Interfacial Microstructures and Characterization of the Titanium—Stainless Steel Friction Welds Using Interlayer Technique

  • Muralimohan CheepuEmail author
  • V. Muthupandi
  • D. Venkateswarlu
  • B. Srinivas
  • Woo-Seong Che
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 207)


The joints of dissimilar metals and alloys are increasing demand as essential parts of aerospace, nuclear and cryogenic applications. One of the greatest challenges for design engineers is to develop and implement fast and cost-effective industrial procedures to join titanium with stainless steel and aluminum. Regardless of the welding conditions, such high specific properties of the metal combinations cannot be fusion welded in conventional method, because of the formation of highly brittle intermetallic compounds in the fusion zone. However, solid-state joining processes, friction-welding process contemplated to offer the highest potential for successful joining of bimetallic components. The friction welding techniques are highly efficient and it has the advantage of far greater weldability and reduces the risk of interfacial reaction. In the present investigation, microstructure formation at the interfaces of friction welds between titanium and stainless steel with and without interlayer are discussed. The formation of fragile intermetallic compounds like Fe–Ti and Cr–Ti are completely avoided between the titanium and stainless steel by introducing of interlayer material. The interlayer material successfully controlled the undesirable compounds from the weld interface and developed a new weld interface. The new microstructure formation at weld interface enhanced the final properties of the titanium to stainless friction welds.


  1. 1.
    J. Song, A. Kostka, M. Veehmayer, D. Raabe, Mater. Sci. Eng. A 528, 2641 (2011)CrossRefGoogle Scholar
  2. 2.
    M.H. Tsai, J.W. Yeh, Mater. Res. Lett. 2, 107 (2014)CrossRefGoogle Scholar
  3. 3.
    A. Astarita, M. Curioni, A. Squillace, X. Zhou, F. Bellucci, G.E. Thompson, K.A. Beamish, Mater. Corros. 66, 111 (2015)CrossRefGoogle Scholar
  4. 4.
    C.H. Muralimohan, V. Muthupandi, K. Sivaprasad, Int. J. Mater. Res. 105, 350 (2014)CrossRefGoogle Scholar
  5. 5.
    M.M. Cheepu, V. Muthupandi, S. Loganathan, Mater. Sci. Forum 710, 620 (2012)CrossRefGoogle Scholar
  6. 6.
    I. Tomashchuk, D. Grevey, P. Sallamand, Mater. Sci. Eng. A 622, 37 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Fazel-Najafabadi, S.F. Kashani-Bozorg, A. Zarei-Hanzaki, Mater. Des. 32, 1824 (2011)CrossRefGoogle Scholar
  8. 8.
    C.H. Muralimohan, V. Muthupandi, Adv. Mater. Res. 794, 351 (2013)CrossRefGoogle Scholar
  9. 9.
    J.G. Lee, S.J. Hong, M.K. Lee, C.K. Rhee, J. Nucl. Mater. 395, 145 (2009)CrossRefGoogle Scholar
  10. 10.
    I. Tomashchuk, P. Sallamand, H. Andrzejewski, D. Grevey, Intermetallics 19, 1466 (2011)CrossRefGoogle Scholar
  11. 11.
    C.H. Muralimohan, V. Muthupandi, K. Sivaprasad, Procedia Mater. Sci. 5, 1120 (2014)CrossRefGoogle Scholar
  12. 12.
    S.A.A.A. Mousavi, P.F. Sartangi, Mater. Sci. Eng. A 494, 329 (2008)CrossRefGoogle Scholar
  13. 13.
    H.C. Chen, G. Bi, B.Y. Lee, C.K. Cheng, J. Mater. Process. Technol. 231, 58 (2016)CrossRefGoogle Scholar
  14. 14.
    G. Bykovskiy, I.V. Tkachenko, Avtom. Svarka 9, 414 (1987)Google Scholar
  15. 15.
    K. Kimapong, T. Watanabe, Weld. J. 10, 277 (2004)Google Scholar
  16. 16.
    C.H. Muralimohan, S. Haribabu, Y.H. Reddy, V. Muthupandi, K. Sivaprasad, J. Adv. Mech. Eng. Sci. 1(1), 57 (2015)CrossRefGoogle Scholar
  17. 17.
    H. Shi, S. Qiao, R. Qiu, X. Zhang, H. Yu, Mater. Manuf. Process. 27, 1366 (2012)CrossRefGoogle Scholar
  18. 18.
    C.H. Muralimohan, S. Haribabu, Y.H. Reddy, V. Muthupandi, K. Sivaprasad, Procedia Mater. Sci. 5, 1107 (2014)CrossRefGoogle Scholar
  19. 19.
    X. Yue, P. He, J.C. Feng, J.H. Zhang, F.Q. Zhu, Mater. Charact. 59, 1721 (2008)CrossRefGoogle Scholar
  20. 20.
    S. Kundu, S. Sam, S. Chatterjee, Mater. Des. 32, 2997 (2011)CrossRefGoogle Scholar
  21. 21.
    H.C. Dey, M. Ashfaq, A.K. Bhaduri, P.K. Rao, J. Mater. Process. Technol. 209, 5862 (2009)CrossRefGoogle Scholar
  22. 22.
    S.A.A.A. Mousavi, Mater. Des. 30, 459 (2009)CrossRefGoogle Scholar
  23. 23.
    M. Fazel-Najafabadi, S.F. Kashani-Bozorg, A. Zarei-Hanzaki, Mater. Des. 31, 4800 (2010)CrossRefGoogle Scholar
  24. 24.
    K.H. Rafi, J.G.D. Ram, G. Phanikumar, P.K. Rao, Mater. Des. 31, 2375 (2010)CrossRefGoogle Scholar
  25. 25.
    E.P. Pokataev, Y.P. Trykov, Weld. Inter. 15, 827 (2001)CrossRefGoogle Scholar
  26. 26.
    M. Cheepu, M. Ashfaq, V. Muthupandi, Trans. Indian Inst. Met. 70, 2591 (2017)CrossRefGoogle Scholar
  27. 27.
    J.W. Elmer, D.D. Kautz, in: Fundamentals of frictionwelding, ASM Handbook, vol. 6, 10th edn. (1993), p. 150Google Scholar
  28. 28.
    A. Fuji, T.H. North, K. Ameyama, M. Futamata, Mater. Sci. Technol. 8, 219 (1992)CrossRefGoogle Scholar
  29. 29.
    S.A.A.M. Akbari, A.K. Rahbar, Mater. Sci. Forum 580–582, 335 (2008)Google Scholar
  30. 30.
    U.K. Mudali, B.M.A. Rao, K. Shanmugam, R. Natarajan, B. Raj, J. Nucl. Mater. 321, 40 (2003)CrossRefGoogle Scholar
  31. 31.
    S.W. Baek, W.B. Lee, J.M. Koo, C.Y. Lee, S.B. Jung, Mater. Sci. Forum 580–582, 423 (2008)CrossRefGoogle Scholar
  32. 32.
    H. Ochi, K. Ogawa, Y. Yamamoto, Y. Suga, Weld. J. 83, 36 (2004)Google Scholar
  33. 33.
    W.-B. Lee, Y.-J. Kim, S.-B. Jung, Intermetallics 12, 671 (2004)CrossRefGoogle Scholar
  34. 34.
    C. Maldonado, A. Medina-Flores, L. Bejar-Gomez, A. Ruız, Rev. Mex. Fis. 55, 130 (2009)Google Scholar
  35. 35.
    M. Cheepu, V. Muthupandi, B. Srinivas, K. Sivaprasad, in Techno-Societal 2016, ed. by P. M. Pawar, B. P. Ronge, R. Balasubramaniam, S. Seshabhattar, vol. 73. (Springer, Cham, 2018), p. 709Google Scholar
  36. 36.
    M. Ashfaq, K.P. Rao, H.K. Rafi, B.S. Murty, H.C. Dey, A.K. Bhaduri, Prakt. Metallogr. 48, 188 (2011)CrossRefGoogle Scholar
  37. 37.
    C.H. Muralimohan, M. Ashfaq, R. Ashiri, V. Muthupandi, K. Sivaprasad, Metall Mater. Trans. A. 47, 347 (2016)CrossRefGoogle Scholar
  38. 38.
    S. Kundu, S. Chatterjee, Mater. Sci. Technol. 23, 1167 (2007)CrossRefGoogle Scholar
  39. 39.
    P. He, J. Zhang, R. Zhou, X. Li, Mater. Character. 43, 287 (1999)CrossRefGoogle Scholar
  40. 40.
    S. Kundu, M. Ghosh, S. Chatterjee, ISIJ Int. 44, 1882 (2004)CrossRefGoogle Scholar
  41. 41.
    S. Kundu, S. Chatterjee, Mater. Sci. Technol. 22, 1201 (2006)CrossRefGoogle Scholar
  42. 42.
    ASTM E8/E8M-16a, Standard Test Methods for Tension Testing of Metallic Materials (ASTM International, West Conshohocken, PA, 2016)Google Scholar
  43. 43.
    R.A. Bell, J.C. Lippold, D.R. Adolphson, Weld. Res. Suppl. 11, 325 (1984)Google Scholar
  44. 44.
    M. Ghosh, S. Chatterjee, Mater. Sci. Eng. A 358, 152 (2003)CrossRefGoogle Scholar
  45. 45.
    J.L. Li, L.P. Huo, F.S. Zhang, J.T. Xiong, W.Y. Li, Mater. Sci. Forum 620–622, 399 (2009)Google Scholar
  46. 46.
    T.B. Massalski, Binary Alloy Phase Diagrams, 2nd edn. (ASM International, Materials Park, 1996)Google Scholar
  47. 47.
    S. Chatterjee, T.A. Abinandanan, K. Chattopadhyay, Mater. Sci. Eng. A 490, 7 (2008)CrossRefGoogle Scholar
  48. 48.
    S. Kundu, S. Chatterjee, J. Mater. Sci. 42, 7906 (2007)CrossRefGoogle Scholar
  49. 49.
    A. Elrefaey, W. Tillmann, J. Mater. Process. Technol. 209, 2746 (2009)CrossRefGoogle Scholar
  50. 50.
    S. Kundu, S. Sam, S. Chatterjee, Mater. Sci. Eng., A 560, 288 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Muralimohan Cheepu
    • 1
    Email author
  • V. Muthupandi
    • 2
  • D. Venkateswarlu
    • 3
  • B. Srinivas
    • 4
  • Woo-Seong Che
    • 1
  1. 1.Department of Mechatronics EngineeringKyungsung UniversityBusanRepublic of Korea
  2. 2.Department of Metallurgical and Materials EngineeringNational Institute of Technology TiruchirappalliTiruchirappalliIndia
  3. 3.Department of Mechanical EngineeringMarri Laxman Reddy Institute of Technology and ManagementHyderabadIndia
  4. 4.Department of Mechanical EngineeringMVGR College of EngineeringVizianagaramIndia

Personalised recommendations