Growth and Study of Zinc Oxide Nanorods Arrays on Piezoelectric Substrates

  • D. A. ZhilinEmail author
  • G. Y. Karapetyan
  • M. E. Kutepov
  • T. A. Minasyan
  • V. I. Yatsenko
  • E. M. Kaidashev
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 207)


Our studies have shown the possibility of using the thermal synthesis method from Zn vapors to obtain ZnO nanorods arrays as a sensitive element for UV radiation SAW sensors. The piezoelectric properties of the LiNbO3 substrate typically degrade upon nanorods growth at elevated temperature. This limitation is solved by using additional annealing of prepared structure at 550 °C in an oxygen atmosphere. The obtained ZnO NRs were investigated by scanning electron microscopy and photoluminescence.



This research work is supported by the Russian Education and Science Ministry, the project No. 16.5405.2017/8.9 and Grant RFBR-MOST № 16-58-52013 MNT_a.


  1. 1.
    A.B. Djurišić, Y.H. Leung, Small 2, 944 (2006)CrossRefGoogle Scholar
  2. 2.
    C.-Y. Chen, M.-W. Chen, J.-J. Ke, C.-A. Lin, J.R.D. Retamal, J.-H. He, Surface effects on optical and electrical properties of ZnO nanostructures. Pure Appl. Chem. 82, 2055 (2010)Google Scholar
  3. 3.
    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)CrossRefGoogle Scholar
  4. 4.
    A. Nadarajah, R.C. Word, J. Meiss, R. Könenkamp, Nano Lett. 8, 534 (2008)CrossRefGoogle Scholar
  5. 5.
    X.W. Sun, J.Z. Huang, J.X. Wang, Z. Xu, Nano Lett. 8, 1219 (2008)CrossRefGoogle Scholar
  6. 6.
    J.Y. Park, D.E. Song, S.S. Kim, Nanotechnology 19, 105503 (2008)CrossRefGoogle Scholar
  7. 7.
    M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nat. Mater. 4, 455 (2005)CrossRefGoogle Scholar
  8. 8.
    S.P. Ghosh, K.C. Das, N. Tripathy, G. Bose, D.H. Kim, T.I. Lee, J.M. Myoung, J.P. Kar, IOP Conf. Ser. Mater. Sci. Eng. 115, 012035 (2016)CrossRefGoogle Scholar
  9. 9.
    Y. Qin, X. Wang, Z.L. Wang, Nature 451, 809 (2008)CrossRefGoogle Scholar
  10. 10.
    A.S. Bagdasarian, V.G. Dneprovski, G.Y. Karapetyan, S.A. Bagdasaryan, in Piezoelectric and Related Materials: Research and Applications, ed. by I.A. Parinov (Nova Science Publishers, New York, 2012), p. 189Google Scholar
  11. 11.
    P. Sharma, K. Sreenivas, Appl. Phys. Lett. 83, 3617 (2003)CrossRefGoogle Scholar
  12. 12.
    P. Sharma, S. Kumar, K. Sreenivas, J. Mater. Res. 18, 545 (2003)CrossRefGoogle Scholar
  13. 13.
    A.A. Mohanan, R. Parthiban, N. Ramakrishnan, J. Micromech. Microeng. 26, 025017 (2016)CrossRefGoogle Scholar
  14. 14.
    D.-L. Chenga, K.-S. Kaoa, C.-H. Loa, C.-H. Liangb, L.-P. Chanc, C.-W. Tsung, Y.-Y. Li, Ultraviolet sensing system using ZnO based surface acoustic wave oscillator. Proceedings of the 3rd International Conference on Industrial Application Engineering. vol. 435 (2015)Google Scholar
  15. 15.
    W.-S. Wang, T.-T. Wu, T.-H. Chou, Y.-Y. Chen. A, ZnO nanorod-based SAW oscillator system for ultraviolet detection. Nanotechnology 20, 135503 (2009)CrossRefGoogle Scholar
  16. 16.
    R. Fachberger, G. Bruckner, G. Knoll, R. Hauser, J. Biniasch, L. Reindl, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1427 (2004)CrossRefGoogle Scholar
  17. 17.
    J. Hornsteiner, E. Born, G. Fischerauer, E. Riha, in Proceedings 1998 IEEE International Frequency Control Symposium (1998), p. 615Google Scholar
  18. 18.
    N.V. Lyanguzov, E.M. Kaydashev, I.N. Zakharchenko, O.A. Bunina, Tech. Phys. Lett. 39, 767 (2013)CrossRefGoogle Scholar
  19. 19.
    P.K. Samanta, A.K. Bandyopadhyay, Appl. Nanosci. 2, 111 (2012)CrossRefGoogle Scholar
  20. 20.
    V.I. Pushkariov, A.L. Nikolaev, E.M. Kaidashev, in Advanced Materials—Studies and Applications, ed. by I.A. Parinov, S.-H. Chang, S. Theerakulpisut (Nova Science Publishers, New York, 2015), p. 51Google Scholar
  21. 21.
    D.A. Zhilin, N.V. Lyanguzov, V.I. Pushkariov, L.A. Nikolaev, V.E. Kaydashev, E. M. Kaidashev, in Advanced Materials—Studies and Applications, ed. by I.A. Parinov, S.-H. Chang, S. Theerakulpisut (Nova Science Publishers, New York, 2015), p. 57Google Scholar
  22. 22.
    G.Y. Karapetyan, V.E. Kaydashev, D.A. Zhilin, T.A. Minasyan, K.G. Abdulvakhidov, E.M. Kaidashev, Use of multiple acoustic reflections to enhance SAW UV photo-detector sensitivity. Smart Mater. Struct. 26, 035029 (2017)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • D. A. Zhilin
    • 1
    Email author
  • G. Y. Karapetyan
    • 1
  • M. E. Kutepov
    • 1
  • T. A. Minasyan
    • 1
  • V. I. Yatsenko
    • 1
  • E. M. Kaidashev
    • 1
  1. 1.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations