HoneyWiN: Novel Honeycomb-Based Wireless NoC Architecture in Many-Core Era
- 3 Citations
- 1.7k Downloads
Abstract
Although NoC-based systems with many cores are commercially available, their multi-hop nature has become a bottleneck on scaling performance and energy consumption parameters. Alternatively, hybrid wireless NoC provides a postern by exploiting single-hop express links for long-distance communications. Also, there is a common wisdom that grid-like mesh is the most stable topology in conventional designs. That is why almost all of the emerging architectures had been relying on this topology as well. In this paper, first we challenge the efficiency of the grid-like mesh in emerging systems. Then, we propose HoneyWiN, a hybrid reconfigurable wireless NoC architecture that relies on the honeycomb topology. The simulation results show that on average HoneyWiN saves 17% of energy consumption while increases the network throughput by 10% compared to its wireless mesh counterpart.
Keywords
MCSoC Wireless NoC Honeycomb Mesh Energy efficiencyReferences
- 1.Benini, L., De Micheli, G.: Networks on chips: a new SoC paradigm. Computer 35(1), 70–78 (2002)CrossRefGoogle Scholar
- 2.Karkar, A., Mak, T., Tong, K.F., Yakovlev, A.: A survey of emerging interconnects for on-chip efficient multicast and broadcast in many-cores. IEEE Circuits Syst. Mag. 16(1), 58–72 (2016)CrossRefGoogle Scholar
- 3.Rezaei, A., Zhao, D., Daneshtalab, M., Zhou, H.: Multi-objective task mapping approach for wireless NoC in dark silicon age. In: Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP), pp. 589–592 (2017)Google Scholar
- 4.Rezaei, A., Daneshtalab, M., Zhao, D., Modarressi, M.: SAMi: self-aware migration approach for congestion reduction in NoC-based MCSoC. In: IEEE International System-on-Chip Conference (SOCC), pp. 145–150 (2016)Google Scholar
- 5.Abadal, S., Cabellos-Aparicio, A., Alarcon, E., Torrellas, J.: WiSync: an architecture for fast synchronization through on-chip wireless communication. In: International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pp. 3–17 (2016)Google Scholar
- 6.Gade, S.H., Deb, S.: HyWin: hybrid wireless NoC with sandboxed sub-networks for CPU/GPU architectures. IEEE Trans. Comput. 66(7), 1145–1158 (2017)MathSciNetCrossRefGoogle Scholar
- 7.Ganguly, A., Chang, K., Deb, S., Pande, P.P., Belzer, B., Teuscher, C.: Scalable hybrid wireless network-on-chip architectures for multicore systems. IEEE Trans. Comput. 60(10), 1485–1502 (2011)MathSciNetCrossRefGoogle Scholar
- 8.Mineo, A., Palesi, M., Ascia, G., Catania, V.: An adaptive transmitting power technique for energy efficient mm-wave wireless NoCs. In: Design, Automation and Test in Europe (DATE), p. 271 (2014)Google Scholar
- 9.Kawasaki, K., Akiyama, Y., Komori, K., Uno, M., Takeuchi, H., Itagaki, T., Hino, Y., Kawasaki, Y., Ito, K., Hajimiri, A.: A millimeter-wave intra-connect solution. IEEE J. Solid-State Circuits 45(12), 2655–2666 (2010)CrossRefGoogle Scholar
- 10.Yu, X., Sah, S.P., Rashtian, H., Mirabbasi, S., Pande, P.P., Heo, D.: A 1.2-pj/bit 16-gb/s 60-ghz ook transmitter in 65-nm cmos for wireless network-on-chip. IEEE Trans. Microw. Theory Tech. 62(10), 2357–2369 (2014)CrossRefGoogle Scholar
- 11.Wu, H., Nan, L., Tam, S.W., Hsieh, H.H., Jou, C., Reinman, G., Cong, J., Chang, M.C.F.: A 60GHz on-chip RF-interconnect with \(\lambda \)/4 coupler for 5Gbps bi-directional communication and multi-drop arbitration. In: IEEE Custom Integrated Circuits Conference (CICC), pp. 1–4 (2012)Google Scholar
- 12.Chang, M.F., Cong, J., Kaplan, A., Naik, M., Reinman, G., Socher, E., Tam, S.W.: CMP network-on-chip overlaid with multi-band RF-interconnect. In: International Symposium on High Performance Computer Architecture (HPCA), pp. 191–202 (2008)Google Scholar
- 13.Ito, H., Kimura, M., Miyashita, K., Ishii, T., Okada, K., Masu, K.: A bidirectional- and multi-drop-transmission-line interconnect for multipoint-to-multipoint on-chip communications. IEEE J. Solid-State Circuits 43, 1020–1029 (2008)CrossRefGoogle Scholar
- 14.Hu, J., Xu, J., Huang, M., Wu, H.: A 25-Gbps 8-ps/mm transmission line based interconnect for on-chip communications in multi-core chips. In: IEEE International Microwave Symposium Digest (IMS), pp. 1–4 (2013)Google Scholar
- 15.Nakajima, K., Maruyama, A., Kohtani, M., Sugiura, T., Otobe, E., Lee, J., Cho, S., Kwak, K., Lee, J., Yoshimasu, T., Fujishima, M.: 23Gbps 9.4pj/bit 80/100GHz band CMOS transceiver with on-board antenna for short-range communication. In: IEEE Asian Solid-State Circuits Conference (A-SSCC), pp. 173–176 (2014)Google Scholar
- 16.Byeon, C.W., Yoon, C.H., Park, C.S.: A 67-mw 10.7-Gb/s 60-GHz OOK CMOS transceiver for short-range wireless communications. IEEE Trans. Microw. Theory Tech. 61, 3391–3401 (2013)CrossRefGoogle Scholar
- 17.Karkar, A., Al-Dujaily, R., Yakovlev, A., Tong, K., Mak, T.: Surface wave communication system for on-chip and off-chip interconnects. In: International Workshop on Network on Chip Architectures (NoCArc), pp. 11–16 (2012)Google Scholar
- 18.Liang, Y., Yu, H., Zhao, J., Yang, W., Wang, Y.: An energy efficient and low cross-talk CMOS sub-THz i/o with surface-wave modulator and interconnect. In: IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED), pp. 110–115 (2015)Google Scholar
- 19.Hanson, G.W.: Fundamental transmitting properties of carbon nanotube antennas. IEEE Trans. Antennas Propag. 53(11), 3426–3435 (2005)CrossRefGoogle Scholar
- 20.Saxena, S., Manur, D.S., Shamim, M.S., Ganguly, A.: A folded wireless network-on-chip using graphene based THz-band antennas. In: International Conference on Nanoscale Computing and Communication (NanoCom), p. 29 (2017)Google Scholar
- 21.Balasubramaniam, S., Kangasharju, J.: Realizing the internet of nano things: challenges, solutions, and applications. Computer 46(2), 62–68 (2013)CrossRefGoogle Scholar
- 22.Vien, Q.T., Agyeman, M.O., Le, T.A., Mak, T.: On the nanocommunications at THz band in Graphene-enabled wireless network-on-chip. In: Mathematical Problems in Engineering, Article ID 9768604 (2017)Google Scholar
- 23.Hu, W.H., Wang, C., Bagherzadeh, N.: Design and analysis of a mesh-based wireless network-on-chip. J. Supercomput. 71(8), 2830–2846 (2015)CrossRefGoogle Scholar
- 24.DiTomaso, D., Kodi, A., Kaya, S., Matolak, D.: iWISE: inter-router wireless scalable express channels for network-on-chips (NoCs) architecture. In: Annual Symposium on High Performance Interconnects (HOTI), pp. 11–18 (2011)Google Scholar
- 25.More, A., Taskin, B.: A unified design methodology for a hybrid wireless 2-D NoC. In: IEEE International Symposium on Circuits and Systems (ISCAS), pp. 640–643 (2012)Google Scholar
- 26.Rezaei, A., Daneshtalab, M., Safaei, F., Zhao, D.: Hierarchical approach for hybrid wireless network-on-chip in many-core era. Comput. Electr. Eng. 51(C), 225–234 (2016)CrossRefGoogle Scholar
- 27.Stojmenovic, I.: Honeycomb networks: topological properties and communication algorithms. IEEE Trans. Parallel Distrib. Syst. 8(10), 1036–1042 (1997)CrossRefGoogle Scholar
- 28.Yin, A.W., Xu, T.C., Liljeberg, P., Tenhunen, H.: Explorations of honeycomb topologies for network-on-chip. In: IFIP International Conference on Network and Parallel Computing (NPC), pp. 73–79 (2009)Google Scholar
- 29.Catania, V., Mineo, A., Monteleone, S., Palesi, M., Patti, D.: Cycle-accurate network on chip simulation with noxim. ACM Trans. Model. Comput. Simul. 27(1), 4 (2016)CrossRefGoogle Scholar
- 30.Kahng, A.B., Li, B., Peh, L.S., Samadi, K.: Orion 2.0: a power-area simulator for interconnection networks. IEEE Trans. Very Large Scale Integr. VLSI Syst. 20(1), 191–196 (2012)CrossRefGoogle Scholar
- 31.Catania, V., Mineo, A., Monteleone, S., Palesi, M., Patti, D.: Energy efficient transceiver in wireless network on chip architectures. In: Design, Automation and Test in Europe (DATE), pp. 1321–1326 (2016)Google Scholar
- 32.Rezaei, A., Daneshtalab, M., Palesi, M., Zhao, D.: Efficient congestion-aware scheme for wireless on-chip networks. In: Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP), pp. 742–749 (2016)Google Scholar