Advertisement

Understanding Grammatical Evolution: Grammar Design

  • Miguel NicolauEmail author
  • Alexandros Agapitos
Chapter

Abstract

A frequently overlooked consideration when using Grammatical Evolution (GE) is grammar design. This is because there is an infinite number of grammars that can specify the same syntax. There are, however, certain aspects of grammar design that greatly affect the speed of convergence and quality of solutions generated with GE. In this chapter, general guidelines for grammar design are presented. These are domain-independent, and can be used when applying GE to any problem. An extensive analysis of their effect and results across a large set of experiments are reported.

References

  1. 1.
    J. Byrne, M. O’Neill, J. McDermott, A. Brabazon, An analysis of the behaviour of mutation in grammatical evolution, in European Conference on Genetic Programming, EuroGP 2010, ed. by A.I. Esparcia-Alcázar et al. Lecture Notes in Computer Science, vol. 6021 (Springer, Berlin, 2010), pp. 14–25Google Scholar
  2. 2.
    P. Cortez, A. Morais, A data mining approach to predict forest fires using meteorological data, in Portuguese Conference on Artificial Intelligence, EPIA 2007, ed. by J. Neves et al. (APPIA, Lisboa, 2007), pp. 512–523Google Scholar
  3. 3.
    P. Cortez, A. Cerdeira, F. Almeida, T. Matos, J. Reis, Modeling wine preferences by data mining from physicochemical properties. Decis. Support. Syst. 47(4), 547–553 (2009)CrossRefGoogle Scholar
  4. 4.
    D. Fagan, M. O’Neill, E. Galván-López, A. Brabazon, S. McGarraghy, An analysis of genotype-phenotype maps in grammatical evolution, in European Conference on Genetic Programming, EuroGP 2010, ed. by A.I. Esparcia-Alcázar et al. Lecture Notes in Computer Science, vol. 6021 (Springer, Berlin, 2010), pp. 62–73Google Scholar
  5. 5.
    D. Fagan, M. Nicolau, E. Hemberg, M. O’Neill, A. Brabazon, S. McGarraghy, Investigation of the performance of different mapping orders for GE on the max problem, in European Conference on Genetic Programming, EuroGP 2011, Torino, Italy, April 27–29, 2011, Proceedings, ed. by S. Silva et al. Lecture Notes in Computer Science, vol. 6621 (Springer, Berlin, 2011), pp. 286–297Google Scholar
  6. 6.
    S. Forstenlechner, M. Nicolau, D. Fagan, M. O’Neill, Grammar design for derivation tree based genetic programming systems, in European Conference on Genetic Programming, EuroGP 2016, ed. by M. Heywood et al. Lecture Notes in Computer Science, vol. 9594 (Springer, Cham, 2016), pp. 199–214Google Scholar
  7. 7.
    S. Forstenlechner, D. Fagan, M. Nicolau, M. O’Neill, A grammar design pattern for arbitrary program synthesis problems in genetic programming, in European Conference on Genetic Programming, EuroGP 2017, ed. by J. McDermott et al. Lecture Notes in Computer Science, vol. 10196 (Springer, Berlin, 2017), pp. 262–277Google Scholar
  8. 8.
    C. Gathercole, P. Ross, An adverse interaction between crossover and restricted tree depth in genetic programming, in Genetic Programming 1996: First Annual Conference, ed. by J.R. Koza et al. (MIT Press, Cambridge, 1996), pp. 291–296Google Scholar
  9. 9.
    R. Harper, GE, explosive grammars and the lasting legacy of bad initialisation, in IEEE Congress on Evolutionary Computation, CEC 2010, 2010, pp. 2602–2609Google Scholar
  10. 10.
    E. Hemberg, An exploration of grammars in grammatical evolution. Ph.D. Thesis, University College Dublin, University College Dublin, Ireland, 2010Google Scholar
  11. 11.
    E. Hemberg, N. McPhee, M. O’Neill, A. Brabazon, Pre-, in- and postfix grammars for symbolic regression in grammatical evolution, in IEEE Workshop and Summer School on Evolutionary Computing, 2008, 2008, pp. 18–22Google Scholar
  12. 12.
    M. Keijzer, Improving symbolic regression with interval arithmetic and linear scaling, in European Conference on Genetic Programming, EuroGP 2003, ed. by C. Ryan et al. Lecture Notes in Computer Science, vol. 2610 (Springer, Berlin, 2003), pp. 70–82Google Scholar
  13. 13.
    M. Keijzer, M. O’Neill, C. Ryan, M. Cattolico, Grammatical evolution rules: the mod and the bucket rule, in European Conference on Genetic Programming, EuroGP 2002, ed. by J.A. Foster et al. Lecture Notes in Computer Science, vol. 2278 (Springer, Berlin, 2002), pp. 123–130Google Scholar
  14. 14.
    M.F. Korns, Accuracy in symbolic regression, in Genetic Programming Theory and Practice IX, ed. by R. Riolo et al. Genetic and Evolutionary Computation (Springer, New York, 2011), pp. 129–151CrossRefGoogle Scholar
  15. 15.
    J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection (MIT Press, Cambridge, 1992)zbMATHGoogle Scholar
  16. 16.
    M. Lichman, UCI machine learning repository (2013), http://archive.ics.uci.edu/ml
  17. 17.
    N. Lourenço, J. Ferrer, F.B. Pereira, E. Costa, A comparative study of different grammar-based genetic programming approaches, in European Conference on Genetic Programming, EuroGP 2017, ed. by J. McDermott et al. Lecture Notes in Computer Science, vol. 10196 (Springer, Cham, 2017), pp. 311–325Google Scholar
  18. 18.
    N. Lourenço, F. B. Pereira, E. Costa, Unveiling the properties of structured grammatical evolution. Genet. Program. Evolvable Mach. 17(3), 251–289 (2017)CrossRefGoogle Scholar
  19. 19.
    S. Luke, Two fast tree-creation algorithms for genetic programming. IEEE Trans. Evol. Comput. 4(3), 274–283 (2000)CrossRefGoogle Scholar
  20. 20.
    S. Luke, L. Panait, A comparison of bloat control methods for genetic programming. Evol. Comput. 14(3), 309–344 (2006)CrossRefGoogle Scholar
  21. 21.
    E. Medvet, A comparative analysis of dynamic locality and redundancy in grammatical evolution, in European Conference on Genetic Programming, EuroGP 2017, ed. by J. McDermott et al. Lecture Notes in Computer Science, vol. 10196 (Springer, Cham, 2017), pp. 326–342Google Scholar
  22. 22.
    M. Nicolau, Automatic grammar complexity reduction in grammatical evolution, in Genetic and Evolutionary Computation Conference, GECCO 2004, ed. by R. Poli et al. (2004)Google Scholar
  23. 23.
    M. Nicolau, Understanding grammatical evolution: initialisation. Genet. Program. Evolvable Mach. 18(4), 1–41 (2017)CrossRefGoogle Scholar
  24. 24.
    M. Nicolau, I. Dempsey, Introducing grammar based extensions for grammatical evolution, in IEEE Congress on Evolutionary Computation, CEC 2006 (2006), pp. 2663–2670Google Scholar
  25. 25.
    M. Nicolau, M. Fenton, Managing repetition in grammar-based genetic programming, in Genetic and Evolutionary Computation Conference - GECCO 2016, Denver, CO, USA, July 20–24, 2016, Proceedings, ed. by T. Friedrich (ACM, New York, 2016), pp. 765–772Google Scholar
  26. 26.
    M. Nicolau, M. O’Neill, A. Brabazon, Termination in grammatical evolution: grammar design, wrapping, and tails, in IEEE Congress on Evolutionary Computation, CEC 2012 (2012), pp. 1–8Google Scholar
  27. 27.
    M. Nicolau, A. Agapitos, M. O’Neill, A. Brabazon, Guidelines for defining benchmark problems in genetic programming, in IEEE Congress on Evolutionary Computation, CEC 2015 (2015)Google Scholar
  28. 28.
    M. O’Neill, A. Brabazon, mGGA: the meta-grammar genetic algorithm, in European Conference on Genetic Programming, EuroGP 2005, ed. by M. Keijzer et al. Lecture Notes in Computer Science, vol. 3447 (Springer, Berlin, 2005), pp. 311–320Google Scholar
  29. 29.
    M. O’Neill, C. Ryan, Evolving multi-line compilable c programs, in European Workshop on Genetic Programming, EuroGP 99, ed. by R. Poli et al. Lecture Notes in Computer Science, vol. 1598 (Springer, Berlin, 1999), pp. 83–92Google Scholar
  30. 30.
    M. O’Neill, C. Ryan, Grammatical Evolution - Evolutionary Automatic Programming in an Arbitrary Language. Genetic Programming, vol. 4 (Kluwer Academic, Dordrecht, 2003)Google Scholar
  31. 31.
    M. O’Neill, C. Ryan, M. Nicolau, Grammar defined introns: an investigation into grammars, introns, and bias in grammatical evolution, in Genetic and Evolutionary Computation Conference, GECCO 2001, ed. by L. Spector et al. (Morgan Kaufmann, Burlington, 2001), pp. 97–103Google Scholar
  32. 32.
    M. O’Neill, C. Ryan, M. Keijzer, M. Cattolico, Crossover in grammatical evolution. Genet. Program. Evolvable Mach. 4(1), 67–93 (2003)CrossRefGoogle Scholar
  33. 33.
    M. O’Neill, J.M. Swafford, J. McDermott, J. Byrne, A. Brabazon, E. Shotton, C. McNally, M. Hemberg, Shape grammars and grammatical evolution for evolutionary design, ed. by G. Raidl et al. Genetic and Evolutionary Computation Conference, GECCO 2009 (ACM, New York, 2009), pp. 1035–1042Google Scholar
  34. 34.
    L. Pagie, P. Hogeweg, Evolutionary consequences of coevolving targets. Evol. Comput. 5(4), 401–418 (1997)CrossRefGoogle Scholar
  35. 35.
    D. Robilliard, S. Mahler, D. Verhaghe, C. Fonlupt, Santa fe trail hazards, in International Conference on Evolution Artificielle, EA 2005, ed. by E.-G. Talbi et al. Lecture Notes in Computer Science, vol. 3871 (Springer, Berlin, 2005), pp. 1–12Google Scholar
  36. 36.
    F. Rothlauf, M. Oetzel, On the locality of grammatical evolution, in European Conference on Genetic Programming, EuroGP 2006, ed. by P. Collet et al. Lecture Notes in Computer Science, vol. 3905 (Springer, Berlin, 2006), pp. 320–330Google Scholar
  37. 37.
    C. Ryan, A. Azad, Sensible initialisation in grammatical evolution, in Genetic and Evolutionary Computation Conference, GECCO 2003, ed. by E. Cantú-Paz et al. (AAAI, Menlo Park, 2003)Google Scholar
  38. 38.
    C. Ryan, J. Collins, M. O’Neill, Grammatical evolution: evolving programs for an arbitrary language, in European Workshop on Genetic Programming, EuroGP 1998, ed. by W. Banzhaf et al. Lecture Notes in Computer Science, vol. 1391 (Springer, Berlin, 1998), pp. 83–95Google Scholar
  39. 39.
    C. Ryan, M. Keijzer, M. Nicolau, On the avoidance of fruitless wraps in grammatical evolution, in Genetic and Evolutionary Computation Conference, GECCO 2003, ed. by E. Cantú-Paz et al. Lecture Notes in Computer Science, vol. 2724 (Springer, Berlin, 2003), pp. 1752–1763Google Scholar
  40. 40.
    J. Tavares, F. B. Pereira, Automatic design of ant algorithms with grammatical evolution, in European Conference on Genetic Programming, EuroGP 2012, ed. by A. Moraglio et al. Lecture Notes in Computer Science, vol. 7244 (Springer, Berlin, 2012), pp. 206–217Google Scholar
  41. 41.
    E.J. Vladislavleva, G.F. Smits, D. den Hertog, Order of nonlinearity as a complexity measure for models generated by symbolic regression via pareto genetic programming. IEEE Trans. Evol. Comput. 13(2), 333–349 (2009)CrossRefGoogle Scholar
  42. 42.
    P.A. Whigham, G. Dick, J. Maclaurin, C.A. Owen, Examining the “best of both worlds” of grammatical evolution, in Genetic and Evolutionary Computation Conference, GECCO 2015, ed. by S. Silva (ACM, New York, 2015) pp. 1111–1118CrossRefGoogle Scholar
  43. 43.
    D.R. White, J. McDermott, M. Castelli, L. Manzoni, B.W. Goldman, G. Kronberger, W. Jaśkowski, U.-M. O’Reilly, S. Luke, Better GP benchmarks: community survey results and proposals. Genet. Program. Evolvable Mach. 14(1), 3–29 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of BusinessUniversity College DublinDublinIreland
  2. 2.School of Computer ScienceUniversity College DublinDublinIreland

Personalised recommendations