Advertisement

Improved Complexity for Power Edge Set Problem

  • Benoit Darties
  • Annie Chateau
  • Rodolphe Giroudeau
  • Matthias Weller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10765)

Abstract

We study the complexity of Power Edge Set (PES), a problem dedicated to the monitoring of an electric network. In such context we propose some new complexity results. We show that PES remains \(\mathcal {NP}\)-hard in planar graphs with degree at most five. This result is extended to bipartite planar graphs with degree at most six. We also show that PES is hard to approximate within a factor lower than Open image in new window in the bipartite case (resp. \(17/15-\epsilon \)), unless \(\mathcal {P}=\mathcal {NP}\), (resp. under \(\mathcal {UGC}\)). We also show that, assuming \(\mathcal {ETH}\), there is no \(2^{o(\sqrt{n})}\)-time algorithm and no \(2^{o(k)}n^{O(1)}\)-time parameterized algorithm, where n is the number of vertices and k the number of PMUs placed. These results improve the current best known bounds.

References

  1. 1.
    Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41(1), 153–180 (1994)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bansal, N., Khot, S.: Inapproximability of hypergraph vertex cover and applications to scheduling problems. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 250–261. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14165-2_22CrossRefzbMATHGoogle Scholar
  3. 3.
    Bar-Yehuda, R., Even, S.: On approximating a vertex cover for planar graphs. In: Proceedings of 14th STOC, pp. 303–309 (1982)Google Scholar
  4. 4.
    Bazgan, C.: Approximation schemes and parameterized complexity. Ph.D thesis, INRIA, Orsay, France (1995)Google Scholar
  5. 5.
    Dinur, I., Safra, S.: On the hardness of approximating vertex cover. Ann. Math. 162(1), 439–485 (2005).  https://doi.org/10.4007/annals.2005.162.439. ISSN 0003–486XMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Dinur, I., Guruswami, V., Khot, S., Regev, O.: A new multilayered PCP and the hardness of hypergraph vertex cover. SIAM J. Comput. 34(5), 1129–1146 (2005)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Feige, U.: Vertex cover is hardest to approximate on regular graphs. Technical report, MCS03-15, the Weizmann Institute (2003)Google Scholar
  8. 8.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)zbMATHGoogle Scholar
  9. 9.
    Impagliazzo, R., Paturi, R.: On the complexity of \(k\)-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential time hypothesis. Bull. EATCS 105, 41–72 (2011)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Marx, D.: Parameterized complexity and approximation algorithms. Comput. J. 51(1), 60–78 (2008)CrossRefGoogle Scholar
  13. 13.
    Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complexity classes. J. Comput. Syst. Sci. 43(3), 425–440 (1991)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Poirion, P.-L., Toubaline, S., D’Ambrosio, C., Liberti, L.: The power edge set problem. Networks 68(2), 104–120 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Toubaline, S., D’Ambrosio, C., Liberti, L., Poirion, P.-L., Schieber, B., Shachnai, H.: Complexité du problème power edge set. In: ROADEF 2016 (2016)Google Scholar
  16. 16.
    Yuill, W., Edwards, A., Chowdhury, S., Chowdhury, S.P.: Optimal PMU placement: a comprehensive literature review. In: 2011 IEEE Power and Energy Society General Meeting, pp. 1–8, July 2011.  https://doi.org/10.1109/PES.2011.6039376

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Le2i FRE2005, CNRS, Arts et MétiersUniversity of Bourgogne Franche-ComtéDijonFrance
  2. 2.LIRMM - CNRS UMR 5506MontpellierFrance

Personalised recommendations