Combinatorial Algorithms and Methods for Security of Statistical Databases Related to the Work of Mirka Miller
Abstract
This article gives a survey of combinatorial algorithms and methods for database security related to the work of Mirka Miller. The main contributions of Mirka Miller and coauthors to the security of statistical databases include the introduction of Static Audit Expert and theorems determining time complexity of its combinatorial algorithms, a polynomial time algorithm for deciding whether the maximum possible usability can be achieved in statistical database with a special class of answerable statistics, NP-completeness of similar problems concerning several other types of databases, sharp upper bounds on the number of compromise-free queries in certain categories of statistical databases, and analogous results on applications of Static Audit Expert for the prevention of relative compromise.
Keywords
Combinatorial algorithms NP-completeness Privacy in data mining Database security Time complexity Sharp upper boundsNotes
Acknowledgements
The authors are grateful to three reviewers for comments and corrections that have helped to improve this paper. This work has been supported by Discovery grant DP160100913 from Australian Research Council.
References
- 1.Ahlswede, R., Aydinian, H.: On security of statistical databases. SIAM J. Discrete Math. 25, 1778–1791 (2011)MathSciNetCrossRefGoogle Scholar
- 2.Alfalayleh, M., Brankovic, L.: Quantifying privacy: a novel entropy-based measure of disclosure risk. In: Kratochvíl, J., Miller, M., Froncek, D. (eds.) IWOCA 2014. LNCS, vol. 8986, pp. 24–36. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19315-1_3CrossRefGoogle Scholar
- 3.Brankovic, L., Cvetković, D.: The eigenspace of the eigenvalue \(-2\) in generalized line graphs and a problem in security of statistical databases. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 14, 37–48 (2003)MathSciNetzbMATHGoogle Scholar
- 4.Brankovic, L., Giggins, H.: Statistical database security. In: Petković, M., Jonker, W. (eds.) Security, Privacy, and Trust in Modern Data Management. DCSA, pp. 167–181. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-69861-6_12CrossRefGoogle Scholar
- 5.Brankovic, L., Horak, P., Miller, M.: An optimization problem in statistical database security. SIAM J. Discrete Math. 13(3), 346–353 (2000)MathSciNetCrossRefGoogle Scholar
- 6.Brankovic, L., Islam, M.Z., Giggins, H.: Privacy-preserving data mining. In: Petković, M., Jonker, W. (eds.) Security, Privacy, and Trust in Modern Data Management. DCSA, pp. 151–165. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-69861-6_11CrossRefGoogle Scholar
- 7.Brankovic, L., Lopez, M., Miller, M., Sebe, F.: Triangle randomization for social network data anonymization. Ars Math. Contemp. 7, 461–477 (2014)MathSciNetzbMATHGoogle Scholar
- 8.Brankovic, L., Miller, M.: An application of combinatorics to the security of statistical databases. Austral. Math. Soc. Gaz. 22(4), 173–177 (1995)MathSciNetzbMATHGoogle Scholar
- 9.Brankovic, L., Miller, M., Horak, P., Wrightson, G.: Usability of compromise-free statistical databases. In: Proceedings of the International Working Conference on Scientific and Statistical Database Management, Melbourne, Australia, 29–30 January, pp. 144–154 (1997)Google Scholar
- 10.Brankovic, L., Miller, M., Širáň, J.: Graphs, 0–1 matrices, and usability of statistical databases. Congr. Numer. 120, 169–182 (1996)MathSciNetzbMATHGoogle Scholar
- 11.Brankovic, L., Miller, M., Širáň, J.: Towards a practical auditing method for the prevention of statistical database compromise. In: Proceedings of the Seventh Australasian Database Conference, Melbourne, Australia, 29–30 January, pp. 177–184 (1996)Google Scholar
- 12.Brankovic, L., Miller, M., Širáň, J.: On range query dsability of statistical databases. Int. J. Comput. Math. 79(12), 1265–1271 (2002)MathSciNetCrossRefGoogle Scholar
- 13.Branković, L., Širáň, J.: 2-compromise usability in 1-dimensional statistical databases. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 448–455. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45655-4_48CrossRefGoogle Scholar
- 14.Casino, F., Domingo-Ferrer, J., Patsakis, C., Puig, D., Solanas, A.: A k-anonymous approach to privacy preserving collaborative filtering. J. Comput. Syst. Sci. 81, 1000–1011 (2015)CrossRefGoogle Scholar
- 15.Chin, F.Y., Ozsoyoglu, G.: Auditing and inference control in statistical databases. IEEE Trans. Software Eng. 8(6), 574–582 (1982)MathSciNetCrossRefGoogle Scholar
- 16.Demetrovics, J., Katona, G.O.H., Miklós, D.: On the security of individual data. In: Seipel, D., Turull-Torres, J.M. (eds.) FoIKS 2004. LNCS, vol. 2942, pp. 49–58. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24627-5_5CrossRefzbMATHGoogle Scholar
- 17.Domingo-Ferrer, J.: Inference Control in Statistical Databases, vol. 2316, 1st edn. Springer, Berlin (2002). https://doi.org/10.1007/3-540-47804-3CrossRefzbMATHGoogle Scholar
- 18.Domingo-Ferrer, J.: A survey of inference control methods for privacy-preserving data mining. In: Aggarwal, C.C., Yu, P.S. (eds.) Privacy-Preserving Data Mining Models and Algorithms. ADBS, vol. 34, pp. 53–80. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-70992-5_3CrossRefGoogle Scholar
- 19.Domingo-Ferrer, J., Muralidhar, K.: New directions in anonymization: permutation paradigm, verifiability by subjects and intruders, transparency to users. Inf. Sci. 337–338, 11–24 (2016)CrossRefGoogle Scholar
- 20.Estivill-Castro, V., Brankovic, L.: Data swapping: balancing privacy against precision in mining for logic rules. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999. LNCS, vol. 1676, pp. 389–398. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48298-9_41CrossRefGoogle Scholar
- 21.Giggins, H., Brankovic, L.: Statistical disclosure control: to trust or not to trust. In: Proceedings of the International Symposium on Computer Science and its Applications, pp. 108–113. IEEE Computer Society (2008)Google Scholar
- 22.Giggins, H., Brankovic, L.: VICUS - a noise addition technique for categorical data. In: Proceedings of the Tenth Australasian Data Mining Conference, AusDM 2012, Conferences in Research and Practice in Information Technology (CRPIT), vol. 134, pp. 139–148 (2012)Google Scholar
- 23.Griggs, J.R.: Concentrating subset sums at \(k\) points. Bull. Inst. Comb. Appl. 20, 65–74 (1997)MathSciNetzbMATHGoogle Scholar
- 24.Griggs, J.R.: Database security and the distribution of subset sums in \({R}^m\). In: Graph Theory and Combinatorial Biology. Bolyai Society Mathematical Studies, vol. 7, pp. 223–252 (1997)Google Scholar
- 25.Hardjono, T., Seberry, J.: Applications of smartcards for anonymous and verifiable databases. Comput. Secur. 14, 465–472 (1995)CrossRefGoogle Scholar
- 26.Hardjono, T., Zheng, Y., Seberry, J.: Database authentication revisited. Comput. Secur. 13, 573–580 (1994)CrossRefGoogle Scholar
- 27.Horak, P., Brankovic, L., Miller, M.: A combinatorial problem in database security. Discrete Appl. Math. 91(1–3), 119–126 (1999)MathSciNetCrossRefGoogle Scholar
- 28.Islam, M.Z., Brankovic, L.: A framework for privacy preserving classification in data mining. In: Proceedings of the 2nd Workshop on Australasian Information Security, Data Mining and Web Intelligence, and Software Internationalisation, vol. 32, pp. 163–168 (2004)Google Scholar
- 29.Islam, M.Z., Brankovic, L.: DETECTIVE: a decision tree based categorical value clustering and perturbation technique for preserving privacy in data mining. In: Proceedings of the 3rd IEEE International Conference on Industrial Informatics, INDIN 2005, pp. 701–708 (2005)Google Scholar
- 30.Islam, M.Z., Brankovic, L.: Privacy preserving data mining: a noise addition framework using a novel clustering technique. Knowl.-Based Syst. 24, 1214–1223 (2011)CrossRefGoogle Scholar
- 31.Liu, D., Bertino, E., Yi, X.: Privacy of outsourced k-means clustering. In: Proceedings of the 9th ACM Symposium on Information, Computer and Communications Security, ASIA CCS 2014, pp. 123–133 (2014)Google Scholar
- 32.Mathieson, L., King, T., Brankovic, L.: 2-compromise: usability in 1-dimensional statistical database. Research Gate (2008). https://www.researchgate.net/publication/228973056
- 33.Miller, M.: A model of statistical databse compromise incorporating supplementary knowledge. In: Databases in the 1990’s, pp. 258–267 (1991)Google Scholar
- 34.Miller, M., Cooper, J.: Security considerations for present and future medical databases. Int. J. Med. Inform. 41, 39–46 (1996)Google Scholar
- 35.Miller, M., Roberts, I., Simpson, J.: Application of symmetric chains to an optimization problem in the security of statistical databases. Bull. Inst. Comb. Appl. 2, 47–58 (1991)MathSciNetzbMATHGoogle Scholar
- 36.Miller, M., Roberts, I., Simpson, J.: Prevention of relative compromise in statistical databases using audit expert. Bull. Inst. Comb. Appl. 10, 51–62 (1994)zbMATHGoogle Scholar
- 37.Miller, M., Seberry, J.: Relative compromise of statistical databases. Aust. Comput. J. 21(2), 56–61 (1989)Google Scholar
- 38.Miller, M., Seberry, J.: Audit expert and statistical database security. In: Databases in the 1990’s, pp. 149–174 (1991)Google Scholar
- 39.Mishra, V., Stranieri, A., Miller, M., Ryan, J.: Knowledge based regulation of statistical databases. WSEAS Trans. Inf. Sci. Appl. 3(2), 239–244 (2006)Google Scholar
- 40.Pacheco, F., Cooper, J., Bomba, D., Morris, S., Miller, M., Brankovic, L.: Education issues in health informatics. Inform. Healthc. 4, 101–105 (1995)Google Scholar
- 41.Pacheco, F., Cooper, J., Bomba, D., Morris, S., Miller, M., Brankovic, L.: Value added networks (VANs) and their benefit to a health information system. Inform. Healthc. 4, 141–144 (1995)Google Scholar
- 42.Pieprzyk, J., Hardjono, T., Seberry, J.: Fundamentals of Computer Security. Springer, Berlin (2003). https://doi.org/10.1007/978-3-662-07324-7CrossRefzbMATHGoogle Scholar
- 43.Rao, F.Y., Samanthula, B., Bertino, E., Yi, X., Liu, D.: Privacy-preserving and outsourced multi-user k-means clustering. In: Proceedings of the IEEE Conference on Collaboration and Internet Computing, CIC 2015, pp. 80–89 (2015)Google Scholar
- 44.Skinner, G., Chang, E., McMahon, M., Aisbett, J., Miller, M.: Shield privacy Hippocratic security method for virtual community. In: IECON Proceedings of the Industrial Electronics Conference, pp. 472–479 (2004)Google Scholar
- 45.Skinner, G., Miller, M.: Managing privacy, trust, security, and context relationships using weighted graph representations. WSEAS Trans. Inf. Sci. Appl. 3(2), 283–290 (2006)Google Scholar
- 46.Slamet, S., Sugeng, K.A., Miller, M.: Sum graph based access structure in a secret sharing scheme. J. Prime Res. Math. 2, 113–119 (2006)MathSciNetzbMATHGoogle Scholar
- 47.Stanley, R.P.: Weyl groups, the hard Lefshetz theorem, and the Sperner property. SIAM J. Algebr. Discrete Meth. 1, 168–184 (1980)CrossRefGoogle Scholar
- 48.Yi, X., Paulet, R., Bertino, E.: Private Information Retrieval. Morgan and Claypool, San Rafael (2013)zbMATHGoogle Scholar