Advertisement

Transforming Growth Factor Beta (TGF-β) Signaling in Head and Neck Squamous Cell Carcinoma (HNSCC)

  • Alexander E. Kudinov
  • Tim N. Beck
Chapter
Part of the Current Cancer Research book series (CUCR)

Abstract

Transforming growth factor receptor beta (TGF-β) signaling is commonly dysregulated in head and neck squamous cell carcinoma (HNSCC). TGF-β signaling influences homeostasis in normal epithelial cells and regulates a critical signaling network during development. In HNSCC, TGF-β signaling frequently promotes cell invasion, metastasis, proliferation, and drug resistance and may present an important therapeutic target. Canonical TGF-β signaling generally involves activation of SMAD effector proteins, most prominently SMAD2 and SMAD3, whereas noncanonical TGF-β signaling requires signal propagators including ERK, AKT, and RAF, also commonly employed by receptor tyrosine kinases (RTKs), thereby providing opportunities for signaling crosstalk. Several members of the TGF-β superfamily are being explored as potential targets to control drug resistance and metastatic spread, both important barriers to cure in HNSCC. In this chapter, the roles of TGF-β in HNSCC are described, with particular focus on molecular signaling, TGF-β’s role in controlling gene expression, and relevant therapeutic directions involving TGF-β.

Keywords

TGF-β TGFBRII Head and neck cancer Targeted therapy Metastasis Proliferation Epithelial-mesenchymal transition Cancer stem cells 

Notes

Acknowledgments

We thank Drs. Golemis and Burtness for critical reading of our chapter. The authors were supported by the Ruth L. Kirschstein NRSA F30 fellowship (F30 CA180607) from the NIH (to TNB).

References

  1. 1.
    Beck TN, Golemis EA. Genomic insights into head and neck cancer. Cancers Head Neck. 2016;1(1)Google Scholar
  2. 2.
    Argiris A, Karamouzis MV, Raben D, Ferris RL. Head and neck cancer. Lancet. 2008;371:1695–709.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Marur S, D’Souza G, Westra WH, Forastiere AA. HPV-associated head and neck cancer: a virus-related cancer epidemic. Lancet Oncol. 2010;11:781–9.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kelly JR, Husain ZA, Burtness B. Treatment de-intensification strategies for head and neck cancer. Eur J Cancer. 2016;68:125–33.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chaturvedi AK, Engels EA, Pfeiffer RM, et al. Human papillomavirus and rising oropharyngeal cancer incidence in the United States. J Clin Oncol. 2011;29:4294–301.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ang KK, Harris J, Wheeler R, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363:24–35.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bhatia A, Burtness B. Human papillomavirus-associated oropharyngeal cancer: defining risk groups and clinical trials. J Clin Oncol. 2015;33:3243–50.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Magrini SM, Buglione M, Corvo R, et al. Cetuximab and radiotherapy versus cisplatin and radiotherapy for locally advanced head and neck cancer: a randomized phase II trial. J Clin Oncol. 2016;34:427–35.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sacco AG, Cohen EE. Current treatment options for recurrent or metastatic head and neck squamous cell carcinoma. J Clin Oncol. 2015;33:3305–13.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cancer Genome Atlas N. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517:576–82.CrossRefGoogle Scholar
  11. 11.
    Liu H, Beck TN, Golemis EA, Serebriiskii IG. Integrating in silico resources to map a signaling network. Methods Mol Biol. 2014;1101:197–245.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Creixell P, Schoof EM, Erler JT, Linding R. Navigating cancer network attractors for tumor-specific therapy. Nat Biotechnol. 2012;30:842–8.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Creixell P, Schoof EM, Simpson CD, et al. Kinome-wide decoding of network-attacking mutations rewiring cancer signaling. Cell. 2015;163:202–17.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nassar D, Blanpain C. Cancer stem cells: basic concepts and therapeutic implications. Annu Rev Pathol. 2016;11:47–76.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Oshimori N, Oristian D, Fuchs E. TGF-beta promotes heterogeneity and drug resistance in squamous cell carcinoma. Cell. 2015;160:963–76.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Anzano MA, Roberts AB, Meyers CA, et al. Synergistic interaction of two classes of transforming growth factors from murine sarcoma cells. Cancer Res. 1982;42:4776–8.PubMedPubMedCentralGoogle Scholar
  18. 18.
    White RA, Malkoski SP, Wang XJ. TGFbeta signaling in head and neck squamous cell carcinoma. Oncogene. 2010;29:5437–46.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Massague J. TGFbeta Cancer Cell. 2008;134:215–30.Google Scholar
  20. 20.
    Levy L, Hill CS. Alterations in components of the TGF-beta superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev. 2006;17:41–58.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Roberts AB, Anzano MA, Lamb LC, et al. Isolation from murine sarcoma cells of novel transforming growth factors potentiated by EGF. Nature. 1982;295:417–9.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Derynck R, Jarrett JA, Chen EY, et al. Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells. Nature. 1985;316:701–5.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Derynck R, Rhee L, Chen EY, Van Tilburg A. Intron-exon structure of the human transforming growth factor-beta precursor gene. Nucleic Acids Res. 1987;15:3188–9.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Assoian RK, Komoriya A, Meyers CA, et al. Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem. 1983;258:7155–60.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Sporn MB. The early history of TGF-beta, and a brief glimpse of its future. Cytokine Growth Factor Rev. 2006;17:3–7.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Roberts AB, Frolik CA, Anzano MA, Sporn MB. Transforming growth factors from neoplastic and nonneoplastic tissues. Fed Proc. 1983;42:2621–6.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Flanders KC, Roberts AB, Ling N, et al. Antibodies to peptide determinants in transforming growth factor beta and their applications. Biochemistry. 1988;27:739–46.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Weiss A, Attisano L. The TGFbeta superfamily signaling pathway. Wiley Interdiscip Rev Dev Biol. 2013;2:47–63.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Tucker RF, Branum EL, Shipley GD, et al. Specific binding to cultured cells of 125I-labeled type beta transforming growth factor from human platelets. Proc Natl Acad Sci U S A. 1984;81:6757–61.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Frolik CA, Wakefield LM, Smith DM, Sporn MB. Characterization of a membrane receptor for transforming growth factor-beta in normal rat kidney fibroblasts. J Biol Chem. 1984;259:10995–1000.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Massague J. TGFbeta signalling in context. Nat Rev Mol Cell Biol. 2012;13:616–30.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Massague J, Gomis RR. The logic of TGFbeta signaling. FEBS Lett. 2006;580:2811–20.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ruberte E, Marty T, Nellen D, et al. An absolute requirement for both the type II and type I receptors, punt and thick veins, for dpp signaling in vivo. Cell. 1995;80:889–97.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Raftery LA, Twombly V, Wharton K, Gelbart WM. Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. Genetics. 1995;139:241–54.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Sekelsky JJ, Newfeld SJ, Raftery LA, et al. Genetic characterization and cloning of mothers against dpp, a gene required for decapentaplegic function in Drosophila melanogaster. Genetics. 1995;139:1347–58.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Estevez M, Attisano L, Wrana JL, et al. The daf-4 gene encodes a bone morphogenetic protein receptor controlling C. elegans dauer larva development. Nature. 1993;365:644–9.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Savage C, Das P, Finelli AL, et al. Caenorhabditis elegans genes sma-2, sma-3, and sma-4 define a conserved family of transforming growth factor beta pathway components. Proc Natl Acad Sci U S A. 1996;93:790–4.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Derynck R, Gelbart WM, Harland RM, et al. Nomenclature: vertebrate mediators of TGFbeta; family signals. Cell. 87:173.Google Scholar
  39. 39.
    Akhurst RJ, Fee F, Balmain A. Localized production of TGF-beta mRNA in tumour promoter-stimulated mouse epidermis. Nature. 1988;331:363–5.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Akhurst RJ, Lehnert SA, Gatherer D, Duffie E. The role of TGF beta in mouse development. Ann N Y Acad Sci. 1990;593:259–71.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Sporn MB, Roberts AB, Shull JH, et al. Polypeptide transforming growth factors isolated from bovine sources and used for wound healing in vivo. Science. 1983;219:1329–31.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Beck TN, Korobeynikov VA, Kudinov AE, et al. Anti-Mullerian hormone signaling regulates epithelial plasticity and chemoresistance in lung cancer. Cell Rep. 2016;16:657–71.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res. 2009;19:156–72.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Katsuno Y, Lamouille S, Derynck R. TGF-beta signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol. 2013;25:76–84.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Scheel C, Weinberg RA. Cancer stem cells and epithelial-mesenchymal transition: concepts and molecular links. Semin Cancer Biol. 2012;22:396–403.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kudinov AE, Deneka A, Nikonova AS, et al. Musashi-2 (MSI2) supports TGF-beta signaling and inhibits claudins to promote non-small cell lung cancer (NSCLC) metastasis. Proc Natl Acad Sci U S A. 2016;113:6955–60.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Moses H, Barcellos-Hoff MH. TGF-beta biology in mammary development and breast cancer. Cold Spring Harb Perspect Biol. 2011;3:a003277.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Calon A, Espinet E, Palomo-Ponce S, et al. Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer Cell. 2012;22:571–84.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Graves CA, Abboodi FF, Tomar S, et al. The translational significance of epithelial-mesenchymal transition in head and neck cancer. Clin Transl Med. 2014;3:60.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Roberts AB, Anzano MA, Wakefield LM, et al. Type beta transforming growth factor: a bifunctional regulator of cellular growth. Proc Natl Acad Sci U S A. 1985;82:119–23.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Wrana JL, Attisano L, Wieser R, et al. Mechanism of activation of the TGF-beta receptor. Nature. 1994;370:341–7.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Moses HL, Roberts AB, Derynck R. The discovery and early days of TGF-beta: a historical perspective. Cold Spring Harb Perspect Biol. 2016;8Google Scholar
  53. 53.
    Bragdon B, Moseychuk O, Saldanha S, et al. Bone morphogenetic proteins: a critical review. Cell Signal. 2011;23:609–20.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Wang RN, Green J, Wang Z, et al. Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes Dis. 2014;1:87–105.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Salazar VS, Gamer LW, Rosen V. BMP signalling in skeletal development, disease and repair. Nat Rev Endocrinol. 2016;12:203–21.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Pickup MW, Owens P, Moses HL. TGF-beta, bone morphogenetic protein, and activin signaling and the tumor microenvironment. Cold Spring Harb Perspect Biol. 2017;9Google Scholar
  57. 57.
    Attisano L, Wrana JL, Cheifetz S, Massague J. Novel activin receptors: distinct genes and alternative mRNA splicing generate a repertoire of serine/threonine kinase receptors. Cell. 1992;68:97–108.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Xia Y, Schneyer AL. The biology of activin: recent advances in structure, regulation and function. J Endocrinol. 2009;202:1–12.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Daopin S, Li M, Davies DR. Crystal structure of TGF-beta 2 refined at 1.8 A resolution. Proteins. 1993;17:176–92.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Daopin S, Davies DR, Schlunegger MP, Grutter MG. Comparison of two crystal structures of TGF-beta2: the accuracy of refined protein structures. Acta Crystallogr D Biol Crystallogr. 1994;50:85–92.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Zhang W, Jiang Y, Wang Q, et al. Single-molecule imaging reveals transforming growth factor-beta-induced type II receptor dimerization. Proc Natl Acad Sci U S A. 2009;106:15679–83.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Zhang W, Yuan J, Yang Y, et al. Monomeric type I and type III transforming growth factor-beta receptors and their dimerization revealed by single-molecule imaging. Cell Res. 2010;20:1216–23.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113:685–700.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    di Clemente N, Josso N, Gouedard L, Belville C. Components of the anti-Mullerian hormone signaling pathway in gonads. Mol Cell Endocrinol. 2003;211:9–14.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Kim JH, MacLaughlin DT, Donahoe PK. Mullerian inhibiting substance/anti-Mullerian hormone: a novel treatment for gynecologic tumors. Obstet Gynecol Sci. 2014;57:343–57.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Daly AC, Randall RA, Hill CS. Transforming growth factor beta-induced Smad1/5 phosphorylation in epithelial cells is mediated by novel receptor complexes and is essential for anchorage-independent growth. Mol Cell Biol. 2008;28:6889–902.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Beck TN, Georgopoulos R, Shagisultanova EI, et al. EGFR and RB1 as dual biomarkers in HPV-negative head and neck cancer. Mol Cancer Ther. 2016;15:2486–97.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Moustakas A, Heldin CH. The regulation of TGFbeta signal transduction. Development. 2009;136:3699–714.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 141:1117–34.Google Scholar
  70. 70.
    Heldin CH, Moustakas A. Signaling receptors for TGF-beta family members. Cold Spring Harb Perspect Biol. 2016;8:a022053.  https://doi.org/10.1101/cshperspect.a022053.
  71. 71.
    Oshimori N, Fuchs E. Paracrine TGF-beta signaling counterbalances BMP-mediated repression in hair follicle stem cell activation. Cell Stem Cell. 2012;10:63–75.Google Scholar
  72. 72.
    Turley JM, Falk LA, Ruscetti FW, et al. Transforming growth factor beta 1 functions in monocytic differentiation of hematopoietic cells through autocrine and paracrine mechanisms. Cell Growth Differ. 1996;7:1535–44.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Vilar JM, Jansen R, Sander C. Signal processing in the TGF-beta superfamily ligand-receptor network. PLoS Comput Biol. 2006;2:e3.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Lehnert SA, Akhurst RJ. Embryonic expression pattern of TGF beta type-1 RNA suggests both paracrine and autocrine mechanisms of action. Development. 1988;104:263–73.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Massague J, Seoane J, Wotton D. Smad transcription factors. Genes Dev. 2005;19:2783–810.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Topper JN, Cai J, Qiu Y, et al. Vascular MADs: two novel MAD-related genes selectively inducible by flow in human vascular endothelium. Proc Natl Acad Sci U S A. 1997;94:9314–9.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Imamura T, Takase M, Nishihara A, et al. Smad6 inhibits signalling by the TGF-beta superfamily. Nature. 1997;389:622–6.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Nakao A, Afrakhte M, Moren A, et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature. 1997;389:631–5.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Gaarenstroom T, Hill CS. TGF-beta signaling to chromatin: how Smads regulate transcription during self-renewal and differentiation. Semin Cell Dev Biol. 2014;32:107–18.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Ross S, Hill CS. How the Smads regulate transcription. Int J Biochem Cell Biol. 2008;40:383–408.CrossRefPubMedGoogle Scholar
  81. 81.
    Chen W, Fu X, Sheng Z. Review of current progress in the structure and function of Smad proteins. Chin Med J. 2002;115:446–50.PubMedGoogle Scholar
  82. 82.
    Liu IM, Schilling SH, Knouse KA, et al. TGFbeta-stimulated Smad1/5 phosphorylation requires the ALK5 L45 loop and mediates the pro-migratory TGFbeta switch. EMBO J. 2009;28:88–98.CrossRefPubMedGoogle Scholar
  83. 83.
    Holtzhausen A, Golzio C, How T, et al. Novel bone morphogenetic protein signaling through Smad2 and Smad3 to regulate cancer progression and development. FASEB J. 2014;28:1248–67.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Pronk GJ, Bos JL. The role of p21ras in receptor tyrosine kinase signalling. Biochim Biophys Acta. 1994;1198:131–47.PubMedGoogle Scholar
  85. 85.
    Shih TY, Hattori S, Clanton DJ, et al. Structure and function of p21 ras proteins. Gene Amplif Anal. 1986;4:53–72.PubMedGoogle Scholar
  86. 86.
    Mulder KM, Morris SL. Activation of p21ras by transforming growth factor beta in epithelial cells. J Biol Chem. 1992;267:5029–31.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Jacobs D, Glossip D, Xing H, et al. Multiple docking sites on substrate proteins form a modular system that mediates recognition by ERK MAP kinase. Genes Dev. 1999;13:163–75.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Vartanian T, Dawson G, Soliven B, et al. Phosphorylation of myelin basic protein in intact oligodendrocytes: inhibition by galactosylsphingosine and cyclic AMP. Glia. 1989;2:370–9.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Yan Z, Winawer S, Friedman E. Two different signal transduction pathways can be activated by transforming growth factor beta 1 in epithelial cells. J Biol Chem. 1994;269:13231–7.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Frey RS, Mulder KM. TGFbeta regulation of mitogen-activated protein kinases in human breast cancer cells. Cancer Lett. 1997;117:41–50.CrossRefPubMedGoogle Scholar
  91. 91.
    Hartsough MT, Mulder KM. Transforming growth factor beta activation of p44mapk in proliferating cultures of epithelial cells. J Biol Chem. 1995;270:7117–24.CrossRefPubMedGoogle Scholar
  92. 92.
    Galliher-Beckley AJ, Schiemann WP. Grb2 binding to Tyr284 in TbetaR-II is essential for mammary tumor growth and metastasis stimulated by TGF-beta. Carcinogenesis. 2008;29:244–51.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Northey JJ, Chmielecki J, Ngan E, et al. Signaling through ShcA is required for transforming growth factor beta- and Neu/ErbB-2-induced breast cancer cell motility and invasion. Mol Cell Biol. 2008;28:3162–76.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Engel ME, McDonnell MA, Law BK, Moses HL. Interdependent SMAD and JNK signaling in transforming growth factor-beta-mediated transcription. J Biol Chem. 1999;274:37413–20.CrossRefPubMedGoogle Scholar
  95. 95.
    Hocevar BA, Brown TL, Howe PH. TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J. 1999;18:1345–56.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Itoh S, Thorikay M, Kowanetz M, et al. Elucidation of Smad requirement in transforming growth factor-beta type I receptor-induced responses. J Biol Chem. 2003;278:3751–61.CrossRefPubMedGoogle Scholar
  97. 97.
    Yu L, Hebert MC, Zhang YE. TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. EMBO J. 2002;21:3749–59.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Wilkes MC, Mitchell H, Penheiter SG, et al. Transforming growth factor-beta activation of phosphatidylinositol 3-kinase is independent of Smad2 and Smad3 and regulates fibroblast responses via p21-activated kinase-2. Cancer Res. 2005;65:10431–40.CrossRefPubMedGoogle Scholar
  99. 99.
    Song MS, Salmena L, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor. Nat Rev Mol Cell Biol. 2012;13:283–96.CrossRefPubMedGoogle Scholar
  100. 100.
    Lamouille S, Derynck R. Cell size and invasion in TGF-beta-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway. J Cell Biol. 2007;178:437–51.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Yamaguchi K, Shirakabe K, Shibuya H, et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science. 1995;270:2008–11.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Sorrentino A, Thakur N, Grimsby S, et al. The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol. 2008;10:1199–207.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Yamashita M, Fatyol K, Jin C, et al. TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol Cell. 2008;31:918–24.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Shim JH, Xiao C, Paschal AE, et al. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev. 2005;19:2668–81.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178–96.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Zhang YE. Non-Smad pathways in TGF-[beta] signaling. Cell Res. 2009;19:128–39.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Bhowmick NA, Ghiassi M, Bakin A, et al. Transforming growth factor-beta 1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell. 2001;12:27–36.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119:1420–8.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Wilkes MC, Murphy SJ, Garamszegi N, Leof EB. Cell-type-specific activation of PAK2 by transforming growth factor beta independent of Smad2 and Smad3. Mol Cell Biol. 2003;23:8878–89.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Jaffer ZM, Chernoff J. p21-activated kinases: three more join the Pak. Int J Biochem Cell Biol. 2002;34:713–7.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Ozdamar B, Bose R, Barrios-Rodiles M, et al. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science. 2005;307:1603–9.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Mu Y, Zang G, Engstrom U, et al. TGF beta-induced phosphorylation of Par6 promotes migration and invasion in prostate cancer cells. Br J Cancer. 2015;112:1223–31.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Viloria-Petit AM, David L, Jia JY, et al. A role for the TGFbeta-Par6 polarity pathway in breast cancer progression. Proc Natl Acad Sci U S A. 2009;106:14028–33.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Gao L, Joberty G, Macara IG. Assembly of epithelial tight is negatively regulated by junctions Par6. Curr Biol. 2002;12:221–5.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Sahai E, Marshall CJ. ROCK and Dia have opposing effects on adherens junctions downstream of Rho. Nat Cell Biol. 2002;4:408–15.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Lebrun JJ. The dual role of TGFbeta in human cancer: from tumor suppression to cancer metastasis. ISRN Mol Biol. 2012;2012:381428.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor suppression and cancer progression. Nat Genet. 2001;29:117–29.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Bier E, De Robertis EM. EMBRYO DEVELOPMENT. BMP gradients: A paradigm for morphogen-mediated developmental patterning. Science. 2015;348:aaa5838.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Green JB, New HV, Smith JC. Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm. Cell. 1992;71:731–9.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Akhurst RJ, Padgett RW. Matters of context guide future research in TGFbeta superfamily signaling. Sci Signal. 2015;8:re10.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Lu Z, Murray JT, Luo W, et al. Transforming growth factor beta activates Smad2 in the absence of receptor endocytosis. J Biol Chem. 2002;277:29363–8.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Pomeraniec L, Hector-Greene M, Ehrlich M, et al. Regulation of TGF-beta receptor hetero-oligomerization and signaling by endoglin. Mol Biol Cell. 2015;26:3117–27.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Tian M, Schiemann WP. The TGF-beta paradox in human cancer: an update. Future Oncol. 2009;5:259–71.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Cui W, Fowlis DJ, Bryson S, et al. TGF beta 1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell. 1996;86:531–42.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Moses HL, Yang EY, Pietenpol JA. TGF-beta stimulation and inhibition of cell proliferation: new mechanistic insights. Cell. 1990;63:245–7.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Hannigan A, Smith P, Kalna G, et al. Epigenetic downregulation of human disabled homolog 2 switches TGF-beta from a tumor suppressor to a tumor promoter. J Clin Invest. 2010;120:2842–57.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Taylor MA, Lee YH, Schiemann WP. Role of TGF-beta and the tumor microenvironment during mammary tumorigenesis. Gene Expr. 2011;15:117–32.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Pickup M, Novitskiy S, Moses HL. The roles of TGFbeta in the tumour microenvironment. Nat Rev Cancer. 2013;13:788–99.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Lu S-L, Reh D, Li AG, et al. Overexpression of transforming growth factor β1 in head and neck epithelia results in inflammation, angiogenesis, and epithelial Hyperproliferation. Cancer Res. 2004;64:4405–10.CrossRefPubMedPubMedCentralGoogle Scholar
  131. 131.
    Rosenthal E, McCrory A, Talbert M, et al. Elevated expression of TGF-β1 in head and neck cancer–associated fibroblasts. Mol Carcinog. 2004;40:116–21.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Kapral M, Strzalka B, Kowalczyk M, et al. Transforming growth factor beta isoforms (TGF-beta1, TGF-beta2, TGF-beta3) messenger RNA expression in laryngeal cancer. Am J Otolaryngol. 2008;29:233–7.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Bae WJ, Lee SH, Rho YS, et al. Transforming growth factor beta1 enhances stemness of head and neck squamous cell carcinoma cells through activation of Wnt signaling. Oncol Lett. 2016;12:5315–20.CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Watabe T, Miyazono K. Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Res. 2009;19:103–15.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Lim YC, Oh SY, Cha YY, et al. Cancer stem cell traits in squamospheres derived from primary head and neck squamous cell carcinomas. Oral Oncol. 2011;47:83–91.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331:1559–64.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444:756–60.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Lu SL, Herrington H, Reh D, et al. Loss of transforming growth factor-beta type II receptor promotes metastatic head-and-neck squamous cell carcinoma. Genes Dev. 2006;20:1331–42.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Arin MJ, Longley MA, Wang XJ, Roop DR. Focal activation of a mutant allele defines the role of stem cells in mosaic skin disorders. J Cell Biol. 2001;152:645–9.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Forrester E, Chytil A, Bierie B, et al. Effect of conditional knockout of the type II TGF-beta receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. Cancer Res. 2005;65:2296–302.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Jackson EL, Willis N, Mercer K, et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev. 2001;15:3243–8.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Bierie B, Moses HL. Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev. 2010;21:49–59.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev. 2000;14:163–76.PubMedPubMedCentralGoogle Scholar
  145. 145.
    Bian Y, Hall B, Sun ZJ, et al. Loss of TGF-beta signaling and PTEN promotes head and neck squamous cell carcinoma through cellular senescence evasion and cancer-related inflammation. Oncogene. 2012;31:3322–32.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Honjo Y, Bian Y, Kawakami K, et al. TGF-beta receptor I conditional knockout mice develop spontaneous squamous cell carcinoma. Cell Cycle. 2007;6:1360–6.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Kawakami M, Kawakami K, Kasperbauer JL, et al. Interleukin-13 receptor α2 chain in human head and neck Cancer serves as a unique diagnostic marker. Clin Cancer Res. 2003;9:6381–8.PubMedPubMedCentralGoogle Scholar
  148. 148.
    Joshi BH, Kawakami K, Leland P, Puri RK. Heterogeneity in Interleukin-13 receptor expression and subunit structure in squamous cell carcinoma of head and neck: differential sensitivity to chimeric fusion proteins comprised of Interleukin-13 and a mutated form of Pseudomonas exotoxin. Clin Cancer Res. 2002;8:1948–56.PubMedPubMedCentralGoogle Scholar
  149. 149.
    Osawa H, Shitara Y, Shoji H, et al. Mutation analysis of transforming growth factor beta type II receptor, Smad2, Smad3 and Smad4 in esophageal squamous cell carcinoma. Int J Oncol. 2000;17:723–8.PubMedPubMedCentralGoogle Scholar
  150. 150.
    Stransky N, Egloff AM, Tward AD, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333:1157–60.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Hedberg ML, Goh G, Chiosea SI, et al. Genetic landscape of metastatic and recurrent head and neck squamous cell carcinoma. J Clin Invest. 2016;126:1606.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Morris LG, Chandramohan R, West L, et al. The molecular landscape of recurrent and metastatic head and neck cancers: insights from a precision oncology sequencing platform. JAMA Oncol. 2017;3(2):244–55.Google Scholar
  153. 153.
    Garrigue-Antar L, Munoz-Antonia T, Antonia SJ, et al. Missense mutations of the transforming growth factor beta type II receptor in human head and neck squamous carcinoma cells. Cancer Res. 1995;55:3982–7.PubMedPubMedCentralGoogle Scholar
  154. 154.
    Wang D, Song H, Evans JA, et al. Mutation and downregulation of the transforming growth factor beta type II receptor gene in primary squamous cell carcinomas of the head and neck. Carcinogenesis. 1997;18:2285–90.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Fukai Y, Fukuchi M, Masuda N, et al. Reduced expression of transforming growth factor-beta receptors is an unfavorable prognostic factor in human esophageal squamous cell carcinoma. Int J Cancer. 2003;104:161–6.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Muro-Cacho CA, Anderson M, Cordero J, Munoz-Antonia T. Expression of transforming growth factor beta type II receptors in head and neck squamous cell carcinoma. Clin Cancer Res. 1999;5:1243–8.PubMedPubMedCentralGoogle Scholar
  157. 157.
    Xu Y, Pasche B. TGF-beta signaling alterations and susceptibility to colorectal cancer. Hum Mol Genet. 2007;16 Spec No 1:R14–20.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Grady WM, Markowitz SD. Genetic and epigenetic alterations in colon cancer. Annu Rev Genomics Hum Genet. 2002;3:101–28.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Grady WM, Myeroff LL, Swinler SE, et al. Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. Cancer Res. 1999;59:320–4.PubMedPubMedCentralGoogle Scholar
  160. 160.
    Chen T, Yan W, Wells RG, et al. Novel inactivating mutations of transforming growth factor-beta type I receptor gene in head-and-neck cancer metastases. Int J Cancer. 2001;93:653–61.CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Pasche B, Kolachana P, Nafa K, et al. TβR-I(6A) is a candidate tumor susceptibility allele. Cancer Res. 1999;59:5678–82.PubMedPubMedCentralGoogle Scholar
  162. 162.
    Pasche B, Knobloch TJ, Bian Y, et al. Somatic acquisition and signaling of TGFBR1*6A in cancer. JAMA. 2005;294:1634–46.CrossRefPubMedGoogle Scholar
  163. 163.
    Pasche B, Luo Y, Rao PH, et al. Type I transforming growth factor β receptor maps to 9q22 and exhibits a polymorphism and a rare variant within a Polyalanine tract. Cancer Res. 1998;58:2727–32.PubMedGoogle Scholar
  164. 164.
    Chen ZG. The cancer stem cell concept in progression of head and neck cancer. J Oncol. 2009;2009:894064.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Chiou SH, Yu CC, Huang CY, et al. Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res. 2008;14:4085–95.CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Prince ME, Sivanandan R, Kaczorowski A, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A. 2007;104:973–8.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Schiffer M, von Gersdorff G, Bitzer M, et al. Smad proteins and transforming growth factor-beta signaling. Kidney Int Suppl. 2000;77:S45–52.CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Hahn SA, Schutte M, Hoque ATMS, et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science. 1996;271:350–3.CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Eppert K, Scherer SW, Ozcelik H, et al. MADR2 maps to 18q21 and encodes a TGFbeta-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell. 1996;86:543–52.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Dimitriou R, Carr IM, West RM, et al. Genetic predisposition to fracture non-union: a case control study of a preliminary single nucleotide polymorphisms analysis of the BMP pathway. BMC Musculoskelet Disord. 2011;12Google Scholar
  171. 171.
    Snijders AM, Schmidt BL, Fridlyand J, et al. Rare amplicons implicate frequent deregulation of cell fate specification pathways in oral squamous cell carcinoma. Oncogene. 2005;24:4232–42.CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Sparano A, Quesnelle KM, Kumar MS, et al. Genome-wide profiling of oral squamous cell carcinoma by array-based comparative genomic hybridization. Laryngoscope. 2006;116:735–41.CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Jones JW, Raval JR, Beals TF, et al. Frequent loss of heterozygosity on chromosome arm 18q in squamous cell carcinomas. Identification of 2 regions of loss--18q11.1-q12.3 and 18q21.1-q23. Arch Otolaryngol Head Neck Surg. 1997;123:610–4.CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Watanabe T, Wang X, Miyakawa A, et al. Mutational state of tumor suppressor genes (DCC, DPC4) and alteration on chromosome 18q21 in human oral cancer. Int J Oncol. 1997;11:1287–90.PubMedPubMedCentralGoogle Scholar
  175. 175.
    Van Dyke DL, Worsham MJ, Benninger MS, et al. Recurrent cytogenetic abnormalities in squamous cell carcinomas of the head and neck region. Genes Chromosomes Cancer. 1994;9:192–206.CrossRefPubMedGoogle Scholar
  176. 176.
    Kelker W, Van Dyke DL, Worsham MJ, et al. Loss of 18q and homozygosity for the DCC locus: possible markers for clinically aggressive squamous cell carcinoma. Anticancer Res. 1996;16:2365–72.PubMedGoogle Scholar
  177. 177.
    Kasamatsu A, Uzawa K, Usukura K, et al. Loss of heterozygosity in oral cancer. Oral Sci Int. 2011;8:37–43.CrossRefGoogle Scholar
  178. 178.
    Takebayashi S, Ogawa T, Jung KY, et al. Identification of new minimally lost regions on 18q in head and neck squamous cell carcinoma. Cancer Res. 2000;60:3397–403.PubMedGoogle Scholar
  179. 179.
    Kim SK, Fan YH, Papadimitrakopoulou V, et al. DPC4, a candidate tumor suppressor gene, is altered infrequently in head and neck squamous cell carcinoma. Cancer Res. 1996;56:2519–21.PubMedGoogle Scholar
  180. 180.
    Muro-Cacho CA, Rosario-Ortiz K, Livingston S, Munoz-Antonia T. Defective transforming growth factor beta signaling pathway in head and neck squamous cell carcinoma as evidenced by the lack of expression of activated Smad2. Clin Cancer Res. 2001;7:1618–26.PubMedGoogle Scholar
  181. 181.
    Nagatake M, Takagi Y, Osada N, et al. Somatic in vivo alterations of the DPC4 gene at 18q21 in human lung cancers. Cancer Res. 1996;56:2718–20.PubMedGoogle Scholar
  182. 182.
    Bornstein S, White R, Malkoski S, et al. Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation. J Clin Invest. 2009;119:3408–19.PubMedPubMedCentralGoogle Scholar
  183. 183.
    Malkoski SP, Wang XJ. Two sides of the story? Smad4 loss in pancreatic cancer versus head-and-neck cancer. FEBS Lett. 2012;586:1984–92.CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Xie W, Aisner S, Baredes S, et al. Alterations of Smad expression and activation in defining 2 subtypes of human head and neck squamous cell carcinoma. Head Neck (Journal for the Sciences and Specialties of the Head and Neck). 2013;35:76–85.Google Scholar
  185. 185.
    Krisanaprakornkit S, Iamaroon A. Epithelial-mesenchymal transition in oral squamous cell carcinoma. ISRN Oncol. 2012;2012:681469.PubMedPubMedCentralGoogle Scholar
  186. 186.
    Franz M, Spiegel K, Umbreit C, et al. Expression of Snail is associated with myofibroblast phenotype development in oral squamous cell carcinoma. Histochem Cell Biol. 2009;131:651–60.CrossRefPubMedGoogle Scholar
  187. 187.
    Richter P, Umbreit C, Franz M, et al. EGF/TGFbeta1 co-stimulation of oral squamous cell carcinoma cells causes an epithelial-mesenchymal transition cell phenotype expressing laminin 332. J Oral Pathol Med. 2011;40:46–54.CrossRefPubMedGoogle Scholar
  188. 188.
    Hwang YS, Park KK, Chung WY. Stromal transforming growth factor-beta 1 is crucial for reinforcing the invasive potential of low invasive cancer. Arch Oral Biol. 2014;59:687–94.CrossRefPubMedGoogle Scholar
  189. 189.
    Gandalovicova A, Vomastek T, Rosel D, Brabek J. Cell polarity signaling in the plasticity of cancer cell invasiveness. Oncotarget. 2016;7:25022–49.CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Leong HS, Robertson AE, Stoletov K, et al. Invadopodia are required for cancer cell extravasation and are a therapeutic target for metastasis. Cell Rep. 2014;8:1558–70.CrossRefPubMedGoogle Scholar
  191. 191.
    Eckert MA, Lwin TM, Chang AT, et al. Twist1-induced invadopodia formation promotes tumor metastasis. Cancer Cell. 2011;19:372–86.CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Sun L, Diamond ME, Ottaviano AJ, et al. Transforming growth factor-beta 1 promotes matrix metalloproteinase-9-mediated oral cancer invasion through snail expression. Mol Cancer Res. 2008;6:10–20.CrossRefPubMedGoogle Scholar
  193. 193.
    Qiao B, Johnson NW, Gao J. Epithelial-mesenchymal transition in oral squamous cell carcinoma triggered by transforming growth factor-beta1 is Snail family-dependent and correlates with matrix metalloproteinase-2 and -9 expressions. Int J Oncol. 2010;37:663–8.PubMedGoogle Scholar
  194. 194.
    Vincent T, Neve EP, Johnson JR, et al. A SNAIL1-SMAD3/4 transcriptional repressor complex promotes TGF-beta mediated epithelial-mesenchymal transition. Nat Cell Biol. 2009;11:943–50.CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Ye X, Tam WL, Shibue T, et al. Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature. 2015;525:256–60.CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Cano A, Perez-Moreno MA, Rodrigo I, et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol. 2000;2:76–83.CrossRefPubMedGoogle Scholar
  197. 197.
    Smith AP, Verrecchia A, Faga G, et al. A positive role for Myc in TGFbeta-induced Snail transcription and epithelial-to-mesenchymal transition. Oncogene. 2009;28:422–30.CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    Li H, Wang H, Wang F, et al. Snail involves in the transforming growth factor beta1-mediated epithelial-mesenchymal transition of retinal pigment epithelial cells. PLoS One. 2011;6:e23322.CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Nakamura R, Kayamori K, Oue E, et al. Transforming growth factor-beta synthesized by stromal cells and cancer cells participates in bone resorption induced by oral squamous cell carcinoma. Biochem Biophys Res Commun. 2015;458:777–82.CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Sun N, Taguchi A, Hanash S. Switching roles of TGF-beta in cancer development: implications for therapeutic target and biomarker studies. J Clin Med. 2016;5.Google Scholar
  201. 201.
    Neuzillet C, Tijeras-Raballand A, Cohen R, et al. Targeting the TGFbeta pathway for cancer therapy. Pharmacol Ther. 2015;147:22–31.CrossRefPubMedPubMedCentralGoogle Scholar
  202. 202.
    Akhurst RJ, Hata A. Targeting the TGFbeta signalling pathway in disease. Nat Rev Drug Discov. 2012;11:790–811.CrossRefPubMedPubMedCentralGoogle Scholar
  203. 203.
    Herbertz S, Sawyer JS, Stauber AJ, et al. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-beta signaling pathway. Drug Des Devel Ther. 2015;9:4479–99.PubMedPubMedCentralGoogle Scholar
  204. 204.
    Bhola NE, Balko JM, Dugger TC, et al. TGF-beta inhibition enhances chemotherapy action against triple-negative breast cancer. J Clin Invest. 2013;123:1348–58.CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Yue L, Bartenstein M, Zhao W, et al. Preclinical efficacy of TGF-Beta receptor I kinase inhibitor, galunisertib, in myelofibrosis. Blood. 2015;126:603.Google Scholar
  206. 206.
    Kim B-G, Sergeeva O, Luo G, et al. Abstract 2647: TGF-β type I receptor inhibitor (TEW-7197) diminishes myeloma progression by multiple immunomodulatory mechanisms in combination with ixazomib. Cancer Res. 2017;77:2647.CrossRefGoogle Scholar
  207. 207.
    Tolcher AW, Berlin JD, Cosaert J, et al. A phase 1 study of anti-TGF beta receptor type-II monoclonal antibody LY3022859 in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2017;79:673–80.CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Rice LM, Padilla CM, McLaughlin SR, et al. Fresolimumab treatment decreases biomarkers and improves clinical symptoms in systemic sclerosis patients. J Clin Invest. 2015;125:2795–807.CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Trachtman H, Fervenza FC, Gipson DS, et al. A phase 1, single-dose study of fresolimumab, an anti-TGF-beta antibody, in treatment-resistant primary focal segmental glomerulosclerosis. Kidney Int. 2011;79:1236–43.CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    Ling H, Li X, Jha S, et al. Therapeutic role of TGF-beta-neutralizing antibody in mouse cyclosporin A nephropathy: morphologic improvement associated with functional preservation. J Am Soc Nephrol. 2003;14:377–88.CrossRefPubMedPubMedCentralGoogle Scholar
  211. 211.
    Morris JC, Tan AR, Olencki TE, et al. Phase I study of GC1008 (fresolimumab): a human anti-transforming growth factor-beta (TGFbeta) monoclonal antibody in patients with advanced malignant melanoma or renal cell carcinoma. PLoS One. 2014;9:e90353.CrossRefPubMedPubMedCentralGoogle Scholar
  212. 212.
    Boussemart L, Routier E, Mateus C, et al. Prospective study of cutaneous side-effects associated with the BRAF inhibitor vemurafenib: a study of 42 patients. Ann Oncol. 2013;24:1691–7.CrossRefPubMedPubMedCentralGoogle Scholar
  213. 213.
    Frouin E, Guillot B, Larrieux M, et al. Cutaneous epithelial tumors induced by vemurafenib involve the MAPK and Pi3KCA pathways but not HPV nor HPyV viral infection. PLoS One. 2014;9:e110478.CrossRefPubMedPubMedCentralGoogle Scholar
  214. 214.
    Bedi A, Chang X, Noonan K, et al. Inhibition of TGF-beta enhances the in vivo antitumor efficacy of EGF receptor-targeted therapy. Mol Cancer Ther. 2012;11:2429–39.CrossRefPubMedPubMedCentralGoogle Scholar
  215. 215.
    de Gramont A, Faivre S, Raymond E. Novel TGF-beta inhibitors ready for prime time in onco-immunology. Oncoimmunology. 2017;6:e1257453.CrossRefPubMedPubMedCentralGoogle Scholar
  216. 216.
    Metelli A, Wu BX, Fugle CW, et al. Surface expression of TGFbeta docking receptor GARP promotes oncogenesis and immune tolerance in breast cancer. Cancer Res. 2016;76:7106–17.CrossRefPubMedPubMedCentralGoogle Scholar
  217. 217.
    Li MO, Wan YY, Sanjabi S, et al. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 2006;24:99–146.CrossRefPubMedPubMedCentralGoogle Scholar
  218. 218.
    Clay TM, Hobeika AC, Mosca PJ, et al. Assays for monitoring cellular immune responses to active immunotherapy of cancer. Clin Cancer Res. 2001;7:1127–35.PubMedPubMedCentralGoogle Scholar
  219. 219.
    Park BV, Freeman ZT, Ghasemzadeh A, et al. TGFbeta1-mediated SMAD3 enhances PD-1 expression on antigen-specific T cells in cancer. Cancer Discov. 2016;6:1366–81.CrossRefPubMedPubMedCentralGoogle Scholar
  220. 220.
    Locci M, Wu JE, Arumemi F, et al. Activin A programs the differentiation of human TFH cells. Nat Immunol. 2016;17:976–84.CrossRefPubMedPubMedCentralGoogle Scholar
  221. 221.
    Baas M, Besancon A, Goncalves T, et al. TGFbeta-dependent expression of PD-1 and PD-L1 controls CD8(+) T cell anergy in transplant tolerance. elife. 2016;5:e08133.CrossRefPubMedPubMedCentralGoogle Scholar
  222. 222.
    Hahn T, Akporiaye ET. Targeting transforming growth factor beta to enhance cancer immunotherapy. Curr Oncol. 2006;13:141–3.PubMedPubMedCentralGoogle Scholar
  223. 223.
    Ghebeh H, Bakr MM, Dermime S. Cancer stem cell immunotherapy: the right bullet for the right target. Hematol Oncol Stem Cell Ther. 2008;1:1–2.CrossRefPubMedPubMedCentralGoogle Scholar
  224. 224.
    Hanks BA, Holtzhausen A, Evans K, et al. Combinatorial TGF-β signaling blockade and anti-CTLA-4 antibody immunotherapy in a murine BRAFV600E-PTEN−/− transgenic model of melanoma. J Clin Oncol. 2014;5s:32.Google Scholar
  225. 225.
    O’Connor-McCourt MD, Lenferink AEG, Zwaagstra J, et al. Abstract B058: development of AVID200, a novel and highly potent TGF-beta neutralizing immunotherapy. Cancer Immunol Res. 2016;4:B058.Google Scholar
  226. 226.
    Gotwals P, Cameron S, Cipolletta D, et al. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat Rev Cancer. 2017;Google Scholar
  227. 227.
    Economopoulou P, Perisanidis C, Giotakis EI, Psyrri A. The emerging role of immunotherapy in head and neck squamous cell carcinoma (HNSCC): anti-tumor immunity and clinical applications. Ann Transl Med. 2016;4:173.CrossRefPubMedPubMedCentralGoogle Scholar
  228. 228.
    Ferris RL, Blumenschein G, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375:1856–67.CrossRefPubMedPubMedCentralGoogle Scholar
  229. 229.
    Bauman JE, Cohen E, Ferris RL, et al. Immunotherapy of head and neck cancer: emerging clinical trials from a National Cancer Institute head and neck cancer steering committee planning meeting. Cancer. 2017;123:1259–71.CrossRefPubMedPubMedCentralGoogle Scholar
  230. 230.
    Bauml J, Seiwert TY, Pfister DG et al. Pembrolizumab for platinum- and cetuximab-refractory head and neck cancer: results from a single-arm, phase II study. J Clin Oncol. 2017;; JCO2016701524.Google Scholar
  231. 231.
    Chow LQM, Haddad R, Gupta S, et al. Antitumor activity of pembrolizumab in biomarker-unselected patients with recurrent and/or metastatic head and neck squamous cell carcinoma: results from the phase Ib KEYNOTE-012 expansion cohort. J Clin Oncol. 2016;34:3838–45.CrossRefPubMedGoogle Scholar
  232. 232.
    Colak S, ten Dijke P. Targeting TGF-β signaling in cancer. Trends Cancer. 3:56–71.Google Scholar
  233. 233.
    Faivre SJ, Santoro A, Kelley RK, et al. A phase 2 study of a novel transforming growth factor-beta (TGF-beta 1) receptor I kinase inhibitor, LY2157299 monohydrate (LY), in patients with advanced hepatocellular carcinoma (HCC). J Clin Oncol 2014;32:3_suppl, LBA173–LBA173.Google Scholar
  234. 234.
    Rodon J, Carducci M, Sepulveda-Sanchez JM, et al. Pharmacokinetic, pharmacodynamic and biomarker evaluation of transforming growth factor-beta receptor I kinase inhibitor, galunisertib, in phase 1 study in patients with advanced cancer. Investig New Drugs. 2015;33:357–70.CrossRefGoogle Scholar
  235. 235.
    Farrington DL, Yingling JM, Fill JA, et al. Development and validation of a phosphorylated SMAD ex vivo stimulation assay. Biomarkers. 2007;12:313–30.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Molecular Therapeutics Program, Fox Chase Cancer CenterPhiladelphiaUSA
  2. 2.Department of Internal Medicine, University of New MexicoAlbuquerqueUSA
  3. 3.Program in Molecular and Cell Biology and Genetics, Drexel University College of MedicinePhiladelphiaUSA

Personalised recommendations