Skip to main content

Using Orientation Sensors to Control a FES System for Upper-Limb Motor Rehabilitation

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2018)

Abstract

Contralaterally controlled functional electrical stimulation (CCFES) is a recent therapy aimed at improving the recovery of impaired limbs after stroke. For hemiplegic patients, CCFES uses a control signal from the non-impaired side of the body to regulate the intensity of electrical stimulation delivered to the affected muscles of the homologous limb on the opposite side of the body. CCFES permits an artificial muscular contraction synchronized with the patient’s intentionality to carry out functional tasks, which is a way to enhance neuroplasticity and to promote motor learning. This work presents an upper extremity motor rehabilitation system based on CCFES, using orientation sensors for control. Thus, the stimulation intensity (current amplitude) delivered to the paretic extremity is proportional to the degree of joint amplitude of the unaffected extremity. The implemented controller uses a control strategy that allows the delivered electrical stimulation intensity, to be comparable to the magnitude of movement. It was carried out a set of experiments to validate the overall system, for executing five bilateral mirror movements that include human wrist and elbow joints. Obtained results showed that movements voluntary signals acquired from right upper-limb were replicated successfully on left upper-limb using the FES system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Report on Disability, World Health Organization (WHO) (2011)

    Google Scholar 

  2. Moller, A.R.: Neural Plasticity and Disorders of the Nervous System. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  3. Hara, Y., Obayashi, S., Tsujiuchi, K., Muraoka, Y.: The effects of electromyography controlled functional electrical stimulation on upper extremity function and cortical perfusion in stroke patients. Clin. Neurophysiol. 124, 2008–2015 (2013)

    Article  Google Scholar 

  4. Sheffler, L., Chae, J.: Neuromuscular electrical stimulation in neurorehabilitation. Muscle Nerve 35, 562–590 (2007)

    Article  Google Scholar 

  5. Doucet, B.M., Lamb, A., Griffin, L.: Neuromuscular electrical stimulation for skeletal muscle function. Yale J. Biol. Med. 85, 201–215 (2012)

    Google Scholar 

  6. Popovic, D.B., Sinkjærc, T., Popovic, M.B.: Electrical stimulation as a means for achieving recovery of function in stroke patients. NeuroRehabilitation 25, 45–58 (2009)

    Google Scholar 

  7. Knutson, J.S., Harley, M.Y., Hisel, T.Z., Makowski, N.S., Fu, M.J., Chae, J.: Contralaterally controlled functional electrical stimulation for stroke rehabilitation. In: Proceedings of IEEE Engineering and Medicine and Biology Society, pp. 314–317 (2012)

    Google Scholar 

  8. Knutson, J.S., Harley, M.Y., Hisel, T.Z., Makowski, N.S., Chae, J.: Contralaterally controlled functional electrical stimulation for recovery of elbow extension and hand opening after stroke: a pilot case series study. Am. J. Phys. Med. Rehabil. 93(6), 528–539 (2014)

    Article  Google Scholar 

  9. Sabatini, A.M.: Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing. Sensors 11, 1489–1525 (2011)

    Article  Google Scholar 

  10. Filippeschi, A., Schmitz, N., Miezal, M., Bleser, G., Ruffaldi, E., Stricker, D.: Survey of motion tracking methods based on inertial sensors: a focus on upper limb human motion. Sensors 17, 1257 (2017)

    Article  Google Scholar 

  11. Borbély, B.J., Szolgay, P.: Real-time inverse kinematics for the upper limb: a model-based algorithm using segment orientations. Biomed. Eng. Online 2017(16), 21 (2017)

    Article  Google Scholar 

  12. Lynch, C., Popovic, M.: Functional electrical stimulation: closed-loop control of induced muscle contractions. IEEE Control Syst. Mag. 28, 40–49 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ferrarin, M., Palazzo, F., Riener, R., Quintern, J.: Model-based control of FES-induced single joint movements. IEEE Trans. Neural Syst. Rehabil. Eng. 9(3), 245–257 (2001)

    Article  Google Scholar 

  14. Knutson, J.S., Gunzler, D.D., Wilson, R.D., Chae, J.: Contralaterally controlled functional electrical stimulation improves hand dexterity in chronic hemiparesis. Stroke. 47(12), 2596–2602 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

Authors want to thank to the Universidad Antonio Nariño in Colombia for supporting this work under project number 2016217 and the CNPq for productivity and postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés F. Ruíz-Olaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ruíz-Olaya, A.F., López-Delis, A., Ferreira da Rocha, A. (2018). Using Orientation Sensors to Control a FES System for Upper-Limb Motor Rehabilitation. In: Rojas, I., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2018. Lecture Notes in Computer Science(), vol 10814. Springer, Cham. https://doi.org/10.1007/978-3-319-78759-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78759-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78758-9

  • Online ISBN: 978-3-319-78759-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics