A Multi-start Heuristic for Multiplicative Depth Minimization of Boolean Circuits

  • Sergiu CarpovEmail author
  • Pascal Aubry
  • Renaud Sirdey
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10765)


In this work we propose a multi-start heuristic which aims at minimizing the multiplicative depth of boolean circuits. The multiplicative depth objective is encountered in the field of homomorphic encryption where ciphertext size depends on the number of consecutive multiplications. The heuristic is based on rewrite operators for multiplicative depth-2 paths. Even if the proposed rewrite operators are simple and easy to understand the experimental results show that they are rather powerful. The multiplicative depth of the benchmarked circuits was hugely improved. In average the obtained multiplicative depths were lower by more than 3 times than the initial ones. The proposed rewrite operators are not limited to boolean circuits and can also be used for arithmetic circuits.


  1. 1.
    Amarú, L., Gaillardon, P.-E., De Micheli, G.: The EPFL combinational benchmark suite. In: Proceedings of the 24th International Workshop on Logic & Synthesis (IWLS) (2015)Google Scholar
  2. 2.
    Benhamouda, F., Lepoint, T., Mathieu, C., Zhou, H.: Optimization of bootstrapping in circuits. In: SODA, pp. 2423–2433. SIAM (2017)Google Scholar
  3. 3.
    Berkeley Logic Synthesis and Verification Group. ABC: A System for Sequential Synthesis and Verification, Release 30308.
  4. 4.
    Boyar, J., Peralta, R.: Concrete multiplicative complexity of symmetric functions. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 179–189. Springer, Heidelberg (2006). Scholar
  5. 5.
    Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical GapSVP. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 868–886. Springer, Heidelberg (2012). Scholar
  6. 6.
    Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, ITCS 2012, pp. 309–325 (2012)Google Scholar
  7. 7.
    Buescher, N., Holzer, A., Weber, A., Katzenbeisser, S.: Compiling low depth circuits for practical secure computation. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 80–98. Springer, Cham (2016). Scholar
  8. 8.
    Carpov, S., Dubrulle, P., Sirdey, R.: Armadillo: a compilation chain for privacy preserving applications. In: Proceedings of the 3rd International Workshop on Security in Cloud Computing, SCC 2015, pp. 13–19 (2015)Google Scholar
  9. 9.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, STOC 2009, pp. 169–178 (2009)Google Scholar
  10. 10.
    Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 1–16. Springer, Heidelberg (2012). Scholar
  11. 11.
    Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg (2009). Scholar
  12. 12.
    Lepoint, T., Paillier, P.: On the minimal number of bootstrappings in homomorphic circuits. In: Adams, A.A., Brenner, M., Smith, M. (eds.) FC 2013. LNCS, vol. 7862, pp. 189–200. Springer, Heidelberg (2013). Scholar
  13. 13.
    Paindavoine, M., Vialla, B.: Minimizing the number of bootstrappings in fully homomorphic encryption. In: Dunkelman, O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 25–43. Springer, Cham (2016). Scholar
  14. 14.
    Schneider, T., Zohner, M.: GMW vs. Yao? Efficient secure two-party computation with low depth circuits. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 275–292. Springer, Heidelberg (2013). Scholar
  15. 15.
    Wernick, W.: Complete sets of logical functions. Trans. Am. Math. Soc. 51(1), 117–132 (1942)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CEA, LISTGif-sur-Yvette CedexFrance

Personalised recommendations