Advertisement

Mapping and Scheduling Hard Real Time Applications on Multicore Systems - The ARGO Approach

  • Panayiotis Alefragis
  • George Theodoridis
  • Merkourios Katsimpris
  • Christos Valouxis
  • Christos Gogos
  • George Goulas
  • Nikolaos Voros
  • Simon Reder
  • Koray Kasnakli
  • Marcus Bednara
  • David Müller
  • Umut Durak
  • Juergen Becker
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10824)

Abstract

Using multi-core architectures for embedded time-critical systems creates a big challenge for developers due to the complexity of the underline mapping and scheduling problem. H2020 ARGO project [2] proposes a tool flow to minimize multi-core applications development time while guaranteeing real-time performance. In this paper, we provide an overview of ARGO tool flow and we focus on the heuristic approach of solving the worst case execution time aware (WCET) mapping and scheduling problem on hierarchical task graphs. Examples from two real applications from the aerospace and image processing domains are presented.

Keywords

Parallel multicore mapping and scheduling Model based design Integer linear programming Heuristics 

Notes

Acknowledgement

This work was funded by the European Union under the Horizon 2020 Framework Program under grant agreement ICT-2015-688131, project “WCET-Aware Parallelization of Model-Based Applications for Heterogeneous Parallel Systems (ARGO)”.

References

  1. 1.
    Bittencourt, L.F., Sakellariou, R., Madeira, E.R.M.: DAG scheduling using a lookahead variant of the heterogeneous earliest finish time algorithm. In: 2010 18th Euromicro Conference on Parallel, Distributed Network-Based Processing, pp. 27–34 (2010)Google Scholar
  2. 2.
    Derrien, S., Puaut, I., Alefragis, P., Bednara, M., Bucher, H., David, C., Debray, Y., Durak, U., Fassi, I., Ferdinand, C., Hardy, D., Kritikakou, A., Rauwerda, G., Reder, S., Sicks, M., Stripf, T., Sunesen, K., ter Braak, T., Voros, N., Becker, J.: WCET-aware parallelization of model-based applications for multi-cores: the ARGO approach. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland, pp. 286–289. IEEE (2017)Google Scholar
  3. 3.
    Emeretlis, A., Theodoridis, G., Alefragis, P., Voros, N.: A logic-based benders decomposition approach for mapping applications on heterogeneous multicore platforms. ACM Trans. Embed. Comput. Syst. 15, 1–28 (2016). ACMCrossRefGoogle Scholar
  4. 4.
    Emeretlis, A., Theodoridis, G., Alefragis, P., Voros, N.: A hybrid approach for mapping and scheduling on heterogeneous multicore systems. In: 2016 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), Samos, Greece (2016)Google Scholar
  5. 5.
    Floch, A., Yuki, T., Moussawi, A.E., Morvan, A., Martin, K., Naullet, M., Alle, M., L’Hours, L., Simon, N., Derrien, S., Charot, F., Wolinski, C., Sentieys, O.: GeCoS: a framework for prototyping custom hardware design flows. In: Proceedings of the 13th IEEE International Working Conference on Source Code Analysis and Manipulation, SCAM 2013, Eindhoven, Netherlands, 22–23 September 2013, pp. 100–105. IEEE (2013)Google Scholar
  6. 6.
    Jovanovic, O., Kneuper, N., Engel, M., Marwedel, P.: ILP-based memory-aware mapping optimization for MPSoCs. In: 2012 IEEE 15th International Conference on Computational Science and Engineering, pp. 413–420. IEEE (2012)Google Scholar
  7. 7.
    Kelter, T., Borghorst, H., Marwedel, P.: WCET-aware scheduling optimizations for multi-core real-time systems. In: XIVth International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS 2014, Agios Konstantinos, Samos, Greece, 14–17 July 2014, pp. 67–74 (2014)Google Scholar
  8. 8.
    Kwok, Y.-K., Ahmad, I.: Dynamic critical-path scheduling: an effective technique for allocating task graphs to multiprocessors. IEEE Trans. Parallel Distrib. Syst. 7(5), 506–521 (1996). IEEECrossRefGoogle Scholar
  9. 9.
    Stripf, T., Oey, O., Bruckschloegl, T., et al.: A compilation - and simulation - oriented architecture description language for multicore systems. In: IEEE Proceedings of 15th IEEE International Conference on Computational Science and Engineering (CSE), pp. 383–390. IEEE (2012).  https://doi.org/10.1109/iccse.2012.60. ISBN 978-1-4673-5165-2
  10. 10.
    Stripf, T., Oey, O., Bruckschloegl, T., Becker, J., Rauwerda, G., Sunesen, K., Goulas, G., Alefragis, P., Voros, N.S., Derrien, S., Sentieys, O., Kavvadias, N., Dimitroulakos, G., Masselos, K., Kritharidis, D., Mitas, N., Perschke, T.: Compiling Scilab to high performance embedded multicore systems. Microprocess. Microsyst. 37, 1033–1049 (2013). ElsevierCrossRefGoogle Scholar
  11. 11.
    Topcuoglu, H., Hariri, S., Wu, M.-Y.: Task scheduling algorithms for heterogeneous processors. In: Proceedings of the 8th Heterogeneous Computing Workshop. IEEE (1999).  https://doi.org/10.1109/hcw.1999.765092
  12. 12.
    Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I., Puschner, P., Staschulat, J., Stenstrom, P.: The worst-case execution-time problem – overview of methods and survey of tools. ACM Trans. Embed. Comput. Syst. 7, 36:1–36:53 (2008)CrossRefGoogle Scholar
  13. 13.

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Technological Educational Institute of Western GreecePatrasGreece
  2. 2.University of PatrasPatrasGreece
  3. 3.Technological Educational Institute of EpirusArtaGreece
  4. 4.Fraunhofer-Institut für Integrierte Schaltungen IISErlangenGermany
  5. 5.Karlsruhe Institute of TechnologyKarlsruheGermany
  6. 6.Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)BraunschweigGermany

Personalised recommendations