GE and Semantics

  • Marina de la Cruz Echeandía
  • Younis R. SH. Elhaddad
  • Suzan Awinat
  • Alfonso OrtegaEmail author


The main goal of this chapter is to explain in a comprehensible way the semantic context in formal language theory. This is necessary to properly understand the attempts to extend Grammatical Evolution (GE) to include semantics. Several approaches from different researchers to handle semantics, both directly and indirectly, will be briefly introduced. Finally, previous works by the authors will be described in depth.



This work has been supported by several research grants: Spanish Ministry of Science and Education under Project Code TIN2014-56494-C4-4-P (ephemeCH) and TIN2017-85727-C4-3-P (DeepBio). We thank also Manuel Alfonseca’s help to improve this work.


  1. 1.
    T.M. Apostol, Calculus, 2nd edn. One-Variable Calculus, With an Introduction to Linear Algebra, vol. 1 (Blaisdell, Waltham, MA, 1967), p. 143Google Scholar
  2. 2.
    B. Bolzano, Rein analytischer Beweis des Lehrsatzes dass zwischen je zwey Werthen, die ein entgegengesetztes Resultat gewaehren, wenigstens eine reele Wurzel der Gleichung liege. Prague, 1817. English translation in Russ, S. B. A Translation of Bolzano’s Paper on the Intermediate Value Theorem. Hist. Math. 7, 156–185 (1980)Google Scholar
  3. 3.
    P.A.N. Bosman, E.D. de Jong, Learning probabilistic tree grammars for genetic programming, in Proceedings of 8th International Conference, Parallel Problem Solving from Nature - PPSN VIII, Birmingham, UK, September 18-22, 2004, pp. 192–201. Google Scholar
  4. 4.
    Z. Chi, Statistical properties of context-free grammars. Comput. Linguist. 25(1), 131–160 (1999)MathSciNetGoogle Scholar
  5. 5.
    N. Chomsky, Three models for the description of language. IRE Trans. Inform. Theory (2), 113–124 (1956). CrossRefGoogle Scholar
  6. 6.
    N. Chomsky, On certain formal properties of grammars. Inform. Control 2(2), 137–167 (1959). MathSciNetCrossRefGoogle Scholar
  7. 7.
    N. Chomsky, M.P. Schötzenberger, The algebraic theory of context free languages, in Computer Programming and Formal Languages, ed. by P. Braffort, D. Hirschberg (North Holland, Amsterdam, 1963), pp. 118–161CrossRefGoogle Scholar
  8. 8.
    H. Christiansen, Syntax, semantics, and implementation strategies for programming languages with powerful abstraction mechanisms, in Proceedings of the 18th Hawaii International Conference on System Sciences, vol. 2 (1985), pp. 57–66Google Scholar
  9. 9.
    A. Church, An unsolvable problem of elementary number theory. Am. J. Math. 58(2), 345 (1936). ISSN 0002-9327. JSTOR 2371045.
  10. 10.
    R. Cleary, Extending grammatical evolution with attribute grammars: an application to knapsack problems. Masters Thesis, University of Limerick (2005).
  11. 11.
    R. Cleary, M. O’Neill, An attribute grammar decode for the 0/1 multiconstrained knapsack problem, in European Conference on Evolutionary Combinatorial Optimisation EvoCOP 2005, ed. by G.R. Raidl, G.J. Lausanne. Lecture Notes in Computer Science, vol. 3448 (Springer, Cham, 2005), pp. 34–45.
  12. 12.
    M. de la Cruz Echeandía, A. Ortega de la Puente, A Christiansen grammar for universal splicing systems, in IWINAC (1) (2009), pp. 336–345Google Scholar
  13. 13.
    A. Ortega, M. de la Cruz, M. Alfonseca, Christiansen grammar evolution: grammatical evolution with semantics. IEEE Trans. Evol. Comput. 11(1), 77–90 (2007). CrossRefGoogle Scholar
  14. 14.
    M. de la Cruz Echeandía, A. Martín Lázaro, A. Ortega de la Puente, J. Luis Montan̈a, C. Luis Alonso, The role of keeping “semantic blocks” invariant - effects in linear genetic programming performance, in IJCCI (ICEC) (2010), pp. 365–368Google Scholar
  15. 15.
    A. Ganatra, Y.P. Kosta, G. Panchal, C. Gajjar, Initial classification through back propagation in a neural network following optimization through GA to evaluate the fitness of an algorithm. Int. J. Comput. Sci. Inf. Technol. 3(1), 98–116 (2011)Google Scholar
  16. 16.
    K. Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I. Monatshefte für Mathematik und Physik 38, 173–198 (1931). CrossRefGoogle Scholar
  17. 17.
    J.V. Grabiner, Who gave you the epsilon? Cauchy and the origins of rigorous calculus. Am. Math. Mon. 90, 185–194 (1983)zbMATHGoogle Scholar
  18. 18.
    J.M. Guo, X.F. Yuan, Z.X. Xiong, Force finding of suspended-domes using back propagation (BP) algorithm. Adv. Steel Constr. 12(1), 17–31 (2016)Google Scholar
  19. 19.
    A.K. Joshi, Y. Schabes, Tree-adjoining grammars, in Handbook of Formal Languages (Springer, Berlin, Heidelberg, 1997), pp. 69–123CrossRefGoogle Scholar
  20. 20.
    G. Katsirelos, N. Narodytska, T. Walsh, The weighted CFG constraint. CoRR (2009). abs/0909.4456Google Scholar
  21. 21.
    H.T. Kim, C.W. Ahn, A new grammatical evolution based on probabilistic context-free grammar, in Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems - Volume 2, ed. by H. Handa, H. Ishibuchi, Y.S. Ong, K.C. Tan. Proceedings in Adaptation, Learning and Optimization, vol. 2 (Springer, Cham, 2015)Google Scholar
  22. 22.
    D.E. Knuth, Semantics of context-free languages. Math. Syst. Theory 2, 127 (1968). Springer. ISSN 0025-5661
  23. 23.
    M. Mohri, F.C.N. Pereira, Dynamic compilation of weighted context-free grammars, in COLING-ACL (1998), pp. 891–897Google Scholar
  24. 24.
    E. Murphy, An exploration of tree-adjoining grammars for grammatical evolution. Ph.D. thesis, University College Dublin, D.S.o.C.S.I., University College (2013)Google Scholar
  25. 25.
    E. Murphy, M. O’Neill, E. Galván-López, A. Brabazon, Tree-adjunct grammatical evolution, in 2010 IEEE Congress on Evolutionary Computation (CEC) (IEEE, New York, July 2010), pp. 1–8Google Scholar
  26. 26.
    M. O’Neill, R. Cleary, N. Nikolov, Solving knapsack problems with attribute grammars, in Proceedings of the Third Grammatical Evolution Workshop GEWS 2004 ISGEC, Seattle, WA, ed. by M. O’Neill, C. Ryan.
  27. 27.
    A. Ortega de la Puente, M. de la Cruz Echeandía, M. Alfonseca Moreno, Christiansen grammar evolution: grammatical evolution with semantics. IEEE Trans. Evol. Comput. 11(1), 77–90 (2007)CrossRefGoogle Scholar
  28. 28.
    H. Sato, Y. Hasegawa, D. Bollegala, H. Iba, Probabilistic model building GP with belief propagation, in IEEE Congress on Evolutionary Computation (2012), pp. 1–8Google Scholar
  29. 29.
    H. Sato, Y. Hasegawa, D. Bollegala, H. Iba, Improved sampling using loopy belief propagation for probabilistic model building genetic programming. Swarm Evol. Comput. 23, 1–10 (2015). ISSN 2210-6502CrossRefGoogle Scholar
  30. 30.
    J.N. Shutt, Imperative adaptive grammars. Web page dated 28 March 2001.
  31. 31.
    A. Turing, On computable numbers, with an application to the Entscheidungs problem. Proc. Lond. Math. Soc. Ser. 2(42), 230–265 (1936–1937). Online versions: from journal website, from Turing Digital Archive, from Errata appeared in Series 2(43), 544–546 (1937)Google Scholar
  32. 32.
    S.D. Turner, S.M. Dudek, M.D. Ritchie, ATHENA: a knowledge-based hybrid backpropagation-grammatical evolution neural network algorithm for discovering epistasis among quantitative trait Loci. BioData Min. 3(1), 5 (2010)Google Scholar
  33. 33.
    K. Vijayashanker, A.K. Joshi, A Study of Tree Adjoining Grammars (University of Pennsylvania, Philadelphia, 1988)Google Scholar
  34. 34.
    K. Vijay-Shanker, D.J. Weir, A.K. Joshi, Tree adjoining and head wrapping, in Proceedings of the 11th Conference on Computational Linguistics (Association for Computational Linguistics, New York, August 1986), pp. 202–207Google Scholar
  35. 35.
    D.J. Weir, K. Vijay-Shanker, A.K. Joshi, The relationship between tree adjoining grammars and head grammars, in Proceedings of the 24th Annual Meeting on Association for Computational Linguistics (Association for Computational Linguistics, New York, July 1986), pp. 67–74Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Marina de la Cruz Echeandía
    • 1
  • Younis R. SH. Elhaddad
    • 1
  • Suzan Awinat
    • 1
  • Alfonso Ortega
    • 1
    Email author
  1. 1.UAMComputer Engineering DepartmentMadridSpain

Personalised recommendations