seeing” by using sounds. Curr Biol 24(6):687–692PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Striem-Amit E, Cohen L, Dehaene S, Amedi A (2012) Reading with sounds: sensory substitution selectively activates the visual word form area in the blind. Neuron 76(3):640–652PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Abboud S, Maidenbaum S, Dehaene S, Amedi A (2015) A number-form area in the blind. Nat Commun 6:6026PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Bach-y-Rita P (1975) Plastic brain mechanisms in sensory substitution. In: Cerebral localization. Springer, Berlin/Heidelberg, pp 203–216CrossRefGoogle Scholar
  71. 71.
    Bach-y-Rita P, Collins CC, Saunders FA, White B, Scadden L (1969) Vision substitution by tactile image projection. Nature 221(5184):963–964PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Nagel SK, Carl C, Kringe T, Märtin R, König P (2005) Beyond sensory substitution—learning the sixth sense. J Neural Eng 2(4):R13PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Visell Y (2008) Tactile sensory substitution: models for enaction in HCI. Interacting with Computers 21(1-2):38–53CrossRefGoogle Scholar
  74. 74.
    Bach-y-Rita P, Aiello GL (1996) Nerve length and volume in synaptic vs diffusion neurotransmission: a model. Neuroreport 7(9):1502–1504PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Kacznaarek KA, Bach-Y-Rita P (1995) Tactile displays. In: Virtual environments and advanced interface design, vol 55. New York, Oxford, p 349Google Scholar
  76. 76.
    Renier L, Laloyaux C, Collignon O, Tranduy D, Vanlierde A, Bruyer R, De Volder AG (2005) The Ponzo illusion with auditory substitution of vision in sighted and early-blind subjects. Perception 34(7):857–867PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Renier L, Bruyer R, De Volder AG (2006) Vertical-horizontal illusion present for sighted but not early blind humans using auditory substitution of vision. Attention. Percept Psychophys 68(4):535–542PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Schinazi VR, Thrash T, Chebat DR (2016) Spatial navigation by congenitally blind individuals. Wiley Interdiscip Rev Cogn Sci 7(1):37–58PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Supa M, Cotzin M, Dallenbach KM (1944) " facial vision": the perception of obstacles by the blind. Am J Psychol 57(2):133–183CrossRefGoogle Scholar
  80. 80.
    Cotzin M, Dallenbach KM (1950) “Facial Vision”: the role of pitch and loudness in the perception of obstacles by the blind. Am J Psychol 63:485–515PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Cotzin, Dallenbach (1950) “Facial vision”: the role of pitch and loudness in the location of obstacles by the blind. Am J Psychol 63:485PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Ashmead DH, Hill EW, Talor CR (1989) Obstacle perception by ongenitally blind children. Atten Percept Psychophys 46(5):425–433CrossRefGoogle Scholar
  83. 83.
    Wilson JP (1967) Psychoacoustics of obstacle detection using ambient or self-generated noise. In: Animal sonar systems: biology and bionics, vol 1. Laboratoire de Physiologie Acoustique, INRA-CNRZ, Jouy-en-Josas, pp 89–114Google Scholar
  84. 84.
    Bronkhorst AW, Houtgast T (1999) Auditory distance perception in rooms. Nature 397(6719):517–520PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Kaye HS (2000) Computer and internet use among people with disabilities. Disability Statistics Report 13Google Scholar
  86. 86.
    Meijer PB (1992) An experimental system for auditory image representations. IEEE Trans Biomed Eng 39(2):112–121PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Hersh MA, Johnson MA (2008) Disability and assistive technology systems. In: Assistive technology for visually impaired and blind people. Springer, London, pp 1–50CrossRefGoogle Scholar
  88. 88.
    Maidenbaum S, Abboud S, Amedi A (2014) Sensory substitution: closing the gap between basic research and widespread practical visual rehabilitation. Neurosci Biobehav Rev 41:3–15PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Dunai L, Peris-Fajarnés G, Lluna E, Defez B (2013) Sensory navigation device for blind people. J Navig 66(3):349–362CrossRefGoogle Scholar
  90. 90.
    Hartcher-O'Brien J, Auvray M, Hayward V (2015) Perception of distance-to-obstacle through timedelayed tactile feedback. In: World Haptics Conference (WHC), 2015 I.E. (pp. 7–12). IEEEGoogle Scholar
  91. 91.
    Segond H, Weiss D, Sampaio E (2005) Human spatial navigation via a visuo-tactile sensory substitution system. Perception 34(10):1231–1249PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Shoval S, Borenstein J, Koren Y (1998) Auditory guidance with the navbelt-a computerized travel aid for the blind. IEEE Trans Syst Man Cybern Part C Appl Rev 28(3):459–467CrossRefGoogle Scholar
  93. 93.
    Stoll C, Palluel-Germain R, Fristot V, Pellerin D, Alleysson D, Graff C (2015) Navigating from a depth image converted into sound. Appl Bionics Biomech 2015:9CrossRefGoogle Scholar
  94. 94.
    Kaspar K, König S, Schwandt J, König P (2014) The experience of new sensorimotor contingencies by sensory augmentation. Conscious Cogn 28:47–63PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    König SU, Schumann F, Keyser J, Goeke C, Krause C, Wache S, Lytochkin A, Ebert M, Brunsch V, Wahn B, Kaspar K, Nagel SK, Meilinger T, Bülthoff H, Wolbers T, Büchel C, König P (2016) Learning new sensorimotor contingencies: effects of long-term use of sensory augmentation on the brain and conscious perception. PLoS One 11(12):e0166647PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Noppeney U, Friston KJ, Ashburner J, Frackowiak R, Price CJ (2005) Early visual deprivation induces structural plasticity in gray and white matter. Curr Biol 15(13):R488–R490PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Shimony JS, Burton H, Epstein AA, McLaren DG, Sun SW, Snyder AZ (2006) Diffusion tensor imaging reveals white matter reorganization in early blind humans. Cereb Cortex 16(11):1653–1661PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    De Volder AG, Bol A, Blin J, Robert A, Arno P, Grandin C, Michel C, Veraart C (1997) Brain energy metabolism in early blind subjects: neural activity in the visual cortex. Brain Res 750(1):235–244PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Wanet-Defalque MC, Veraart C, De Volder A, Metz R, Michel C, Dooms G, Goffinet A (1988) High metabolic activity in the visual cortex of early blind human subjects. Brain Res 446(2):369–373PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Noppeney U (2007) The effects of visual deprivation on functional and structural organization of the human brain. Neurosci Biobehav Rev 31(8):1169–1180PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Sathian K, Zangaladze A (2002) Feeling with the mind's eye: contribution of visual cortex to tactile perception. Behav Brain Res 135(1):127–132PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15(1):20–25PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Milner AD, Goodale MA (2008) Two visual systems re-viewed. Neuropsychologia 46(3):774–785PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Mishkin M, Ungerleider LG (1982) Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behav Brain Res 6(1):57–77PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Ptito M, Matteau I, Zhi Wang A, Paulson OB, Siebner HR, Kupers R (2012) Crossmodal recruitment of the ventral visual stream in congenital blindness. Neural Plast 2012:304045PubMedPubMedCentralGoogle Scholar
  106. 106.
    Amedi A, Stern WM, Camprodon JA, Bermpohl F, Merabet L, Rotman S et al (2007) Shape conveyed by visual-to-auditory sensory substitution activates the lateral occipital complex. Nat Neurosci 10(6):687PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Reich L, Szwed M, Cohen L, Amedi A (2011) A ventral visual stream reading center independent of visual experience. Curr Biol 21(5):363–368PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Büchel C, Price C, Frackowiak RS, Friston K (1998) Different activation patterns in the visual cortex of late and congenitally blind subjects. Brain J Neurol 121(3):409–419CrossRefGoogle Scholar
  109. 109.
    Ptito M, Matteau I, Gjedde A, Kupers R (2009) Recruitment of the middle temporal area by tactile motion in congenital blindness. Neuroreport 20(6):543–547PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Matteau I, Schneider F, Kupers R, Ptito M (2006) Tactile motion discrimination through the tongue in blindness: a fMRI study. Neuroimage 36(Suppl 1):211Google Scholar
  111. 111.
    Collignon O, Lassonde M, Lepore F, Bastien D, Veraart C (2007) Functional cerebral reorganization for auditory spatial processing and auditory substitution of vision in early blind subjects. Cereb Cortex 17(2):457–465PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Bedny M, Konkle T, Pelphrey K, Saxe R, Pascual-Leone A (2010) Sensitive period for a multimodal response in human visual motion area MT/MST. Curr Biol 20(21):1900–1906PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Amedi A, Stern W, Striem E, Hertz U, Meijer P, Pascual-Leone A (2008) A what/where visual-toauditory sensory substitution fMRI study: Can blind and sighted hear shapes and locations in the visual cortex. In: 31st European Conference on Visual PerceptionGoogle Scholar
  114. 114.
    Siuda-Krzywicka K, Bola Ł, Paplińska M, Sumera E, Jednoróg K, Marchewka A, Szwed M (2016) Massive cortical reorganization in sighted braille readers. elife 5:e10762PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Hertz U, Amedi A (2014) Flexibility and stability in sensory processing revealed using visual-to-auditory sensory substitution. Cereb Cortex 25(8):2049–2064PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Hannagan T, Amedi A, Cohen L, Dehaene-Lambertz G, Dehaene S (2015) Origins of the specialization for letters and numbers in ventral occipitotemporal cortex. Trends Cogn Sci 19(7):374–382PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Damoiseaux JS, Greicius MD (2009) Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct 213:525–533PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Bi Y, Wang X, Caramazza A (2016) Object domain and modality in the ventral visual pathway. Trends Cogn Sci 20(4):282–290PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Weaver KE, Stevens AA (2007) Attention and sensory interactions within the occipital cortex in the early blind: an fMRI study. J Cogn Neurosci 19(2):315–330PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Eger E, Sterzer P, Russ MO, Giraud A-L, Kleinschmidt A (2003) A supramodal number representation in human intraparietal cortex. Neuron 37:719–726PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Price CJ (2012) A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage 62:816PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Vigneau M, Beaucousin V, Herve P-Y, Duffau H, Crivello F, Houde O, Mazoyer B, Tzourio-Mazoyer N (2006) Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. NeuroImage 30:1414–1432PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Wang X, Peelen MV, Han Z, He C, Caramazza A, Bi Y (2015) How visual is the visual cortex? Comparing connectional and functional fingerprints between congenitally blind and sighted individuals. J Neurosci 35(36):12545–12559PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Ptito M, Moesgaard SM, Gjedde A, Kupers R (2005) Cross-modal plasticity revealed by electrotactile stimulation of the tongue in the congenitally blind. Brain 128(3):606–614PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Thaler L, Arnott SR, Goodale MA (2011) Neural correlates of natural human echolocation in early and late blind echolocation experts. PLoS One 6:e20162PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Théoret H, Merabet L, Pascual-Leone A (2004) Behavioral and neuroplastic changes in the blind: evidence for functionally relevant cross-modal interactions. J Physiol aris 98(1):221–233Google Scholar
  128. 128.
    Amedi A, Raz N, Pianka P, Malach R, Zohary E (2003) Early 'visual' cortex activation correlates with superior verbal memory performance in the blind. Nat Neurosci 6:758–766PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Bedny M, Pascual-Leone A, Dodell-Feder D, Fedorenko E, Saxe R (2011) Language processing in the occipital cortex of congenitally blind adults. Proc Natl Acad Sci 108(11):4429–4434PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Burton H, Diamond JB, McDermott KB (2003) Dissociating cortical regions activated by semantic and phonological tasks: a FMRI study in blind and sighted people. J Neurophysiol 90:1965–1982. Epub 2003 Jun 1964PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Sadato N, Pascual-Leone A, Grafman J, Ibanez V, Deiber MP, Dold G, Hallett M (1996) Activation of the primary visual cortex by braille reading in blind subjects. Nature 380:526–528PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Strnad L, Peelen MV, Bedny M, Caramazza A (2013) Multivoxel pattern analysis reveals auditory motion information in MT+ of both congenitally blind and sighted individuals. PLoS One 8:e63198PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Vetter P, Smith FW, Muckli L (2014) Decoding sound and imagery content in early visual cortex. Curr Biol 24:1256–1262PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Raz N, Amedi A, Zohary E (2005) V1 activation in congenitally blind humans is associated with episodic retrieval. Cereb Cortex 15(9):1459–1468PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Amedi A, Floel A, Knecht S, Zohary E, Cohen LG (2004) Transcranial magnetic stimulation of the occipital pole interferes with verbal processing in blind subjects. Nat Neurosci 7(11):1266–1270PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Butt OH, Benson NC, Datta R, Aguirre GK (2013) The fine-scale functional correlation of striate cortex in sighted and blind people. J Neurosci 33:16209PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Bock AS, Saenz M, Tungaraza R, Boynton GM, Bridge H, Fine I (2013) Visual callosal topography in the absence of retinal input. NeuroImage 81:325PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Bock AS, Fine I (2014) Anatomical and functional plasticity in early blind individuals and the mixture of experts architecture. Front Hum Neurosci 8:971PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Burton H, Snyder AZ, Raichle ME (2014) Resting state functional connectivity in early blind humans. Front Syst Neurosci 8:51PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Deen B, Saxe R, Bedny M (2015) Occipital cortex of blind individuals is functionally coupled with executive control areas of frontal cortex. J Cogn Neurosci 27(8):1633–1647PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Liu Y, Yu C, Liang M, Li J, Tian L, Zhou Y, Qin W, Li K, Jiang T (2007) Whole brain functional connectivity in the early blind. Brain 130:2085–2096PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Watkins KE, Cowey A, Alexander I, Filippini N, Kennedy JM, Smith SM, Ragge N, Bridge H (2012) Language networks in anophthalmia: maintained hierarchy of processing in ‘visual’ cortex. Brain 135:1566PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Striem-Amit E, Ovadia-Caro S, Caramazza A, Margulies DS, Villringer A, Amedi A (2015) Functional connectivity of visual cortex in the blind follows retinotopic organization principles. Brain 138:1679–1695. awv083PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Gougoux F, Zatorre RJ, Lassonde M, Voss P, Lepore F (2005) A functional neuroimaging study of sound localization: visual cortex activity predicts performance in early-blind individuals. PLoS Biol 3:e2CrossRefGoogle Scholar
  145. 145.
    Breitenseher M, Uhl F, Prayer Wimberger D, Deecke L, Trattnig S, Kramer J (1998) Morphological dissociation between visual pathways and cortex: MRI of visually-deprived patients with congenital peripheral blindness. Neuroradiology 40(7):424–427PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Pan WJ, Wu G, Li CX, Lin F, Sun J, Lei H (2007) Progressive atrophy in the optic pathway and visual cortex of early blind Chinese adults: a voxel-based morphometry magnetic resonance imaging study. NeuroImage 37(1):212–220PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Shu N, Li J, Li K, Yu C, Jiang T (2009) Abnormal diffusion of cerebral white matter in early blindness. Hum Brain Mapp 30(1):220–227PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Christensen R, Grey M, Ptito M, Kupers R (2009) Resting state brain metabolism and functional connectivity of the occipital cortex in congenital blindness: a combined rTMS and PET-FDG study. NeuroImage 47:S64CrossRefGoogle Scholar
  149. 149.
    Veraart C, De Volder AG, Wanet-Defalque MC, Bol A, Michel C, Goffinet AM (1990) Glucose utilization in human visual cortex is abnormally elevated in blindness of early onset but decreased in blindness of late onset. Brain Res 510(1):115–121PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Kupers R, Ptito M (2014) Compensatory plasticity and cross-modal reorganization following early visual deprivation. Neurosci Biobehav Rev 41:36–52PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Coullon GS, Emir UE, Fine I, Watkins KE, Bridge H (2015) Neurochemical changes in the pericalcarine cortex in congenital blindness attributable to bilateral anophthalmia. J Neurophysiol 114(3):1725–1733PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Leporé N, Voss P, Lepore F, Chou YY, Fortin M, Gougoux F, Lee AD, Brun C, Lassonde M, Madsen SK, Toga AW, Toga AW, Thompson PM (2010) Brain structure changes visualized in early-and late-onset blind subjects. NeuroImage 49(1):134–140PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Maller JJ, Thomson RH, Ng A, Mann C, Eager M, Ackland H et al (2016) Brain morphometry in blind and sighted subjects. J Clin Neurosci 33:89–95PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Bonino D, Ricciardi E, Sani L et al (2008) Tactile spatial working memory activates the dorsal extrastriate cortical pathway in congenitally blind individuals. Arch Ital Biol 146:133–146PubMedPubMedCentralGoogle Scholar
  155. 155.
    Striem-Amit E, Hertz U, Amedi A (2011a) Extensive cochleotopic mapping of human auditory cortical fields obtained with phase-encoding FMRI. PLoS One 6(3):e17832PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Stronks HC, Mitchell EB, Nau AC, Barnes N (2016) Visual task performance in the blind with the BrainPort V100 vision aid. Expert Rev Med Devices 13(10):919–931PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Maidenbaum S, Hannasi S, Abboud S, Arbel R, Shipuznikov A, Levy-Tzedek S et al (2012) The EyeCane-Distance information for the blind. In: Journal of molecular neuroscience, vol 48. Humana Press Inc, Totowa, pp S75–S76Google Scholar
  158. 158.
    Maidenbaum S, Levy-Tzedek S, Chebat DR, Amedi A (2013) Increasing accessibility to the blind of virtual environments, using a virtual mobility aid based on the “EyeCane”: feasibility study. PLoS One 8(8):e72555PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Chebat DR, Harrar V, Kupers R, Maidenbaum M, Amedi A, Ptito M (2017) Sensory SUbstitution and the neural correlates of navigation in blindness. In: Mobility in visually impaired people. Springer. In pressGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Visual and Cognitive Neuroscience Laboratory (VCN lab), Department of Behavioral SciencesFaculty of Social Sciences and Humanities, Ariel UniversityArielIsrael
  2. 2.Department of Medical NeurobiologyThe Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
  3. 3.The Edmond and Lily Safra Centre for Brain Sciences (ELSC), The Hebrew University of JerusalemJerusalemIsrael
  4. 4.Cognitive Sciences ProgramThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations