Skip to main content

Approximate Quantum Markov Chains

  • Chapter
  • First Online:
Approximate Quantum Markov Chains

Part of the book series: SpringerBriefs in Mathematical Physics ((BRIEFSMAPHY,volume 28))

Abstract

In this chapter we discuss the concept of quantum Markov chains with a particular focus on the robustness of their properties. This results in a new class of states called approximate quantum Markov chains. To understand the properties of these states the mathematical tools introduced in the preceding chapters will be helpful. As it happens, the key result that justifies the definition of approximate quantum Markov chains (see Theorem 5.5) is closely related to various celebrated entropy inequalities. We explain this connection and show how the new insights about approximate quantum Markov chains can be used to prove strengthened versions of different famous entropy inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The max-relative entropy and its properties are discussed in more detail in Sect. 2.5.4. It is the largest sensible relative entropy measure.

  2. 2.

    Recall that for recovery maps that leave the B system invariant the \(\varLambda _{\max }\)-term vanishes as explained above.

  3. 3.

    Equivalent means that every statement can be derived from every other one by simple manipulations only.

  4. 4.

    In case \(\mathscr {E}(\sigma ) \in \mathsf {P}_{\!\!\!+}(B)\) the recovery map \(\bar{\mathscr {T}}_{\sigma ,\mathscr {E}}\) is trace-preserving.

  5. 5.

    Choosing \(\rho =\rho _{ABC}\), \(\sigma =\mathrm {id}_A \otimes \rho _{BC}\), and \(\mathscr {E}=\mathrm {tr}_C\) we obtain that \(I(A:C|B)_{\rho }=0\) implies \(\mathscr {T}^{[t]}_{B\rightarrow BC}(\rho _{AB}) = \rho _{ABC}\) for \(\mathscr {T}^{[t]}_{B\rightarrow BC}\) defined in (5.2).

References

  1. Petz, D.: Sufficient subalgebras and the relative entropy of states of a von Neumann algebra. Commun. Math. Phys. 105(1), 123–131 (1986). https://doi.org/10.1007/BF01212345

  2. Petz, D.: Monotonicity of quantum relative entropy revisited. Rev. Math. Phys. 15(01), 79–91 (2003). https://doi.org/10.1142/S0129055X03001576

    Article  ADS  MathSciNet  Google Scholar 

  3. Hayden, P., Jozsa, R., Petz, D., Winter, A.: Structure of states which satisfy strong subadditivity of quantum entropy with equality. Commun. Math. Phys. 246(2), 359–374 (2004). https://doi.org/10.1007/s00220-004-1049-z

  4. Koashi, M., Imoto, N.: Operations that do not disturb partially known quantum states. Phys. Rev. A 66, 022318 (2002). https://doi.org/10.1103/PhysRevA.66.022318

  5. Fawzi, O., Renner, R.: Quantum conditional mutual information and approximate Markov chains. Commun. Math. Phys. 340(2), 575–611 (2015). https://doi.org/10.1007/s00220-015-2466-x

    Article  ADS  MathSciNet  Google Scholar 

  6. Brandão, F.G.S.L., Harrow, A.W., Oppenheim, J., Strelchuk, S.: Quantum conditional mutual information, reconstructed states, and state redistribution. Phys. Rev. Lett. 115(5), 050501 (2015). https://doi.org/10.1103/PhysRevLett.115.050501

  7. Sutter, D., Fawzi, O., Renner, R.: Universal recovery map for approximate Markov chains. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 472(2186) (2016). https://doi.org/10.1098/rspa.2015.0623

    Article  ADS  MathSciNet  Google Scholar 

  8. Wilde, M.M.: Recoverability in quantum information theory. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 471(2182), 20150338 (2015). https://doi.org/10.1098/rspa.2015.0338

    Article  ADS  MathSciNet  Google Scholar 

  9. Sutter, D., Tomamichel, M., Harrow, A.W.: Strengthened monotonicity of relative entropy via pinched Petz recovery map. IEEE Trans. Inf. Theory 62(5), 2907–2913 (2016). https://doi.org/10.1109/TIT.2016.2545680

  10. Junge, M., Renner, R., Sutter, D., Wilde, M.M., Winter, A.: Universal recovery from a decrease of quantum relative entropy (2015). arXiv:1509.07127

  11. Sutter, D., Berta, M., Tomamichel, M.: Multivariate trace inequalities. Commun. Math. Phys. 352(1), 37–58 (2017). https://doi.org/10.1007/s00220-016-2778-5

    Article  ADS  MathSciNet  Google Scholar 

  12. Lieb, E.H., Ruskai, M.B.: A fundamental property of quantum-mechanical entropy. Phys. Rev. Lett. 30, 434–436 (1973). https://doi.org/10.1103/PhysRevLett.30.434

    Article  ADS  MathSciNet  Google Scholar 

  13. Lieb, E.H., Ruskai, M.B.: Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14(12), 1938–1941 (1973). https://doi.org/10.1063/1.1666274

    Article  ADS  MathSciNet  Google Scholar 

  14. Fawzi, H., Fawzi, O.: Relative entropy optimization in quantum information theory via semidefinite programming approximations. arXiv:1705.06671 (2017)

  15. Berta, M., Brandão, F.G.S.L., Hirche, C.: On composite quantum hypothesis testing. arXiv:1709.07268 (2017)

  16. Christandl, M., Schuch, N., Winter, A.: Entanglement of the antisymmetric state. Commun. Math. Phys. 311(2), 397–422 (2012). https://doi.org/10.1007/s00220-012-1446-7

    Article  ADS  MathSciNet  Google Scholar 

  17. Ibinson, B., Linden, N., Winter, A.: Robustness of quantum Markov chains. Commun. Math. Phys. 277(2), 289–304 (2008). https://doi.org/10.1007/s00220-007-0362-8

  18. Brandão, F.G.S.L., Christandl, M., Harrow, A.W., Walter, M.: The mathematics of entanglement. arXiv:1604.01790 (2016)

  19. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000). https://doi.org/10.1017/CBO9780511976667

  20. Sutter, D., Renner, R.: Necessary criterion for approximate recoverability. arXiv:1705.06749 (2017)

  21. Rudin, W.: Principles of Mathematical Analysis, vol. 3. McGraw-Hill (1964)

    Google Scholar 

  22. Datta, N.: Min- and max-relative entropies and a new entanglement monotone. IEEE Trans. Inf. Theory 55(6), 2816–2826 (2009). https://doi.org/10.1109/TIT.2009.2018325

    Article  MathSciNet  Google Scholar 

  23. Tomamichel, M.: Quantum Information Processing with Finite Resources, vol. 5 of SpringerBriefs in Mathematical Physics. Springer (2015). https://doi.org/10.1007/978-3-319-21891-5

    Google Scholar 

  24. Lieb, E.H.: Convex trace functions and the Wigner-Yanase-Dyson conjecture. Adv. Math. 11(3), 267–288 (1973). https://doi.org/10.1016/0001-8708(73)90011-X

    Article  MathSciNet  Google Scholar 

  25. Ruskai, M.B.: Inequalities for quantum entropy: a review with conditions for equality. J. Math. Phys. 43(9), 4358–4375 (2002). https://doi.org/10.1063/1.1497701

    Article  ADS  MathSciNet  Google Scholar 

  26. Tropp, J.A.: From joint convexity of quantum relative entropy to a concavity theorem of Lieb. Proc. Am. Math. Soc. 140, 1757–1760 (2012). http://www.ams.org/journals/proc/2012-140-05/S0002-9939-2011-11141-9/home.html#References

    Article  MathSciNet  Google Scholar 

  27. Lindblad, G.: Completely positive maps and entropy inequalities. Commun. Math. Phys. 40(2), 147–151 (1975). https://doi.org/10.1007/BF01609396

    Article  ADS  MathSciNet  Google Scholar 

  28. Uhlmann, A.: Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory. Commun. Math. Phys. 54(1), 21–32 (1977). https://doi.org/10.1007/BF01609834

    Article  ADS  MathSciNet  Google Scholar 

  29. Ohya, M., Petz, D.: Quantum Entropy and Its Use. Springer (1993)

    Chapter  Google Scholar 

  30. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Applied Optimization. Springer (2004). https://doi.org/10.1007/978-1-4419-8853-9

    Google Scholar 

  31. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004). https://doi.org/10.1017/CBO9780511804441

  32. Accardi, L., Frigerio, A.: Markovian cocycles. In: Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, pp. 251–263. JSTOR (1983)

    Google Scholar 

  33. Winter, A., Ke, L.: A stronger subadditivity relation? with applications to squashed entanglement, sharability and separability, Presented at BIRS Workshop, 27 February–2 March. https://sites.google.com/site/derwinter/publications (2012)

  34. Zhang, L.: Conditional mutual information and commutator. Int. J. Theoretical Phys. 52(6), 2112–2117 (2013). https://doi.org/10.1007/s10773-013-1505-7

    Article  ADS  MathSciNet  Google Scholar 

  35. Kim, I.: Application of conditional independence to gapped quantum many-body systems. http://www.physics.usyd.edu.au/quantum/Coogee2013/Presentations/Kim.pdf (2013)

  36. Berta, M., Seshadreesan, K.P., Wilde, M.M.: Rényi generalizations of the conditional quantum mutual information. J. Math. Phys. 56(2) (2015). https://doi.org/10.1063/1.4908102

    Article  ADS  MathSciNet  Google Scholar 

  37. Berta, M., Tomamichel, M.: The fidelity of recovery is multiplicative. IEEE Trans. Inf. Theory 62(4), 1758–1763 (2016). https://doi.org/10.1109/TIT.2016.2527683

    Article  MathSciNet  Google Scholar 

  38. Brandão, F.G.S.L., Christandl, M., Yard, J.: A quasipolynomial-time algorithm for the quantum separability problem. In: Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing, STOC 2011, pp. 343–352. ACM, New York, NY, USA (2011). https://doi.org/10.1145/1993636.1993683

  39. Brandão, F.G.S.L., Christandl, M., Yard, J.: Faithful squashed entanglement. Commun. Math. Phys. 306(3), 805 (2011). https://doi.org/10.1007/s00220-011-1302-1

    Article  ADS  MathSciNet  Google Scholar 

  40. Alhambra, A.M., Wehner, S., Wilde, M.M., Woods, M.P.: Work and reversibility in quantum thermodynamics. arXiv:1506.08145 (2015)

  41. Kato, K., Brandão, F.G.S.L.: Quantum approximate Markov chains are thermal. arXiv:1609.06636 (2016)

  42. Czech, B., Hayden, P., Lashkari, N., Swingle, B.: The information theoretic interpretation of the length of a curve. J. High Energy Phys. 2015(6), 157 (2015). https://doi.org/10.1007/JHEP06(2015)157

  43. Ding, D., Hayden, P., Walter, M.: Conditional mutual information of bipartite unitaries and scrambling. J. High Energy Phys. 2016(12), 145 (2016). https://doi.org/10.1007/JHEP12(2016)145

  44. Pastawski, F., Eisert, J., Wilming, H.: Towards holography via quantum source-channel codes. Phys. Rev. Lett. 119, 020501 (2017). https://doi.org/10.1103/PhysRevLett.119.020501

  45. Brandão, F.G.S.L., Kastoryano, M.J.: Finite correlation length implies efficient preparation of quantum thermal states. arXiv:1609.07877 (2016)

  46. Swingle, B., McGreevy, J.: Mixed \(s\)-sourcery: Building many-body states using bubbles of nothing. Phys. Rev. B, 94, 155125 (2016). https://doi.org/10.1103/PhysRevB.94.155125

  47. Zanoci, C., Swingle, B.G.: Entanglement and thermalization in open fermion systems. arXiv:1612.04840 (2016)

  48. Pastawski, F., Preskill, J.: Code properties from holographic geometries. Phys. Rev. X 7, 021022 (2017). https://doi.org/10.1103/PhysRevX.7.021022

  49. Hayden, P., Penington, G.: Approximate quantum error correction revisited: introducing the alphabit. arXiv:1706.09434 (2017)

  50. Li, K., Winter, A.: Squashed entanglement, k-extendibility, quantum Markov chains, and recovery maps. arXiv:1410.4184 (2014)

  51. Kim, I.H., Markovian marignals. arXiv:1609.08579 (2016)

  52. Berta, M., Wehner, S., Wilde, M.M.: Entropic uncertainty and measurement reversibility. New J. Phys. 18(7), 073004 (2016). http://stacks.iop.org/1367-2630/18/i=7/a=073004

    Article  ADS  Google Scholar 

  53. Buscemi, F., Das, S., Wilde, M.M.: Approximate reversibility in the context of entropy gain, information gain, and complete positivity. Phys. Rev. A 93, 062314 (2016). https://doi.org/10.1103/PhysRevA.93.062314

  54. Alhambra, A.M., Woods, M.P.: Dynamical maps, quantum detailed balance, and the Petz recovery map. Phys. Rev. A, 96, 022118 (2017). https://doi.org/10.1103/PhysRevA.96.022118

  55. Lemm, M., Wilde, M.M.: Information-theoretic limitations on approximate quantum cloning and broadcasting. Phys. Rev. A 96, 012304 (2017). https://doi.org/10.1103/PhysRevA.96.012304

  56. Marvian, I., Lloyd, S.: From clocks to cloners: catalytic transformations under covariant operations and recoverability. arXiv:1608.0732 (2016)

  57. Araki, H., Ion, P.D.F.: On the equivalence of KMS and Gibbs conditions for states of quantum lattice systems. Comm. Math. Phys. 35(1), 1–12 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  58. Bach, V., Fröhlich, J., Sigal, I.M.: Return to equilibrium. J. Math. Phys. 41(6), 3985–4060 (2000). https://doi.org/10.1063/1.533334

    Article  ADS  MathSciNet  Google Scholar 

  59. Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics: Vol. 2. Springer (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Sutter .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sutter, D. (2018). Approximate Quantum Markov Chains. In: Approximate Quantum Markov Chains. SpringerBriefs in Mathematical Physics, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-78732-9_5

Download citation

Publish with us

Policies and ethics