Advertisement

Combinatorial Algorithms and Methods for Security of Statistical Databases Related to the Work of Mirka Miller

  • Andrei KelarevEmail author
  • Jennifer Seberry
  • Leanne Rylands
  • Xun Yi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10765)

Abstract

This article gives a survey of combinatorial algorithms and methods for database security related to the work of Mirka Miller. The main contributions of Mirka Miller and coauthors to the security of statistical databases include the introduction of Static Audit Expert and theorems determining time complexity of its combinatorial algorithms, a polynomial time algorithm for deciding whether the maximum possible usability can be achieved in statistical database with a special class of answerable statistics, NP-completeness of similar problems concerning several other types of databases, sharp upper bounds on the number of compromise-free queries in certain categories of statistical databases, and analogous results on applications of Static Audit Expert for the prevention of relative compromise.

Keywords

Combinatorial algorithms NP-completeness Privacy in data mining Database security Time complexity Sharp upper bounds 

Notes

Acknowledgements

The authors are grateful to three reviewers for comments and corrections that have helped to improve this paper. This work has been supported by Discovery grant DP160100913 from Australian Research Council.

References

  1. 1.
    Ahlswede, R., Aydinian, H.: On security of statistical databases. SIAM J. Discrete Math. 25, 1778–1791 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alfalayleh, M., Brankovic, L.: Quantifying privacy: a novel entropy-based measure of disclosure risk. In: Kratochvíl, J., Miller, M., Froncek, D. (eds.) IWOCA 2014. LNCS, vol. 8986, pp. 24–36. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19315-1_3CrossRefGoogle Scholar
  3. 3.
    Brankovic, L., Cvetković, D.: The eigenspace of the eigenvalue \(-2\) in generalized line graphs and a problem in security of statistical databases. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 14, 37–48 (2003)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Brankovic, L., Giggins, H.: Statistical database security. In: Petković, M., Jonker, W. (eds.) Security, Privacy, and Trust in Modern Data Management. DCSA, pp. 167–181. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-69861-6_12CrossRefGoogle Scholar
  5. 5.
    Brankovic, L., Horak, P., Miller, M.: An optimization problem in statistical database security. SIAM J. Discrete Math. 13(3), 346–353 (2000)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Brankovic, L., Islam, M.Z., Giggins, H.: Privacy-preserving data mining. In: Petković, M., Jonker, W. (eds.) Security, Privacy, and Trust in Modern Data Management. DCSA, pp. 151–165. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-69861-6_11CrossRefGoogle Scholar
  7. 7.
    Brankovic, L., Lopez, M., Miller, M., Sebe, F.: Triangle randomization for social network data anonymization. Ars Math. Contemp. 7, 461–477 (2014)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Brankovic, L., Miller, M.: An application of combinatorics to the security of statistical databases. Austral. Math. Soc. Gaz. 22(4), 173–177 (1995)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Brankovic, L., Miller, M., Horak, P., Wrightson, G.: Usability of compromise-free statistical databases. In: Proceedings of the International Working Conference on Scientific and Statistical Database Management, Melbourne, Australia, 29–30 January, pp. 144–154 (1997)Google Scholar
  10. 10.
    Brankovic, L., Miller, M., Širáň, J.: Graphs, 0–1 matrices, and usability of statistical databases. Congr. Numer. 120, 169–182 (1996)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Brankovic, L., Miller, M., Širáň, J.: Towards a practical auditing method for the prevention of statistical database compromise. In: Proceedings of the Seventh Australasian Database Conference, Melbourne, Australia, 29–30 January, pp. 177–184 (1996)Google Scholar
  12. 12.
    Brankovic, L., Miller, M., Širáň, J.: On range query dsability of statistical databases. Int. J. Comput. Math. 79(12), 1265–1271 (2002)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Branković, L., Širáň, J.: 2-compromise usability in 1-dimensional statistical databases. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 448–455. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45655-4_48CrossRefGoogle Scholar
  14. 14.
    Casino, F., Domingo-Ferrer, J., Patsakis, C., Puig, D., Solanas, A.: A k-anonymous approach to privacy preserving collaborative filtering. J. Comput. Syst. Sci. 81, 1000–1011 (2015)CrossRefGoogle Scholar
  15. 15.
    Chin, F.Y., Ozsoyoglu, G.: Auditing and inference control in statistical databases. IEEE Trans. Software Eng. 8(6), 574–582 (1982)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Demetrovics, J., Katona, G.O.H., Miklós, D.: On the security of individual data. In: Seipel, D., Turull-Torres, J.M. (eds.) FoIKS 2004. LNCS, vol. 2942, pp. 49–58. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24627-5_5CrossRefzbMATHGoogle Scholar
  17. 17.
    Domingo-Ferrer, J.: Inference Control in Statistical Databases, vol. 2316, 1st edn. Springer, Berlin (2002).  https://doi.org/10.1007/3-540-47804-3CrossRefzbMATHGoogle Scholar
  18. 18.
    Domingo-Ferrer, J.: A survey of inference control methods for privacy-preserving data mining. In: Aggarwal, C.C., Yu, P.S. (eds.) Privacy-Preserving Data Mining Models and Algorithms. ADBS, vol. 34, pp. 53–80. Springer, Boston (2008).  https://doi.org/10.1007/978-0-387-70992-5_3CrossRefGoogle Scholar
  19. 19.
    Domingo-Ferrer, J., Muralidhar, K.: New directions in anonymization: permutation paradigm, verifiability by subjects and intruders, transparency to users. Inf. Sci. 337–338, 11–24 (2016)CrossRefGoogle Scholar
  20. 20.
    Estivill-Castro, V., Brankovic, L.: Data swapping: balancing privacy against precision in mining for logic rules. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999. LNCS, vol. 1676, pp. 389–398. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48298-9_41CrossRefGoogle Scholar
  21. 21.
    Giggins, H., Brankovic, L.: Statistical disclosure control: to trust or not to trust. In: Proceedings of the International Symposium on Computer Science and its Applications, pp. 108–113. IEEE Computer Society (2008)Google Scholar
  22. 22.
    Giggins, H., Brankovic, L.: VICUS - a noise addition technique for categorical data. In: Proceedings of the Tenth Australasian Data Mining Conference, AusDM 2012, Conferences in Research and Practice in Information Technology (CRPIT), vol. 134, pp. 139–148 (2012)Google Scholar
  23. 23.
    Griggs, J.R.: Concentrating subset sums at \(k\) points. Bull. Inst. Comb. Appl. 20, 65–74 (1997)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Griggs, J.R.: Database security and the distribution of subset sums in \({R}^m\). In: Graph Theory and Combinatorial Biology. Bolyai Society Mathematical Studies, vol. 7, pp. 223–252 (1997)Google Scholar
  25. 25.
    Hardjono, T., Seberry, J.: Applications of smartcards for anonymous and verifiable databases. Comput. Secur. 14, 465–472 (1995)CrossRefGoogle Scholar
  26. 26.
    Hardjono, T., Zheng, Y., Seberry, J.: Database authentication revisited. Comput. Secur. 13, 573–580 (1994)CrossRefGoogle Scholar
  27. 27.
    Horak, P., Brankovic, L., Miller, M.: A combinatorial problem in database security. Discrete Appl. Math. 91(1–3), 119–126 (1999)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Islam, M.Z., Brankovic, L.: A framework for privacy preserving classification in data mining. In: Proceedings of the 2nd Workshop on Australasian Information Security, Data Mining and Web Intelligence, and Software Internationalisation, vol. 32, pp. 163–168 (2004)Google Scholar
  29. 29.
    Islam, M.Z., Brankovic, L.: DETECTIVE: a decision tree based categorical value clustering and perturbation technique for preserving privacy in data mining. In: Proceedings of the 3rd IEEE International Conference on Industrial Informatics, INDIN 2005, pp. 701–708 (2005)Google Scholar
  30. 30.
    Islam, M.Z., Brankovic, L.: Privacy preserving data mining: a noise addition framework using a novel clustering technique. Knowl.-Based Syst. 24, 1214–1223 (2011)CrossRefGoogle Scholar
  31. 31.
    Liu, D., Bertino, E., Yi, X.: Privacy of outsourced k-means clustering. In: Proceedings of the 9th ACM Symposium on Information, Computer and Communications Security, ASIA CCS 2014, pp. 123–133 (2014)Google Scholar
  32. 32.
    Mathieson, L., King, T., Brankovic, L.: 2-compromise: usability in 1-dimensional statistical database. Research Gate (2008). https://www.researchgate.net/publication/228973056
  33. 33.
    Miller, M.: A model of statistical databse compromise incorporating supplementary knowledge. In: Databases in the 1990’s, pp. 258–267 (1991)Google Scholar
  34. 34.
    Miller, M., Cooper, J.: Security considerations for present and future medical databases. Int. J. Med. Inform. 41, 39–46 (1996)Google Scholar
  35. 35.
    Miller, M., Roberts, I., Simpson, J.: Application of symmetric chains to an optimization problem in the security of statistical databases. Bull. Inst. Comb. Appl. 2, 47–58 (1991)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Miller, M., Roberts, I., Simpson, J.: Prevention of relative compromise in statistical databases using audit expert. Bull. Inst. Comb. Appl. 10, 51–62 (1994)zbMATHGoogle Scholar
  37. 37.
    Miller, M., Seberry, J.: Relative compromise of statistical databases. Aust. Comput. J. 21(2), 56–61 (1989)Google Scholar
  38. 38.
    Miller, M., Seberry, J.: Audit expert and statistical database security. In: Databases in the 1990’s, pp. 149–174 (1991)Google Scholar
  39. 39.
    Mishra, V., Stranieri, A., Miller, M., Ryan, J.: Knowledge based regulation of statistical databases. WSEAS Trans. Inf. Sci. Appl. 3(2), 239–244 (2006)Google Scholar
  40. 40.
    Pacheco, F., Cooper, J., Bomba, D., Morris, S., Miller, M., Brankovic, L.: Education issues in health informatics. Inform. Healthc. 4, 101–105 (1995)Google Scholar
  41. 41.
    Pacheco, F., Cooper, J., Bomba, D., Morris, S., Miller, M., Brankovic, L.: Value added networks (VANs) and their benefit to a health information system. Inform. Healthc. 4, 141–144 (1995)Google Scholar
  42. 42.
    Pieprzyk, J., Hardjono, T., Seberry, J.: Fundamentals of Computer Security. Springer, Berlin (2003).  https://doi.org/10.1007/978-3-662-07324-7CrossRefzbMATHGoogle Scholar
  43. 43.
    Rao, F.Y., Samanthula, B., Bertino, E., Yi, X., Liu, D.: Privacy-preserving and outsourced multi-user k-means clustering. In: Proceedings of the IEEE Conference on Collaboration and Internet Computing, CIC 2015, pp. 80–89 (2015)Google Scholar
  44. 44.
    Skinner, G., Chang, E., McMahon, M., Aisbett, J., Miller, M.: Shield privacy Hippocratic security method for virtual community. In: IECON Proceedings of the Industrial Electronics Conference, pp. 472–479 (2004)Google Scholar
  45. 45.
    Skinner, G., Miller, M.: Managing privacy, trust, security, and context relationships using weighted graph representations. WSEAS Trans. Inf. Sci. Appl. 3(2), 283–290 (2006)Google Scholar
  46. 46.
    Slamet, S., Sugeng, K.A., Miller, M.: Sum graph based access structure in a secret sharing scheme. J. Prime Res. Math. 2, 113–119 (2006)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Stanley, R.P.: Weyl groups, the hard Lefshetz theorem, and the Sperner property. SIAM J. Algebr. Discrete Meth. 1, 168–184 (1980)CrossRefGoogle Scholar
  48. 48.
    Yi, X., Paulet, R., Bertino, E.: Private Information Retrieval. Morgan and Claypool, San Rafael (2013)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of ScienceRMIT UniversityMelbourneAustralia
  2. 2.School of Computing and Information TechnologyUniversity of WollongongWollongongAustralia
  3. 3.School of Computing, Engineering and MathematicsWestern Sydney UniversityPenrithAustralia

Personalised recommendations