Advertisement

MRI Neuroimaging and Psychiatry

  • Laura Hatchondo
Chapter
Part of the Contemporary Clinical Neuroscience book series (CCNE)

Abstract

Neuroimaging techniques have greatly been developed over the past 10 years, allowing access to brain anatomy, function, and metabolism in vivo. The last 20 years have seen a significant and constant increase of the number of studies using these techniques to explore psychiatric diseases. Indeed, human neuropsychology studies and experimental animal neurophysiology studies have led to a main hypothesis that there would be an anatomical and/or functional and/or metabolism substratum to psychiatric disorders.

References

  1. 1.
    NIMH. Bipolar Disorder [Internet] (2016) Available from: https://www.nimh.nih.gov/health/topics/bipolar-disorder/index.shtml#part_152505
  2. 2.
    Association AP (2013) DSM-5 : diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Pub. 1629 pGoogle Scholar
  3. 3.
    Hajek T, Kopecek M, Kozeny J, Gunde E, Alda M, Höschl C (2009) Amygdala volumes in mood disorders — meta-analysis of magnetic resonance volumetry studies. J Affect Disord 115(3):395–410PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Bora E, Fornito A, Yücel M, Pantelis C (2010) Voxelwise meta-analysis of gray matter abnormalities in bipolar disorder. Biol Psychiatry 67(11):1097–1105PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Ellison-Wright I, Bullmore E (2010) Anatomy of bipolar disorder and schizophrenia: a meta-analysis. Schizophr Res 117(1):1):1–1)12PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Birur B, Kraguljac NV, Shelton RC, Lahti AC (2017) Brain structure, function, and neurochemistry in schizophrenia and bipolar disorder—a systematic review of the magnetic resonance neuroimaging literature. NPJ Schizophr [Internet]. 2017 Apr 3;3. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441538/
  7. 7.
    Lee J, Choi S, Kang J, Won E, Tae W-S, Lee M-S et al (2017) Structural characteristics of the brain reward circuit regions in patients with bipolar I disorder: a voxel-based morphometric study. Psychiatry Res Neuroimaging 269:82–89PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Adler CM, Holland SK, Schmithorst V, Wilke M, Weiss KL, Pan H et al (2004) Abnormal frontal white matter tracts in bipolar disorder: a diffusion tensor imaging study. Bipolar Disord 6(3):197–203PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Wang F, Jackowski M, Kalmar JH, Chepenik LG, Tie K, Qiu M et al (2008) Abnormal anterior cingulum integrity in bipolar disorder determined through diffusion tensor imaging. Br J Psychiatry J Ment Sci 193(2):126–129CrossRefGoogle Scholar
  10. 10.
    Haznedar MM, Roversi F, Pallanti S, Baldini-Rossi N, Schnur DB, LiCalzi EM et al (2005) Fronto-thalamo-striatal gray and white matter volumes and anisotropy of their connections in bipolar spectrum illnesses. Biol Psychiatry 57(7):733–742PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Bruno S, Cercignani M, Ron MA (2008) White matter abnormalities in bipolar disorder: a voxel-based diffusion tensor imaging study. Bipolar Disord 10(4):460–468PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Mahon K, Wu J, Malhotra AK, Burdick KE, DeRosse P, Ardekani BA et al (2009) A voxel-based diffusion tensor imaging study of white matter in bipolar disorder. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 34(6):1590–1600CrossRefGoogle Scholar
  13. 13.
    Sussmann JE, Lymer GKS, McKirdy J, Moorhead TWJ, Maniega SM, Job D et al (2009) White matter abnormalities in bipolar disorder and schizophrenia detected using diffusion tensor magnetic resonance imaging. Bipolar Disord 11(1):11–18PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Zanetti MV, Jackowski MP, Versace A, Almeida JRC, Hassel S, Duran FLS et al (2009) State-dependent microstructural white matter changes in bipolar I depression. Eur Arch Psychiatry Clin Neurosci 259(6):316–328PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Barysheva M, Jahanshad N, Foland-Ross L, Altshuler LL, Thompson PM (2013) White matter microstructural abnormalities in bipolar disorder: a whole brain diffusion tensor imaging study. Neuroimage Clin 2(Supplement C):558–568PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Emsell L, Leemans A, Langan C, Van Hecke W, Barker GJ, McCarthy P et al (2013) Limbic and Callosal white matter changes in euthymic bipolar I disorder: an advanced diffusion magnetic resonance imaging Tractography study. Biol Psychiatry 73(2):194–201PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Linke J, King AV, Poupon C, Hennerici MG, Gass A, Wessa M (2013) Impaired anatomical connectivity and related executive functions: differentiating vulnerability and disease marker in bipolar disorder. Biol Psychiatry 74(12):908–916PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Nortje G, Stein DJ, Radua J, Mataix-Cols D, Horn N (2013) Systematic review and voxel-based meta-analysis of diffusion tensor imaging studies in bipolar disorder. J Affect Disord 150(2):192–200PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Lu LH, Zhou XJ, Keedy SK, Reilly JL, Sweeney JA (2011) White matter microstructure in untreated first episode bipolar disorder with psychosis: comparison with schizophrenia. Bipolar Disord 13(0):604–613PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Ganzola R, Nickson T, Bastin ME, Giles S, Macdonald A, Sussmann J et al (2017) Longitudinal differences in white matter integrity in youth at high familial risk for bipolar disorder. Bipolar Disord 19(3):158–167PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Vargas C, López-Jaramillo C, Vieta E (2013) A systematic literature review of resting state network—functional MRI in bipolar disorder. J Affect Disord 150(3):727–735PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Argyelan M, Ikuta T, DeRosse P, Braga RJ, Burdick KE, John M et al (2014) Resting-state fMRI connectivity impairment in schizophrenia and bipolar disorder. Schizophr Bull 40(1):100–110PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Blumberg HP, Kaufman J, Martin A, Whiteman R, Zhang JH, Gore JC et al (2003) Amygdala and hippocampal volumes in adolescents and adults with bipolar disorder. Arch Gen Psychiatry 60(12):1201–1208PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Lawrence NS, Williams AM, Surguladze S, Giampietro V, Brammer MJ, Andrew C et al (2004) Subcortical and ventral prefrontal cortical neural responses to facial expressions distinguish patients with bipolar disorder and major depression. Biol Psychiatry 55(6):578–587PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Delvecchio G, Fossati P, Boyer P, Brambilla P, Falkai P, Gruber O et al (2012) Common and distinct neural correlates of emotional processing in bipolar disorder and major depressive disorder: a voxel-based meta-analysis of functional magnetic resonance imaging studies. Eur Neuropsychopharmacol 22(2):100–113PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Brooks JO, Vizueta N (2014) Diagnostic and clinical implications of functional neuroimaging in bipolar disorder. J Psychiatr Res 57(Supplement C):12–25PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Townsend JD, Torrisi SJ, Lieberman MD, Sugar CA, Bookheimer SY, Altshuler LL (2013) Frontal-amygdala connectivity alterations during emotion down-regulation in bipolar I disorder. Biol Psychiatry 73(2):127–135PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Cremaschi L, Penzo B, Palazzo M, Dobrea C, Cristoffanini M, Dell’Osso B et al (2013) Assessing working memory via N-back task in euthymic bipolar I disorder patients: a review of functional magnetic resonance imaging studies. Neuropsychobiology 68(2):63–70PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    McKenna BS, Sutherland AN, Legenkaya AP, Eyler LT (2014) Abnormalities of brain response during encoding into verbal working memory among euthymic patients with bipolar disorder. Bipolar Disord 16(3):289–299PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Dell’Osso B, Cinnante C, Giorgio AD, Cremaschi L, Palazzo MC, Cristoffanini M et al (2015) Altered prefrontal cortex activity during working memory task in bipolar disorder: a functional magnetic resonance imaging study in euthymic bipolar I and II patients. J Affect Disord 184:116–122PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Chase HW, Nusslock R, Almeida JR, Forbes EE, LaBarbara EJ, Phillips ML (2013) Dissociable patterns of abnormal frontal cortical activation during anticipation of an uncertain reward or loss in bipolar versus major depression. Bipolar Disord 15(8):839–854PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Urošević S, Luciana M, Jensen JB, Youngstrom EA, Thomas KM (2016) Age associations with neural processing of reward anticipation in adolescents with bipolar disorders. Neuroimage Clin 11:476–485PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Trost S, Diekhof EK, Zvonik K, Lewandowski M, Usher J, Keil M et al (2014) Disturbed anterior prefrontal control of the mesolimbic reward system and increased impulsivity in bipolar disorder. Neuropsychopharmacology 39(8):1914–1923PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Dutra SJ, Man V, Kober H, Cunningham WA, Gruber J (2017) Disrupted cortico-limbic connectivity during reward processing in remitted bipolar I disorder. Bipolar Disord 19:661PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Berghorst LH, Kumar P, Greve DN, Deckersbach T, Ongur D, Dutra S et al (2016) Stress and reward processing in bipolar disorder: an fMRI study. Bipolar Disord 18(7):602–611PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Kraguljac NV, Reid M, White D, Jones R, den Hollander J, Lowman D et al (2012) Neurometabolites in schizophrenia and bipolar disorder – a systematic review and meta-analysis. Psychiatry Res 203(2–3):111–125PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Atagün Mİ, Şıkoğlu EM, Can SS, Karakaş-Uğurlu G, Ulusoy-Kaymak S, Çayköylü A et al (2015) Investigation of Heschl’s gyrus and planum temporale in patients with schizophrenia and bipolar disorder: a proton magnetic resonance spectroscopy study. Schizophr Res 161(2):202–209PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Li H, Xu H, Zhang Y, Guan J, Zhang J, Xu C et al (2016) Differential neurometabolite alterations in brains of medication-free individuals with bipolar disorder and those with unipolar depression: a two-dimensional proton magnetic resonance spectroscopy study. Bipolar Disord 18(7):583–590PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Chitty KM, Lagopoulos J, Lee RSC, Hickie IB, Hermens DF (2013) A systematic review and meta-analysis of proton magnetic resonance spectroscopy and mismatch negativity in bipolar disorder. Eur Neuropsychopharmacol 23(11):1348–1363PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Kubo H, Nakataki M, Sumitani S, Iga J, Numata S (2017) Kameoka N, et al. 1H-magnetic resonance spectroscopy study of glutamate-related abnormality in bipolar disorder. J Affect Disord 208(Supplement C):139–144PubMedCrossRefGoogle Scholar
  41. 41.
    Silveira LE, Bond DJ, MacMillan EL, Kozicky J-M, Muralidharan K, Bücker J et al (2017) Hippocampal neurochemical markers in bipolar disorder patients following the first-manic episode: a prospective 12-month proton magnetic resonance spectroscopy study. Aust N Z J Psychiatry 51(1):65–74PubMedCrossRefGoogle Scholar
  42. 42.
    Shi X-F, Carlson PJ, Sung Y-H, Fiedler KK, Forrest LN, Hellem TL et al (2015) Decreased brain PME/PDE ratio in bipolar disorder: a preliminary 31P magnetic resonance spectroscopy study. Bipolar Disord 17(7):743–752PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Andres RH, Ducray AD, Schlattner U, Wallimann T, Widmer HR (2008) Functions and effects of creatine in the central nervous system. Brain Res Bull 76(4):329–343PubMedCrossRefGoogle Scholar
  44. 44.
    NIMH (2016) Schizophrenia [Internet]. Available from: https://www.nimh.nih.gov/health/topics/schizophrenia/index.shtml
  45. 45.
    Honea R, Crow TJ, Passingham D, Mackay CE (2005) Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry 162(12):2233–2245PubMedCrossRefGoogle Scholar
  46. 46.
    Crow TJ (1997) Is schizophrenia the price that Homo sapiens pays for language? Schizophr Res 28(2–3):127–141PubMedCrossRefGoogle Scholar
  47. 47.
    Rajarethinam RP, DeQuardo JR, Nalepa R, Tandon R (2000) Superior temporal gyrus in schizophrenia: a volumetric magnetic resonance imaging study. Schizophr Res 41(2):303–312PubMedCrossRefGoogle Scholar
  48. 48.
    Dietsche B, Kircher T, Falkenberg I (2017) Structural brain changes in schizophrenia at different stages of the illness: a selective review of longitudinal magnetic resonance imaging studies. Aust N Z J Psychiatry 51(5):500–508PubMedCrossRefGoogle Scholar
  49. 49.
    Sumner PJ, Bell IH, Rossell SL (2017) A systematic review of the structural neuroimaging correlates of thought disorder. Neurosci Biobehav Rev [Internet]. Available from: http://www.sciencedirect.com/science/article/pii/S0149763417301252
  50. 50.
    Wheeler AL, Voineskos AN (2014) A review of structural neuroimaging in schizophrenia: from connectivity to connectomics. Front Hum Neurosci [Internet]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4142355/
  51. 51.
    Yao L, Lui S, Liao Y, Du M-Y, Hu N, Thomas JA et al (2013) White matter deficits in first episode schizophrenia: an activation likelihood estimation meta-analysis. Prog Neuro-Psychopharmacol Biol Psychiatry 45:100–106CrossRefGoogle Scholar
  52. 52.
    Goghari VM, Sponheim SR, MacDonald AW (2010) The functional neuroanatomy of symptom dimensions in schizophrenia: a qualitative and quantitative review of a persistent question. Neurosci Biobehav Rev 34(3):468PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Mwansisya TE, Hu A, Li Y, Chen X, Wu G, Huang X, et al (2017) Task and resting-state fMRI studies in first-episode schizophrenia: A systematic review. Schizophr Res [Internet]. [cited 2017 Nov 17];0(0). Available from: http://www.schres-journal.com/article/S0920-9964(17)30115-9/fulltext
  54. 54.
    Poels EMP, Kegeles LS, Kantrowitz JT, Javitt DC, Lieberman JA, Abi-Dargham A et al (2014) Glutamatergic abnormalities in schizophrenia: a review of proton MRS findings. Schizophr Res 152(0):325–332PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE et al (2001) Effect of COMT Val108/158 met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci U S A 98(12):6917–6922PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Meyer-Lindenberg A, Kolachana B, Weinberger DR, Buckholtz J, Ding J, Callicott JH et al (2006) Impact of complex genetic variation in COMT on human brain function. Mol Psychiatry 11(9):867PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Steen RG, Hamer L (2005) Measurement of brain metabolites by 1H magnetic resonance spectroscopy in patients with schizophrenia: a systematic review and meta-analysis. Neuropsychopharmacology 30(11):1949PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Bustillo JR (2013) Use of proton magnetic resonance spectroscopy in the treatment of psychiatric disorders: a critical update. Dialogues Clin Neurosci 15(3):329–337PubMedPubMedCentralGoogle Scholar
  59. 59.
    Taylor SF, Tso IF (2015) GABA abnormalities in schizophrenia: a methodological review of in vivo studies. Schizophr Res 167(0):84–90PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Kegeles LS, Mao X, Stanford AD, Girgis R, Ojeil N, Xu X et al (2012) Elevated prefrontal cortex γ-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy. Arch Gen Psychiatry 69(5):449–459PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Kelemen O, Kiss I, Benedek G, Kéri S (2013) Perceptual and cognitive effects of antipsychotics in first-episode schizophrenia: The potential impact of GABA concentration in the visual cortex. Prog Neuro-Psychopharmacol Biol Psychiatry 47(Supplement C):13–19CrossRefGoogle Scholar
  62. 62.
    Yuksel C, Tegin C, O’Connor L, Du F, Ahat E, Cohen BM et al (2015) Phosphorus magnetic resonance spectroscopy studies in schizophrenia. J Psychiatr Res 68:157–166PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Karno M, Golding JM, Sorenson SB, Burnam M (1988) THe epidemiology of obsessive-compulsive disorder in five us communities. Arch Gen Psychiatry 45(12):1094–1099PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Robins LN, Helzer JE, Orvaschel H, Anthony JC, Blazer DG, Burnam A, et al (1985) 8 - The diagnostic interview schedule. In Kessler WWEG, editor. Epidemiologic field methods in psychiatry [Internet]. San Diego: Academic Press; [cited 2014 Oct 6]. pp 143–70. Available from: http://www.sciencedirect.com/science/article/pii/B9780080917986500129CrossRefGoogle Scholar
  65. 65.
    Ruscio AM, Stein DJ, Chiu WT, Kessler RC (2010) The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Mol Psychiatry 15(1):53–63PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Rasmussen SA, Eisen JL (1992) The epidemiology and clinical features of obsessive compulsive disorder. Psychiatr Clin North Am 15(4):743–758PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Rasmussen SA, Tsuang MT (1984) The epidemiology of obsessive compulsive disorder. J Clin Psychiatry 45(11):450–457PubMedPubMedCentralGoogle Scholar
  68. 68.
    Skoog G, Skoog I (1999) A 40-year follow-up of patients with obsessive-compulsive disorder [see comments]. Arch Gen Psychiatry 56(2):121–127PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Koran LM, Thienemann ML, Davenport R (1996) Quality of life for patients with obsessive-compulsive disorder. Am J Psychiatry 153(6):783–788PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Jaafari N, Daniel M-L, Lacoste J, Bacconnier M, Belin D, Rotge J-Y (2011) Insight, obsession et vérification dans le trouble obsessionnel-compulsif. Ann Méd Psychol Rev Psychiatr 169(7):453–456Google Scholar
  71. 71.
    Rotge J-Y, Guehl D, Dilharreguy B, Tignol J, Bioulac B, Allard M et al (2009) Meta-analysis of brain volume changes in obsessive-compulsive disorder. Biol Psychiatry 65(1):75–83PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Atmaca M, Yildirim H, Ozdemir H, Ozler S, Kara B, Ozler Z et al (2008) Hippocampus and amygdalar volumes in patients with refractory obsessive-compulsive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 32(5):1283–1286CrossRefGoogle Scholar
  73. 73.
    Atmaca M (2011) Review of structural neuroimaging in patients with refractory obsessive-compulsive disorder. Neurosci Bull 27(3):215–220PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Radua J, Mataix-Cols D (2009) Voxel-wise meta-analysis of grey matter changes in obsessive–compulsive disorder. Br J Psychiatry 195(5):393–402PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Piras F, Piras F, Chiapponi C, Girardi P, Caltagirone C, Spalletta G Widespread structural brain changes in OCD: a systematic review of voxel-based morphometry studies. Cortex [Internet]. [cited 2014 Aug 4]; Available from: http://www.sciencedirect.com/science/article/pii/S0010945213000464
  76. 76.
    Menzies L, Chamberlain SR, Laird AR, Thelen SM, Sahakian BJ, Bullmore ET (2008) Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neurosci Biobehav Rev 32(3):525–549PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Piras F, Piras F, Caltagirone C, Spalletta G Brain circuitries of obsessive compulsive disorder: a systematic review and meta-analysis of diffusion tensor imaging studies. Neurosci Biobehav Rev [Internet]. [cited 2013 Nov 8]; Available from: http://www.sciencedirect.com/science/article/pii/S0149763413002327
  78. 78.
    Gan J, Zhong M, Fan J, Liu W, Niu C, Cai S et al (2017) Abnormal white matter structural connectivity in adults with obsessive-compulsive disorder. Transl Psychiatry 7(3):e1062PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Nakao T, Okada K, Kanba S (2014) Neurobiological model of obsessive-compulsive disorder: evidence from recent neuropsychological and neuroimaging findings. Psychiatry Clin Neurosci 68(8):587–605PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Jung WH, Kang D-H, Kim E, Shin KS, Jang JH, Kwon JS (2013) Abnormal corticostriatal-limbic functional connectivity in obsessive–compulsive disorder during reward processing and resting-state. Neuroimage Clin 3:27–38PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Keshavan MS, Stanley JA, Pettegrew JW (2000) Magnetic resonance spectroscopy in schizophrenia: methodological issues and findings--part II. Biol Psychiatry 48(5):369–380PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Stanley JA (2002) In vivo magnetic resonance spectroscopy and its application to neuropsychiatric disorders. Can J Psychiatry 47(4):315–326PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    McClure RJ, Kanfer JN, Panchalingam K, Klunk WE, Pettegrew JW (1994) Alzheimer’s disease: membrane-associated metabolic changes. Ann N Y Acad Sci 747:110–124PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Tartaglia MC, Narayanan S, De Stefano N, Arnaoutelis R, Antel SB, Francis SJ et al (2002) Choline is increased in pre-lesional normal appearing white matter in multiple sclerosis. J Neurol 249(10):1382–1390PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Maier M, Ron MA, Barker GJ, Tofts PS (1995) Proton magnetic resonance spectroscopy: an in vivo method of estimating hippocampal neuronal depletion in schizophrenia. Psychol Med 25(6):1201–1209PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Kantarci K (2013) Magnetic resonance spectroscopy in common dementias. Neuroimaging Clin N Am 23(3):393–406PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Nie K, Zhang Y, Huang B, Wang L, Zhao J, Huang Z et al (2013) Marked N-acetylaspartate and choline metabolite changes in Parkinson’s disease patients with mild cognitive impairment. Parkinsonism Relat Disord 19(3):329–334PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Frye MA, Thomas MA, Yue K, Binesh N, Davanzo P, Ventura J et al (2007) Reduced concentrations of N-acetylaspartate (NAA) and the NAA–creatine ratio in the basal ganglia in bipolar disorder: a study using 3-tesla proton magnetic resonance spectroscopy. Psychiatry Res Neuroimaging 154(3):259–265CrossRefGoogle Scholar
  89. 89.
    Bertolino A, Callicott JH, Mattay VS, Weidenhammer KM, Rakow R, Egan MF et al (2001) The effect of treatment with antipsychotic drugs on brain N-acetylaspartate measures in patients with schizophrenia. Biol Psychiatry 49(1):39–46PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Weber AM, Soreni N, Stanley JA, Greco A, Mendlowitz S, Szatmari P et al (2014) Proton magnetic resonance spectroscopy of prefrontal white matter in psychotropic naïve children and adolescents with obsessive–compulsive disorder. Psychiatry Res Neuroimaging 222(1–2):67–74CrossRefGoogle Scholar
  91. 91.
    Jang J, Kwon J, Jang D, Moon W-J, Lee J-M, Ha T et al (2006) A proton MRSI study of brain N-acetylaspartate level after 12 weeks of citalopram treatment in drug-naive patients with obsessive-compulsive disorder. Am J Psychiatry 163(7):1202–1207PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    O’Neill J, Gorbis E, Feusner JD, Yip JC, Chang S, Maidment KM et al (2013) Effects of intensive cognitive-behavioral therapy on cingulate neurochemistry in obsessive–compulsive disorder. J Psychiatr Res 47(4):494–504PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Tükel R, Özata B, Öztürk N, Ertekin BA, Ertekin E, Saruhan Direskeneli G (2014) The role of the brain-derived neurotrophic factor SNP rs2883187 in the phenotypic expression of obsessive-compulsive disorder. J Clin Neurosci 21(5):790–793PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Yücel M, Harrison BJ, Wood SJ, Fornito A, Wellard RM, Pujol J et al (2007) Functional and biochemical alterations of the medial frontal cortex in obsessive-compulsive disorder. Arch Gen Psychiatry 64(8):946PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Bartha R, Stein MB, Williamson PC, Drost DJ, Neufeld RWJ, Carr TJ et al (1998) A short Echo 1H spectroscopy and volumetric MRI study of the Corpus striatum in patients with obsessive- compulsive disorder and comparison subjects. Am J Psychiatry 155(11):1584–1591PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Ebert D, Speck O, König A, Berger M, Hennig J, Hohagen F (1997) 1H-magnetic resonance spectroscopy in obsessive-compulsive disorder: evidence for neuronal loss in the cingulate gyrus and the right striatum. Psychiatry Res Neuroimaging 74(3):173–176CrossRefGoogle Scholar
  97. 97.
    Fitzgerald KD, Moore GJ, Paulson LA, Stewart CM, Rosenberg DR (2000) Proton spectroscopic imaging of the thalamus in treatment-naive pediatric obsessive–compulsive disorder∗. Biol Psychiatry 47(3):174–182PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Rosenberg DR, Amponsah A, Sullivan A, MacMillan S, Moore GJ (2001) Increased medial thalamic choline in pediatric obsessive-compulsive disorder as detected by quantitative in vivo spectroscopic imaging. J Child Neurol 16(9):636–641PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Atmaca M, Yildirim H, Ozdemir H, Koc M, Ozler S, Tezcan E (2009) Neurochemistry of the hippocampus in patients with obsessive–compulsive disorder. Psychiatry Clin Neurosci 63(4):486–490PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Hatchondo L, Jaafari N, Langbour N, Maillochaud S, Herpe G (2017) Guillevin R, et al. 1H magnetic resonance spectroscopy suggests neural membrane alteration in specific regions involved in obsessive-compulsive disorder. Psychiatry Res Neuroimaging 269:48–53PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Smith EA, Russell A, Lorch E, Banerjee SP, Rose M, Ivey J et al (2003) Increased medial thalamic choline found in pediatric patients with obsessive-compulsive disorder versus major depression or healthy control subjects: a magnetic resonance spectroscopy study. Biol Psychiatry 54(12):1399–1405PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Fan S, Cath DC, van den Heuvel OA, van der Werf YD, Schöls C, Veltman DJ et al (2017) Abnormalities in metabolite concentrations in tourette’s disorder and obsessive-compulsive disorder—a proton magnetic resonance spectroscopy study. Psychoneuroendocrinology 77:211–217PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Meyerhoff DJ, MacKay S, Constans JM, Norman D, Van Dyke C, Fein G et al (1994) Axonal injury and membrane alterations in Alzheimer’s disease suggested by in vivo proton magnetic resonance spectroscopic imaging. Ann Neurol 36(1):40–47PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Jenkins BG, Koroshetz WJ, Beal MF, Rosen BR (1993) Evidence for impairment of energy metabolism in vivo in Huntington’s disease using localized 1H NMR spectroscopy. Neurology 43(12):2689–2695PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Arnold DL, Matthews PM, Francis GS, O’Connor J, Antel JP (1992) Proton magnetic resonance spectroscopic imaging for metabolic characterization of demyelinating plaques. Ann Neurol 31(3):235–241PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Hattingen E, Magerkurth J, Pilatus U, Hübers A, Wahl M, Ziemann U (2011) Combined 1H and 31P spectroscopy provides new insights into the pathobiochemistry of brain damage in multiple sclerosis. NMR Biomed 24(5):536–546PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Zaaraoui W, Audoin B, Pelletier J, Cozzone PJ, Ranjeva J-P (2010) Advanced magnetic resonance imaging techniques to better understand multiple sclerosis. Biophys Rev 2(2):83–90PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Brennan BP, Rauch SL, Jensen JE, Pope HG Jr (2013) A critical review of magnetic resonance spectroscopy studies of obsessive-compulsive disorder. Biol Psychiatry 73(1):24–31PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Atmaca M, Onalan E, Yildirim H, Yuce H, Koc M, Korkmaz S (2010) The association of myelin oligodendrocyte glycoprotein gene and white matter volume in obsessive–compulsive disorder. J Affect Disord 124(3):309–313PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Stewart SE, Platko J, Fagerness J, Birns J, Jenike E, Smoller JW et al (2007) A genetic family-based association study of OLIG2 in obsessive-compulsive disorder. Arch Gen Psychiatry 64(2):209–214PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Mohamed MA, Smith MA, Schlund MW, Nestadt G, Barker PB, Hoehn-Saric R (2007) Proton magnetic resonance spectroscopy in obsessive-compulsive disorder: a pilot investigation comparing treatment responders and non-responders. Psychiatry Res Neuroimaging 156(2):175–179CrossRefGoogle Scholar
  112. 112.
    Bédard M-J, Chantal S (2011) Brain magnetic resonance spectroscopy in obsessive–compulsive disorder: the importance of considering subclinical symptoms of anxiety and depression. Psychiatry Res Neuroimaging 192(1):45–54CrossRefGoogle Scholar
  113. 113.
    Yücel M, Wood SJ, Wellard RM, Harrison BJ, Fornito A, Pujol J et al (2008) Anterior cingulate glutamate–glutamine levels predict symptom severity in women with obsessive–compulsive disorder. Aust N Z J Psychiatry 42(6):467–477PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Ohara K, Isoda H, Suzuki Y, Takehara Y, Ochiai M, Takeda H et al (1999) Proton magnetic resonance spectroscopy of lenticular nuclei in obsessive–compulsive disorder. Psychiatry Res Neuroimaging 92(2):83–91CrossRefGoogle Scholar
  115. 115.
    Sumitani S, Harada M, Kubo H, Ohmori T (2007) Proton magnetic resonance spectroscopy reveals an abnormality in the anterior cingulate of a subgroup of obsessive–compulsive disorder patients. Psychiatry Res Neuroimaging 154(1):85–92CrossRefGoogle Scholar
  116. 116.
    Whiteside SPH, Abramowitz JS, Port JD (2012) Decreased caudate N-acetyl-l-aspartic acid in pediatric obsessive-compulsive disorder and the effects of behavior therapy. Psychiatry Res Neuroimaging 202(1):53–59CrossRefGoogle Scholar
  117. 117.
    Bolton J, Moore GJ, MacMillan S, Stewart CM, Rosenberg D (2001) Case study: caudate glutamatergic changes with paroxetine persist after medication discontinuation in pediatric OCD. J Am Acad Child Adolesc Psychiatry 40(8):903–906PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Moore GJ, MacMaster F, Stewart CM, Rosenberg D (1998) Case study: caudate glutamatergic changes with paroxetine therapy for pediatric obsessive-compulsive disorder. J Am Acad Child Adolesc Psychiatry 37(6):663–667PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Simpson HB, Kegeles LS, Hunter L, Mao X, Van Meter P, Xu X et al (2015) Assessment of glutamate in striatal subregions in obsessive-compulsive disorder with proton magnetic resonance spectroscopy. Psychiatry Res 232(1):65–70PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Aoki Y, Aoki A, Suwa H (2012) Reduction of N-acetylaspartate in the medial prefrontal cortex correlated with symptom severity in obsessive-compulsive disorder: meta-analyses of 1H-MRS studies. Transl Psychiatry 2(8):e153PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    O’Neill J, Lai TM, Sheen C, Salgari GC, Ly R, Armstrong C et al (2016) Cingulate and thalamic metabolites in obsessive-compulsive disorder. Psychiatry Res 254:34–40PubMedCentralCrossRefGoogle Scholar
  122. 122.
    Aouizerate B, Guehl D, Cuny E, Rougier A, Bioulac B, Tignol J et al (2004) Pathophysiology of obsessive–compulsive disorder: A necessary link between phenomenology, neuropsychology, imagery and physiology. Prog Neurobiol 72(3):195–221PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Pauls DL, Abramovitch A, Rauch SL, Geller DA (2014) Obsessive-compulsive disorder: an integrative genetic and neurobiological perspective. Nat Rev Neurosci 15(6):410–424PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Arnone D, McKie S, Elliott R, Thomas EJ, Downey D, Juhasz G et al (2012) Increased amygdala responses to sad but not fearful faces in major depression: relation to mood state and pharmacological treatment. Am J Psychiatry 169(8):841–850PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Heller AS, Johnstone T, Light S, Peterson MJ, Kolden GG, Kalin NH et al (2013) Relationships between changes in sustained Fronto-striatal connectivity and positive affect with antidepressant treatment in major depression. Am J Psychiatry 170(2):197–206PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Wessa M, Lois G (2015) Brain functional effects of psychopharmacological treatment in major depression: a focus on neural circuitry of affective processing. Curr Neuropharmacol 13(4):466–479PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Dichter GS, Gibbs D, Smoski MJ (2015) A systematic review of relations between resting-state functional-MRI and treatment response in major depressive disorder. J Affect Disord 172:8–17PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Liu Y, Du L, Li Y, Liu H, Zhao W, Liu D, et al Antidepressant effects of electroconvulsive therapy correlate with subgenual anterior cingulate activity and connectivity in depression. Medicine (Baltimore) [Internet]. 2015 13 [cited 2017 Dec 17];94(45). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4912303/
  129. 129.
    Ives-Deliperi VL, Howells F, Stein DJ, Meintjes EM, Horn N (2013) The effects of mindfulness-based cognitive therapy in patients with bipolar disorder: a controlled functional MRI investigation. J Affect Disord 150(3):1152–1157PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Strawn JR, Cotton S, Luberto CM, Patino LR, Stahl LA, Weber WA et al (2016) Neural function before and after mindfulness-based cognitive therapy in anxious adolescents at risk for developing bipolar disorder. J Child Adolesc Psychopharmacol 26(4):372–379PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Altinay M, Karne H, Anand A (2018) Lithium monotherapy associated clinical improvement effects on amygdala-ventromedial prefrontal cortex resting state connectivity in bipolar disorder. J Affect Disord 225:4–12PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Nakajima S, Takeuchi H, Plitman E, Fervaha G, Gerretsen P, Caravaggio F et al (2015) Neuroimaging findings in treatment-resistant schizophrenia: a systematic review. Schizophr Res 164(0):164–175PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Penadés R, González-Rodríguez A, Catalán R, Segura B, Bernardo M, Junqué C (2017) Neuroimaging studies of cognitive remediation in schizophrenia: a systematic and critical review. World J Psychiatr 7(1):34–43PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Abbott CC, Jaramillo A, Wilcox CE, Hamilton DA (2013) Antipsychotic drug effects in schizophrenia: a review of longitudinal fMRI investigations and neural interpretations. Curr Med Chem 20(3):428–437PubMedPubMedCentralGoogle Scholar
  135. 135.
    Keedy SK, Reilly JL, Bishop JR, Weiden PJ, Sweeney JA (2015) Impact of antipsychotic treatment on attention and motor learning Systems in First-Episode Schizophrenia. Schizophr Bull 41(2):355–365PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Sonawalla SB, Renshaw PF, Moore CM, Alpert JE, Nierenberg AA, Rosenbaum JF et al (1999) Compounds containing cytosolic choline in the basal ganglia: a potential biological marker of true drug response to fluoxetine. Am J Psychiatry 156(10):1638–1640PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Luborzewski A, Schubert F, Seifert F, Danker-Hopfe H, Brakemeier E-L, Schlattmann P et al (2007) Metabolic alterations in the dorsolateral prefrontal cortex after treatment with high-frequency repetitive transcranial magnetic stimulation in patients with unipolar major depression. J Psychiatr Res 41(7):606–615PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Michael N, Erfurth A, Ohrmann P, Arolt V, Heindel W, Pfleiderer B (2003) Metabolic changes within the left dorsolateral prefrontal cortex occurring with electroconvulsive therapy in patients with treatment resistant unipolar depression. Psychol Med 33(7):1277–1284PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Sanacora G, Mason GF, Rothman DL, Hyder F, Ciarcia JJ, Ostroff RB et al (2003) Increased cortical GABA concentrations in depressed patients receiving ECT. Am J Psychiatry 160(3):577–579PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Sanacora G, Fenton LR, Fasula MK, Rothman DL, Levin Y, Krystal JH et al (2006) Cortical γ-aminobutyric acid concentrations in depressed patients receiving cognitive behavioral therapy. Biol Psychiatry 59(3):284–286PubMedCrossRefGoogle Scholar
  141. 141.
    Gonul AS, Kitis O, Ozan E, Akdeniz F, Eker C, Eker OD et al (2006) The effect of antidepressant treatment on N-acetyl aspartate levels of medial frontal cortex in drug-free depressed patients. Prog Neuro-Psychopharmacol Biol Psychiatry 30(1):120–125CrossRefGoogle Scholar
  142. 142.
    Taylor MJ, Godlewska BR, Norbury R, Selvaraj S, Near J, Cowen PJ (2012) Early increase in marker of neuronal integrity with antidepressant treatment of major depression: 1H-magnetic resonance spectroscopy of N-acetyl-aspartate. Int J Neuropsychopharmacol 15(10):1541–1546PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Machado-Vieira R, Otaduy MC, Zanetti MV, De Sousa RT, Dias VV, Leite CC et al (2016) A selective association between central and peripheral Lithium levels in remitters in bipolar depression: a 3T-(7) li magnetic resonance spectroscopy study. Acta Psychiatr Scand 133(3):214–220PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Strawn JR, Patel NC, Chu W-J, Lee J-H, Adler CM, Kim MJ et al (2012) Glutamatergic effects of divalproex in manic adolescents: a proton magnetic resonance spectroscopy study. J Am Acad Child Adolesc Psychiatry 51(6):642–651PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Adler CM, DelBello MP, Weber WA, Jarvis KB, Welge J, Chu W-J et al (2013) Neurochemical effects of quetiapine in patients with bipolar mania: a proton magnetic resonance spectroscopy study. J Clin Psychopharmacol 33(4):528–532PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Lotfi M, Shafiee S, Ghanizadeh A, Sigaroudi MO, Razeghian L (2017) A magnetic resonance spectroscopy study of lovastatin for treating bipolar mood disorder: a 4-week randomized double-blind, placebo- controlled clinical trial. Recent Patents Inflamm Allergy Drug Discov 10(2):133–141CrossRefGoogle Scholar
  147. 147.
    Stanley JA, Williamson PC, Drost DJ, Carr TJ, Rylett RJ, Malla A et al (1995) An in vivo study of the prefrontal cortex of schizophrenic patients at different stages of illness via phosphorus magnetic resonance spectroscopy. Arch Gen Psychiatry 52(5):399–406PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Volz H-P, Riehemann S, Maurer I, Smesny S, Sommer M, Rzanny R et al (2000) Reduced phosphodiesters and high-energy phosphates in the frontal lobe of schizophrenic patients: a 31P chemical shift spectroscopic-imaging study. Biol Psychiatry 47(11):954–961PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Smesny S, Langbein K, Rzanny R, Gussew A, Burmeister HP, Reichenbach JR et al (2012) Antipsychotic drug effects on left prefrontal phospholipid metabolism: a follow-up 31P-2D-CSI study of haloperidol and risperidone in acutely ill chronic schizophrenia patients. Schizophr Res 138(2):164–170PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Nenadic I, Dietzek M, Langbein K, Rzanny R, Gussew A, Reichenbach JR et al (2013) Effects of olanzapine on 31P MRS metabolic markers in schizophrenia. Hum Psychopharmacol Clin Exp 28(1):91–93CrossRefGoogle Scholar
  151. 151.
    Whiteside SPH, Abramowitz JS, Port JD (2011) The effect of behavior therapy on caudate N-acetyl-l-aspartic acid in adults with obsessive–compulsive disorder. Psychiatry Res Neuroimaging 201(1):10–16CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University Hospital of PoitiersPoitiersFrance
  2. 2.DACTIM-MIS team LMA/ CNRS 7348, Poitiers UniversityPoitiersFrance

Personalised recommendations