Cardiac Pulse Modeling Using a Modified van der Pol Oscillator and Genetic Algorithms

  • Fabián M. Lopez-Chamorro
  • Andrés F. Arciniegas-Mejia
  • David Esteban Imbajoa-Ruiz
  • Paul D. Rosero-Montalvo
  • Pedro García
  • Andrés Eduardo Castro-OspinaEmail author
  • Antonio Acosta
  • Diego Hernán Peluffo-Ordóñez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10813)


This paper proposes an approach for modeling cardiac pulses from electrocardiographic signals (ECG). A modified van der Pol oscillator model (mvP) is analyzed, which, under a proper configuration, is capable of describing action potentials, and, therefore, it can be adapted for modeling a normal cardiac pulse. Adequate parameters of the mvP system response are estimated using non-linear dynamics methods, like dynamic time warping (DTW). In order to represent an adaptive response for each individual heartbeat, a parameter tuning optimization method is applied which is based on a genetic algorithm that generates responses that morphologically resemble real ECG. This feature is particularly relevant since heartbeats have intrinsically strong variability in terms of both shape and length. Experiments are performed over real ECG from MIT-BIH arrhythmias database. The application of the optimization process shows that the mvP oscillator can be used properly to model the ideal cardiac rate pulse.


Cardiac Pulse Rate Genetic Algorithm (GA) Dynamic Time Warping (DTW) Describing Action Potentials Heartbeat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bayar, N., Çay, H.F., Erkal, Z., Sezer, İ., Arslan, Ş., Çağırcı, G., Çay, S., Yüksel, İ.Ö., Köklü, E.: The importance of fragmented QRS in the early detection of cardiac involvement in patients with systemic sclerosis. Anatol. J. Cardiol. 15(3), 209–212 (2015)CrossRefGoogle Scholar
  2. 2.
    Dodo-Siddo, M., Sarr, S., Ndiaye, M., Bodian, M., Ndongo, S., et al.: Importance of electrocardiogram for detection of preclinical abnormalities in patients with rheumatoid arthritis without cardiovascular events. J. Arthritis 4(155), 2 (2015)Google Scholar
  3. 3.
    Zuluaga-Ríos, C.D., Álvarez-López, M.A., Orozco-Gutiérrez, Á.A.: A comparison of robust kalman filtering methods for artifact correction in heart rate variability analysis. Tecno. Lógicas 18(34), 25–35 (2015)CrossRefGoogle Scholar
  4. 4.
    González-Barajas, J.E., Velandia-Cárdenas, C., Nieto-Camacho, J.: Implementation of real-time digital filter for the R wave detection. Tecno. Lógicas 18(34), 75–86 (2015)CrossRefGoogle Scholar
  5. 5.
    Castro-Ospina, A., Castro-Hoyos, C., Peluffo-Ordonez, D., Castellanos-Dominguez, G.: Novel heuristic search for ventricular arrhythmia detection using normalized cut clustering. In: 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 7076–7079. IEEE (2013)Google Scholar
  6. 6.
    Rodríguez-Sotelo, J.L., Peluffo-Ordonez, D., Cuesta-Frau, D., Castellanos-Domínguez, G.: Unsupervised feature relevance analysis applied to improve ECG heartbeat clustering. Comput. Methods Programs Biomed. 108(1), 250–261 (2012)CrossRefGoogle Scholar
  7. 7.
    Abawajy, J.H., Kelarev, A., Chowdhury, M.: Multistage approach for clustering and classification of ECG data. Comput. Methods Programs Biomed. 112(3), 720–730 (2013)CrossRefGoogle Scholar
  8. 8.
    Moody, G.B., Mark, R.G.: The MIT-BIH arrhythmia database on CD-ROM and software for use with it. In: 1990 Proceedings of the Computers in Cardiology, pp. 185–188. IEEE (1990)Google Scholar
  9. 9.
    Jovic, A., Bogunovic, N.: Feature extraction for ECG time-series mining based on chaos theory. In: 29th International Conference on Information Technology Interfaces, ITI 2007, pp. 63–68. IEEE (2007)Google Scholar
  10. 10.
    Acharya, R., Faust, O., Kannathal, N., Chua, T., Laxminarayan, S.: Non-linear analysis of EEG signals at various sleep stages. Comput. Methods Programs Biomed. 80(1), 37–45 (2005)CrossRefGoogle Scholar
  11. 11.
    Faust, O., Acharya, U.R., Molinari, F., Chattopadhyay, S., Tamura, T.: Linear and non-linear analysis of cardiac health in diabetic subjects. Biomed. Sig. Process. Control 7(3), 295–302 (2012)CrossRefGoogle Scholar
  12. 12.
    Peluffo-Ordóñez, D., Rodríguez-Sótelo, J., Revelo-Fuelagán, E., Ospina-Aguirre, C., Olivard-Tost, G.: Generalized Bonhoeffer-van der Pol oscillator for modelling cardiac pulse: preliminary results. In: 2015 IEEE 2nd Colombian Conference on Automatic Control (CCAC), pp. 1–6. IEEE (2015)Google Scholar
  13. 13.
    Fitzhugh, R.: Impulses and physiological states in theoretical models nerve membrane. Biophys. J. 1(6), 445–466 (1961)CrossRefGoogle Scholar
  14. 14.
    Ferreira, B.B., Savi, M.A., de Paula, A.S.: Chaos control applied to cardiac rhythms represented by ECG signals. Phys. Scripta 89(10), 105–203 (2014)Google Scholar
  15. 15.
    Sato, S., Nomura, T., et al.: Bonhoeffer-van der Pol oscillator model of the sino-atrial node: a possible mechanism of heart rate regulation. Methods Inf. Med. 33(1), 116–119 (1994)CrossRefGoogle Scholar
  16. 16.
    Cuesta-Frau, D., Micó-Tormos, P., Aboy, M., Biagetti, M.O., Austin, D., Quinteiro, R.A.: Enhanced modified moving average analysis of T-wave alternans using a curve matching method: a simulation study. Med. Biol. Eng. Comput. 47(3), 323–331 (2009)CrossRefGoogle Scholar
  17. 17.
    van der Pol Jun, B.: LXXXVIII. On relaxation-oscillations. Lond. Edinb. Dublin Philos. Mag. J. Sc. 2(11), 978–992 (1926)CrossRefGoogle Scholar
  18. 18.
    Grudziński, K., Żebrowski, J.J.: Modeling cardiac pacemakers with relaxation oscillators. Phys. A: Stat. Mech. Appl. 336(1), 153–162 (2004)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Fabián M. Lopez-Chamorro
    • 1
  • Andrés F. Arciniegas-Mejia
    • 1
  • David Esteban Imbajoa-Ruiz
    • 1
  • Paul D. Rosero-Montalvo
    • 2
    • 3
  • Pedro García
    • 2
  • Andrés Eduardo Castro-Ospina
    • 4
    Email author
  • Antonio Acosta
    • 5
  • Diego Hernán Peluffo-Ordóñez
    • 5
  1. 1.GIIEE Research GroupUniversidad de NariñoPastoColombia
  2. 2.Facultad de Ingeniería en Ciencias AplicadasUniversidad Técnica del NorteIbarraEcuador
  3. 3.Universidad de SalamancaSalamancaSpain
  4. 4.Grupo de Investigación Automática, Electrónica y Ciencias ComputacionalesInstituto Tecnológico MetropolitanoMedellínColombia
  5. 5.Yachay TechUrcuquíEcuador

Personalised recommendations