Advertisement

Recent Advances of Palindromic Factorization

  • Mai AlzamelEmail author
  • Costas S. Iliopoulos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10765)

Abstract

This paper provides an overview of six particular problems of palindromic factorization and recent algorithmic improvements in solving them.

References

  1. 1.
    Adamczyk, M., Alzamel, M., Charalampopoulos, P., Iliopoulos, C.S., Radoszewski, J.: Palindromic decompositions with gaps and errors. arXiv preprint arXiv:1703.08931 (2017)CrossRefGoogle Scholar
  2. 2.
    Alatabbi, A., Iliopoulos, C.S., Rahman, M.S.: Maximal palindromic factorization. In: Proceedings of Prague Stringology Conference 2013, pp. 70–77. Czech Technical University, Prague (2013)Google Scholar
  3. 3.
    Alzamel, M., Gao, J., Iliopoulos, C.S., Liu, C., Pissis, S.P.: Efficient computation of palindromes in sequences with uncertainties. In: Accepted at Mining Humanistic Data Workshop (2017)Google Scholar
  4. 4.
    Barton, C., Kociumaka, T., Liu, C., Pissis, S.P., Radoszewski, J.: Indexing weighted sequences: neat and efficient. CoRR, abs/1704.07625 (2017)Google Scholar
  5. 5.
    Fici, G., Gagie, T., Kärkkäinen, J., Kempa, D.: A subquadratic algorithm for minimum palindromic factorization. J. Discret. Algorithms 28(C), 41–48 (2014)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press, New York (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of InformaticsKing’s College LondonLondonUK
  2. 2.King Saud UniversityRiyadhKingdom of Saudi Arabia

Personalised recommendations