Advertisement

Introduction to 20 Years of Grammatical Evolution

  • Conor RyanEmail author
  • Michael O’Neill
  • JJ Collins
Chapter

Abstract

Grammatical Evolution (GE) is a Evolutionary Algorithm (EA) that takes inspiration from the biological evolutionary process to search for solutions to problems. This chapter gives a brief introduction to EAs, paying particular attention to those involved in automatic program generation. We then describe grammars, the core building blocks of programs, before detailing how GE’s usage of them is one of the key differentiators between it and other EAs.

We give a brief overview of GE and its use, before looking at some of the key developments in the past 20 years, along with a detailed look at the chapters in this book.

References

  1. 1.
    R.M.A. Azad, A position independent evolutionary automatic programming algorithm - the Chorus system, in Graduate Student Workshop, New York, 8 July 2002, ed. by S. Luke, C. Ryan, U.-M. O’Reilly (AAAI, Menlo Park, 2002), pp. 260–263Google Scholar
  2. 2.
    R.M.A. Azad, A position independent representation for evolutionary automatic programming algorithms - the Chorus system. Ph.D. Thesis, University of Limerick, Ireland, Dec. 2003Google Scholar
  3. 3.
    R.M.A. Azad, A.R. Ansari, C. Ryan, M. Walsh, T. McGloughlin, An evolutionary approach to wall sheer stress prediction in a grafted artery. Appl. Soft Comput. 4(2), 139–148 (2004)CrossRefGoogle Scholar
  4. 4.
    H. Beyer, H. Schwefel, Evolution strategies - a comprehensive introduction. Nat. Comput. 1(1), 3–52 (2002)MathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Brabazon, M. O’Neill, S. McGarraghy, Natural Computing Algorithms (Springer, Berlin, 2015)CrossRefGoogle Scholar
  6. 6.
    J. Byrne, E. Hemberg, A. Brabazon, M. O’Neill, A local search interface for interactive evolutionary architectural design, in Proceedings of the 1st International Conference on Evolutionary and Biologically Inspired Music, Sound, Art and Design, EvoMUSART 2012, Malaga, Spain, 11–13 Apr. 2012, ed. by P. Machado, J. Romero, A. Carballal. Lecture Notes in Computer Science, vol. 7247 (Springer, Berlin, 2012), pp. 23–34Google Scholar
  7. 7.
    N. Chomsky, Three models for the description of language. IRE Trans. Inf. Theory 2(3), (1956)Google Scholar
  8. 8.
    N. Chomsky, On certain formal properties of grammars. Inf. Control (2), 137–167 (1959)MathSciNetCrossRefGoogle Scholar
  9. 9.
    N. Chomsky, M. Schutzenberger, On certain formal properties of grammars, in Computer Programming and Formal Languages (North Holland, Amsterdam, 1963)zbMATHGoogle Scholar
  10. 10.
    R. Cleary, Extending grammatical evolution with attribute grammars: an application to knapsack problems. Master of science in computer science, University of Limerick, Ireland, 2005Google Scholar
  11. 11.
    R. Cleary, M. O’Neill, An attribute grammar decoder for the 01 multiconstrained Knapsack problem, in Evolutionary Computation in Combinatorial Optimization – EvoCOP 2005, Lausanne, Switzerland, 30 Mar.–1 Apr. 2005, ed. by G.R. Raidl, J. Gottlieb. Lecture Notes in Computer Science, vol. 3448 (Springer, Berlin, 2005), pp. 34–45Google Scholar
  12. 12.
    B. Cody-Kenny, M. Fenton, A. Ronayne, E. Considine, T. McGuire, M. O’Neill, A search for improved performance in regular expressions, in Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’17, Berlin, Germany, 15–19 July 2017 (ACM, New York, 2017), pp. 1280–1287Google Scholar
  13. 13.
    I. Dempsey, M. O’Neill, A. Brabazon, Foundations in Grammatical Evolution for Dynamic Environments. Studies in Computational Intelligence, vol. 194 (Springer, Berlin, 2009)Google Scholar
  14. 14.
    S. Donne, M. Nicolau, C. Bean, M. O’Neill, Wave height quantification using land based seismic data with grammatical evolution, in Proceedings of the 2014 IEEE Congress on Evolutionary Computation, Beijing, China, 6–11 July 2014, ed. by C.A. Coello Coello, pp. 2909–2916Google Scholar
  15. 15.
    J.A. Driscoll, B. Worzel, D. MacLean, Classification of gene expression data with genetic programming, in Genetic Programming Theory and Practice, ed. by R.L. Riolo, B. Worzel, chap. 3 (Kluwer, Boston, 2003), pp. 25–42Google Scholar
  16. 16.
    D. Fagan, Analysing the genotype-phenotype map in grammatical evolution. Ph.D. Thesis, University College Dublin, Ireland, 30 Oct. 2013Google Scholar
  17. 17.
    D. Fagan, E. Hemberg, M. O’Neill, S. McGarraghy, Fitness reactive mutation in grammatical evolution, in 18th International Conference on Soft Computing, MENDEL 2012, Brno, Czech Republic, 27–29 June 2012, ed. by R. Matousek (Brno University of Technology, Brno, 2012), pp. 144–149Google Scholar
  18. 18.
    D. Fagan, M. Fenton, M. O’Neill, Exploring position independent initialisation in grammatical evolution, in Proceedings of 2016 IEEE Congress on Evolutionary Computation (CEC 2016), Vancouver, 24–29 July 2016, ed. by Y.-S. Ong (IEEE Press, New York, 2016), pp. 5060–5067Google Scholar
  19. 19.
    M. Fenton, D. Lynch, S. Kucera, H. Claussen, M. O’Neill, Multilayer optimization of heterogeneous networks using grammatical genetic programming. IEEE Trans. Cybern. 47(9), 2938–2950 (2018)CrossRefGoogle Scholar
  20. 20.
    M. Fenton, D. Lynch, S. Kucera, H. Claussen, M. O’Neill, Multilayer optimization of heterogeneous networks using grammatical genetic programming, in Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO ’17, Berlin, Germany, 15–19 July 2017 (ACM, New York, 2017), pp. 3–4Google Scholar
  21. 21.
    M. Fenton, J. McDermott, D. Fagan, S. Forstenlechner, E. Hemberg, M. O’Neill, Ponyge2: Grammatical evolution in python, in Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO’17, Berlin, Germany, 15–19 July 2017 (ACM, New York, 2017), pp. 1194–1201Google Scholar
  22. 22.
    M. Fenton, J. McDermott, D. Fagan, S. Forstenlechner, M. O’Neill, E. Hemberg, Ponyge2: grammatical evolution in python. arXiv, 26 Apr. 2017Google Scholar
  23. 23.
    C. Ferreira, Gene expression programming and the automatic evolution of computer programs, in Recent Developments in Biologically Inspired Computing, ed. by L.N. de Castro, F.J. Von Zuben, chap. 6 (Idea Group Publishing, Boulder, 2004), pp. 82–103Google Scholar
  24. 24.
    D. Gavrilis, I.G. Tsoulos, E. Dermatas, Selecting and constructing features using grammatical evolution. Pattern Recogn. Lett. 29(9), 1358–1365 (2008)CrossRefGoogle Scholar
  25. 25.
    R.T.R. Harper, Enhancing grammatical evolution. Ph.D. Thesis, School of Computer Science and Engineering, The University of New South Wales, Sydney 2052, Australia, 2009Google Scholar
  26. 26.
    R. Harper, Ge, explosive grammars and the lasting legacy of bad initialisation, in IEEE Congress on Evolutionary Computation (CEC 2010), Barcelona, Spain, 18–23 July 2010 (IEEE Press, New York, 2010)Google Scholar
  27. 27.
    R. Harper, A. Blair, A structure preserving crossover in grammatical evolution, in Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Edinburgh, UK, 2–5 Sept. 2005, ed. by D. Corne, Z. Michalewicz, M. Dorigo, G. Eiben, D. Fogel, C. Fonseca, G. Greenwood, T. K. Chen, G. Raidl, A. Zalzala, S. Lucas, B. Paechter, J. Willies, J. J. M. Guervos, E. Eberbach, B. McKay, A. Channon, A. Tiwari, L. G. Volkert, D. Ashlock, M. Schoenauer, vol. 3 (IEEE Press, New York, 2005), pp. 2537–2544Google Scholar
  28. 28.
    R. Harper, A. Blair, A self-selecting crossover operator, in Proceedings of the 2006 IEEE Congress on Evolutionary Computation, Vancouver, 6–21 July 2006, ed. by G.G. Yen, L. Wang, P. Bonissone, S.M. Lucas (IEEE Press, New York, 2006), pp. 5569–5576Google Scholar
  29. 29.
    R. Harper, A. Blair, Dynamically defined functions in grammatical evolution, in Proceedings of the 2006 IEEE Congress on Evolutionary Computation, Vancouver (IEEE Press, 2006), pp. 9188–9195.  https://doi.org/10.1109/CEC.2006.1688638
  30. 30.
    M. Hemberg, U.-M. O’Reilly, P. Nordin, GENR8 - a design tool for surface generation, in 2001 Genetic and Evolutionary Computation Conference Late Breaking Papers, San Francisco, California, USA, 9–11 July 2001, ed. by E.D. Goodman, pp. 160–167Google Scholar
  31. 31.
    E. Hemberg, N. McPhee, M. O’Neill, A. Brabazon, Pre-, in- and postfix grammars for symbolic regression in grammatical evolution, in IEEE Workshop and Summer School on Evolutionary Computing, University of Ulster, Derry, Northern Ireland, 18–22 Aug. 2008, ed. by T.M. McGinnity, pp. 18–22Google Scholar
  32. 32.
    E. Hemberg, L. Ho, M. O’Neill, H. Claussen, A comparison of grammatical genetic programming grammars for controlling femtocell network coverage. Genet. Program. Evolvable Mach. 14(1), 65–93 (2013)CrossRefGoogle Scholar
  33. 33.
    E. Hemberg, C. Gilligan, M. O’Neill, A. Brabazon, A grammatical genetic programming approach to modularity in genetic algorithms, in Proceedings of the 10th European Conference on Genetic Programming, Valencia, Spain, ed. by M. Ebner, M. O’Neill, A. Ekrt, L. Vanneschi, A.I. Esparcia-Alczar. Lecture Notes in Computer Science, vol. 4445 (Springer, Berlin, 2007), pp. 1–11. https://doi.org/10.1007/978-3-540-71605-1_1
  34. 34.
    J. Hugosson, E. Hemberg, A. Brabazon, M. O’Neill, Genotype representations in grammatical evolution. Appl. Soft Comput. 10(1), 36–43 (2010) https://doi.org/10.1016/j.asoc.2009.05.003 CrossRefGoogle Scholar
  35. 35.
    M.R. Karim, C. Ryan, A new approach to solving 0-1 multiconstraint knapsack problems using attribute grammar with lookahead, in Proceedings of the 14th European Conference on Genetic Programming, EuroGP 2011, Turin, Italy, 27–29 Apr. 2011, ed. by S. Silva, J.A. Foster, M. Nicolau, M. Giacobini, P. Machado. Lecture Notes in Computer Science, vol. 6621 (Springer, Berlin, 2011), pp. 250–261Google Scholar
  36. 36.
    M.R. Karim, C. Ryan, On improving grammatical evolution performance in symbolic regression with attribute grammar, in GECCO Comp’14: Proceedings of the 2014 Conference Companion on Genetic and Evolutionary Computation Companion, Vancouver, BC, Canada, 12–16 July 2014, ed. by C. Igel, D. V. Arnold, C. Gagne, E. Popovici, A. Auger, J. Bacardit, D. Brockhoff, S. Cagnoni, K. Deb, B. Doerr, J. Foster, T. Glasmachers, E. Hart, M.I. Heywood, H. Iba, C. Jacob, T. Jansen, Y. Jin, M. Kessentini, J.D. Knowles, W. B. Langdon, P. Larranaga, S. Luke, G. Luque, J.A.W. McCall, M.A. Montes de Oca, A. Motsinger-Reif, Y. S. Ong, M. Palmer, K.E. Parsopoulos, G. Raidl, S. Risi, G. Ruhe, T. Schaul, T. Schmickl, B. Sendhoff, K.O. Stanley, T. Stuetzle, D. Thierens, J. Togelius, C. Witt, C. Zarges (ACM, New York, 2014), pp. 139–140Google Scholar
  37. 37.
    M. Keijzer, Scientific discovery using genetic programming. Ph.D. Thesis, Danish Technical University, IMM, Institute for Mathematical Modelling, Digital Signal Processing group, DK-2800 Lyngby, Denmark, Mar. 2002Google Scholar
  38. 38.
    M. Keijzer, V. Babovic, Dimensionally aware genetic programming, in Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, 13–17 July 1999, ed. by W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, R.E. Smith, vol. 2 (Morgan Kaufmann, Burlington, 1999), pp. 1069–1076Google Scholar
  39. 39.
    M. Keijzer, V. Babovic, C. Ryan, M. O’Neill, M. Cattolico, Adaptive logic programming, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001), San Francisco, California, USA, 7–11 July 2001, ed. by L. Spector, E. D. Goodman, A. Wu, W.B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M.H. Garzon, E. Burke (Morgan Kaufmann, Burlington, 2001), pp. 42–49Google Scholar
  40. 40.
    M. Keijzer, M. O’Neill, C. Ryan, M. Cattolico, Grammatical evolution rules: The mod and the bucket rule, in Genetic Programming, Proceedings of the 5th European Conference, EuroGP 2002, Kinsale, Ireland, 3–5 Apr. 2002, ed. by J.A. Foster, E. Lutton, J. Miller, C. Ryan, A.G.B. Tettamanzi. Lecture Notes in Computer Science, vol. 2278 (Springer, Berlin, 2002), pp. 123–130Google Scholar
  41. 41.
    J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection (MIT Press, Cambridge, MA, USA, 1992)zbMATHGoogle Scholar
  42. 42.
    J.R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs (MIT Press, Cambridge MA, 1994)zbMATHGoogle Scholar
  43. 43.
    J.R. Koza, D. Andre, F.H. Bennett III, M. Keane, Genetic Programming III: Darwinian Invention and Problem Solving (Morgan Kaufmann, San Francisco, 1999)zbMATHGoogle Scholar
  44. 44.
    J.R. Koza, M.A. Keane, M.J. Streeter, W. Mydlowec, J. Yu, G. Lanza, Genetic Programming IV: Routine Human-Competitive Machine Intelligence (Kluwer Academic, Norwell, 2003)zbMATHGoogle Scholar
  45. 45.
    W.B. Langdon, R. Poli, Foundations of Genetic Programming (Springer, Berlin, 2002)CrossRefGoogle Scholar
  46. 46.
    N. Lourenco, F.B. Pereira, E. Costa, SGE: a structured representation for grammatical evolution, in Artificial Evolution, Lyon, France, 26–28 Oct. 2015, ed. by S. Bonnevay, P. Legrand, N. Monmarche, E. Lutton, M. Schoenauer, Lecture Notes in Computer Science, vol. 9554 (Springer, Cham, 2015), pp. 136–148Google Scholar
  47. 47.
    J. McDermott, Graph grammars for evolutionary 3D design. Genet. Program. Evolvable Mach. 14(3), 369–393 (2013). Special issue on biologically inspired music, sound, art and design.Google Scholar
  48. 48.
    J. McDermott, M. O’Neill, A. Brabazon, Interactive interpolating crossover in grammatical evolution, in 2010 IEEE World Congress on Computational Intelligence, Barcelona, Spain, 18–23 July 2010 (IEEE Computational Intelligence Society/IEEE Press, New York, 2010), pp. 3018–3025Google Scholar
  49. 49.
    R.I. McKay, N.X. Hoai, P.A. Whigham, Y. Shan, M. O’Neill, Grammar-based genetic programming: a survey. Genet. Program. Evolvable Mach. 11(3/4), 365–396 (2010). Tenth Anniversary Issue: Progress in Genetic Programming and Evolvable MachinesGoogle Scholar
  50. 50.
    D.J. Montana, Strongly typed genetic programming. Evol. Comput. 3(2), 199–230 (1995)CrossRefGoogle Scholar
  51. 51.
    J.H. Moore, J.S. Parker, L.W. Hahn, Symbolic discriminant analysis for mining gene expression patterns, in Machine Learning: EMCL 2001, 12th European Conference on Machine Learning, Freiburg, Germany, September 5–7, 2001, Proceedings, 2001, pp. 372–381Google Scholar
  52. 52.
    A. Moraglio, J. McDermott, M. O’Neill, Geometric semantic grammatical evolution, in Semantic Methods in Genetic Programming, Ljubljana, Slovenia, 13 Sept. 2014, ed. by C. Johnson, K. Krawiec, A. Moraglio, M. O’Neill. Workshop at Parallel Problem Solving from Nature 2014 conference.Google Scholar
  53. 53.
    J.E. Murphy, Applications of evolutionary computation to quadrupedal animal animation. Ph.D. Thesis, School of Computer Science and Informatics, University College Dublin, Ireland, Mar. 2011Google Scholar
  54. 54.
    E. Murphy, An exploration of tree-adjoining grammars for grammatical evolution. Ph.D. Thesis, University College Dublin, Ireland, 6 Dec. 2014Google Scholar
  55. 55.
    J. Murphy, M. O’Neill, H. Carr, Exploring grammatical evolution for horse gait optimisation, in Proceedings of the 12th European Conference on Genetic Programming, EuroGP 2009, Tuebingen, Apr. 15–17 2009, ed. by L. Vanneschi, S. Gustafson, A. Moraglio, I. De Falco, M. Ebner. Lecture Notes in Computer Science, vol. 5481 (Springer, Berlin, 2009), pp. 183–194Google Scholar
  56. 56.
    E. Murphy, M. O’Neill, E. Galvan-Lopez, A. Brabazon, Tree-adjunct grammatical evolution, in 2010 IEEE World Congress on Computational Intelligence, Barcelona, Spain, 18–23 July 2010 (IEEE Computational Intelligence Society/IEEE Press, New York, 2010), pp. 4449–4456Google Scholar
  57. 57.
    J.E. Murphy, H. Carr, M. O’Neill, Animating horse gaits and transitions, in Eighth Theory and Practice of Computer Graphics TPCG 2010, Sheffield, UK, 6–8 Sept. 2010, ed. by J. Collomosse, I. Grimstead. EurographicsGoogle Scholar
  58. 58.
    E. Murphy, M. Nicolau, E. Hemberg, M. O’Neill, A. Brabazon, Differential gene expression with tree-adjunct grammars, in Parallel Problem Solving from Nature, PPSN XII (part 1), Taormina, Italy, Sept. 1–5 2012, ed. by C.A. Coello Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, M. Pavone. Lecture Notes in Computer Science, vol. 7491 (Springer, Berlin, 2012), pp. 377–386Google Scholar
  59. 59.
    M. Nicolau, Understanding grammatical evolution: initialisation. Genet. Program. Evolvable Mach. 18(4), 467–507 (2017)CrossRefGoogle Scholar
  60. 60.
    M. Nicolau, M. Saunders, M. O’Neill, B. Osborne, A. Brabazon, Evolving interpolating models of net ecosystem co2 exchange using grammatical evolution, in Proceedings of the 15th European Conference on Genetic Programming, EuroGP 2012, ed. by A. Moraglio, S. Silva, K. Krawiec, P. Machado, C. Cotta. Lecture Notes in Computer Science, vol. 7244, Malaga, Spain, 11–13 Apr. 2012 (Springer, Berlin, 2012), pp. 134–145Google Scholar
  61. 61.
    M. O’Driscoll, S. McKenna, J.J. Collins, Synthesising edge detectors with grammatical evolution, in GECCO 2002: Proceedings of the Bird of a Feather Workshops, Genetic and Evolutionary Computation Conference, New York, 8 July 2002, ed. by A.M. Barry (AAAI, Menlo Park, 2002), pp. 137–140Google Scholar
  62. 62.
    M. O’Neill, A. Brabazon, mGGA: the meta-grammar genetic algorithm, in Proceedings of the 8th European Conference on Genetic Programming, Lausanne, Switzerland, 30 Mar.–1 Apr. 2005, ed. by M. Keijzer, A. Tettamanzi, P. Collet, J. I. van Hemert, M. Tomassini. Lecture Notes in Computer Science, vol. 3447 (Springer, Berlin, 2005), pp. 311–320Google Scholar
  63. 63.
    M. O’Neill, A. Brabazon, Grammatical differential evolution, in Proceedings of the 2006 International Conference on Artificial Intelligence, ICAI 2006, Las Vegas, Nevada, USA, June 26–29 2006, ed. by H.R. Arabnia, vol. 1 (CSREA Press, Athens, 2006), pp. 231–236Google Scholar
  64. 64.
    M. O’Neill, A. Brabazon, Grammatical swarm: the generation of programs by social programming. Nat. Comput. 5(4), 443–462 (2006)MathSciNetCrossRefGoogle Scholar
  65. 65.
    M. O’Neill, A. Brabazon, Evolving a logo design using Lindenmayer systems, postscript and grammatical evolution, in 2008 IEEE World Congress on Computational Intelligence, Hong Kong, 1–6 June 2008, ed. by J. Wang (IEEE Computational Intelligence Society/IEEE Press, New York, 2008), pp. 3788–3794Google Scholar
  66. 66.
    M. O’Neill, C. Ryan, Automatic generation of caching algorithms, in Evolutionary Algorithms in Engineering and Computer Science, Jyväskylä, Finland, 30 May–3 June 1999, ed. by K. Miettinen, M.M. Mäkelä, P. Neittaanmäki, J. Periaux (Wiley, New York, 1999), pp. 127–134Google Scholar
  67. 67.
    M. O’Neill, C. Ryan, Evolving multi-line compilable C programs, in Genetic Programming, Proceedings of EuroGP’99, Goteborg, Sweden, 26–27 May 1999, ed. by R. Poli, P. Nordin, W.B. Langdon, T.C. Fogarty. Lecture Notes in Computer Science, vol. 1598 (Springer, Berlin, 1999), pp. 83–92Google Scholar
  68. 68.
    M. O’Neill, C. Ryan, Crossover in grammatical evolution: a smooth operator? in R. Poli, W. Banzhaf, W.B. Langdon, J.F. Miller, P. Nordin, T.C. Fogarty, Genetic Programming, Proceedings of EuroGP’2000, Edinburgh, 15–16 Apr. 2000. Lecture Notes in Computer Science, vol. 1802 (Springer, Berlin, 2000), pp. 149–162Google Scholar
  69. 69.
    M. O’Neill, C. Ryan, Grammatical evolution by grammatical evolution: The evolution of grammar and genetic code, in Genetic Programming 7th European Conference, EuroGP 2004, Proceedings, Coimbra, Portugal, 5–7 Apr. 2004, ed. by M. Keijzer, U.-M. O’Reilly, S.M. Lucas, E. Costa, T. Soule. Lecture Notes in Computer Science, vol. 3003 (Springer, Berlin, 2004), pp. 138–149Google Scholar
  70. 70.
    M. O’Neill, J.J. Collins, C. Ryan, Automatic generation of robot behaviours using grammatical evolution, in Proceedings of the Fifth International Symposium on Artificial Life and Robotics, Oita, Japan, 26–28 Jan. 2000, ed. by M. Sugisaka, H. Tanaka (2000), pp. 351–354Google Scholar
  71. 71.
    M. O’Neill, C. Ryan, M. Keijzer, M. Cattolico, Crossover in grammatical evolution: the search continues, in Genetic Programming, Proceedings of EuroGP’2001, Lake Como, Italy, 18–20 Apr. 2001, ed. by J.F. Miller, M. Tomassini, P.L. Lanzi, C. Ryan, A.G.B. Tettamanzi, W.B. Langdon. Lecture Notes in Computer Science, vol. 2038 (Springer, Berlin, 2001), pp. 337–347Google Scholar
  72. 72.
    M. O’Neill, C. Ryan, M. Keijzer, M. Cattolico, Crossover in grammatical evolution. Genet. Program. Evolvable Mach. 4(1), 67–93 (2003)CrossRefGoogle Scholar
  73. 73.
    M. O’Neill, A. Brabazon, C. Adley, The automatic generation of programs for classification problems with grammatical swarm, in Proceedings of the 2004 IEEE Congress on Evolutionary Computation, Portland, Oregon, 20–23 June 2004 (IEEE Press, New York, 2004), pp. 104–110Google Scholar
  74. 74.
    M. O’Neill, R. Cleary, N. Nikolov, Solving Knapsak problems with attribute grammars, in GECCO 2004 Workshop Proceedings, Seattle, Washington, USA, 26–30 June 2004, ed. by R. Poli, S. Cagnoni, M. Keijzer, E. Costa, F. Pereira, G. Raidl, S.C. Upton, D. Goldberg, H. Lipson, E. de Jong, J. Koza, H. Suzuki, H. Sawai, I. Parmee, M. Pelikan, K. Sastry, D. Thierens, W. Stolzmann, P.L. Lanzi, S.W. Wilson, M. O'Neill, C. Ryan, T. Yu, J.F. Miller, I. Garibay, G. Holifield, A.S. Wu, T. Riopka, M.M. Meysenburg, A.W. Wright, N. Richter, J.H. Moore, M.D. Ritchie, L. Davis, R. Roy, M. Jakiela (2004)Google Scholar
  75. 75.
    M. O’Neill, A. Brabazon, E. Hemberg, Subtree deactivation control with grammatical genetic programming in dynamic environments, in 2008 IEEE World Congress on Computational Intelligence, Hong Kong, 1–6 June 2008, ed. by J. Wang (IEEE Computational Intelligence Society/IEEE Press, New York, 2008), pp. 3768–3774Google Scholar
  76. 76.
    M. O’Neill, J. McDermott, J.M. Swafford, J. Byrne, E. Hemberg, A. Brabazon, E. Shotton, C. McNally, M. Hemberg, Evolutionary design using grammatical evolution and shape grammars: Designing a shelter. Int. J. Des. Eng. 3(1), 4–24 (2010)Google Scholar
  77. 77.
    M. O’Neill, L. Vanneschi, S. Gustafson, W. Banzhaf, Open issues in genetic programming. Genet. Program. Evolvable Mach. 11(3/4), 339–363 (2010). Tenth Anniversary Issue: Progress in Genetic Programming and Evolvable Machines.Google Scholar
  78. 78.
    M. O’Neill, M. Nicolau, A. Brabazon, Dynamic environments can speed up evolution with genetic programming, in GECCO’11: Proceedings of the 13th Annual Conference Companion on Genetic and Evolutionary Computation, Dublin, Ireland, 12–16 July 2011, ed. by N. Krasnogor, P. L. Lanzi, A. Engelbrecht, D. Pelta, C. Gershenson, G. Squillero, A. Freitas, M. Ritchie, M. Preuss, C. Gagne, Y.S. Ong, G. Raidl, M. Gallager, J. Lozano, C. Coello-Coello, D.L. Silva, N. Hansen, S. Meyer-Nieberg, J. Smith, G. Eiben, E. Bernado-Mansilla, W. Browne, L. Spector, T. Yu, J. Clune, G. Hornby, M.-L. Wong, P. Collet, S. Gustafson, J.-P. Watson, M. Sipper, S. Poulding, G. Ochoa, M. Schoenauer, C. Witt, A. Auger (ACM, New York, 2011), pp. 191–192Google Scholar
  79. 79.
    M. O’Neill, M. Nicolau, A. Agapitos, Experiments in program synthesis with grammatical evolution: a focus on integer sorting, in Proceedings of the 2014 IEEE Congress on Evolutionary Computation, Beijing, China, 6–11 July 2014, ed. by C.A. Coello Coello (2014), pp. 1504–1511Google Scholar
  80. 80.
    M. O’Neill, A. Brabazon, D. Fagan, An exploration of grammatical encodings to model six nations rugby match outcomes, in Proceedings of 2016 IEEE Congress on Evolutionary Computation (CEC 2016), Vancouver, 24–29 July 2016, ed. by Y.-S. Ong (IEEE Press, New York, 2016), pp. 4429–4436Google Scholar
  81. 81.
    M. O’Neill, C. Ryan, Grammar based function definition in grammatical evolution, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000), Las Vegas, NV, ed. by D. Whitley, D. Goldberg, E. Cantu-Paz, L. Spector, I. Parmee, H.-G. Beyer (Morgan Kaufmann, San Francisco, 2000), pp. 485–490Google Scholar
  82. 82.
    U.-M. O’Reilly, M. Hemberg, Integrating generative growth and evolutionary computation for form exploration. Genet. Program. Evolvable Mach. 8(2), 163–186 (2007). Special issue on developmental systems.Google Scholar
  83. 83.
    A. Ortega, M. de la Cruz, M. Alfonseca, Christiansen grammar evolution: grammatical evolution with semantics. IEEE Trans. Evol. Comput. 11(1), 77–90 (2007)CrossRefGoogle Scholar
  84. 84.
    J. O’Sullivan, C. Ryan, An investigation into the use of different search strategies with grammatical evolution, in Genetic Programming, Proceedings of the 5th European Conference, EuroGP 2002, Kinsale, Ireland, 3–5 Apr. 2002, ed. by J.A. Foster, E. Lutton, J. Miller, C. Ryan, A.G.B. Tettamanzi. Lecture Notes in Computer Science, vol. 2278 (Springer, Berlin, 2002), pp. 268–277Google Scholar
  85. 85.
    C. Ryan, R.M.A. Azad, Sensible initialisation in grammatical evolution, in GECCO 2003: Proceedings of the Bird of a Feather Workshops, Genetic and Evolutionary Computation Conference, Chicago, 11 July 2003, ed. by A.M. Barry (AAAI, Menlo Park, 2003), pp. 142–145Google Scholar
  86. 86.
    C. Ryan, M. O’Neill, How to do anything with grammars, in GECCO 2002: Proceedings of the Bird of a Feather Workshops, Genetic and Evolutionary Computation Conference, New York, 8 July 2002, ed. by A.M. Barry (AAAI, Menlo Park, 2002), pp. 116–119Google Scholar
  87. 87.
    C. Ryan, M. Nicolau, M. O’Neill, Genetic algorithms using grammatical evolution, in Genetic Programming, Proceedings of the 5th European Conference, EuroGP 2002, Kinsale, Ireland, 3–5 Apr. 2002, ed. by J.A. Foster, E. Lutton, J. Miller, C. Ryan, A.G.B. Tettamanzi. Lecture Notes in Computer Science, vol. 2278 (Springer, Berlin, 2002), pp. 278–287Google Scholar
  88. 88.
    C. Ryan, M. Keijzer, M. Nicolau, On the avoidance of fruitless wraps in grammatical evolution, in Genetic and Evolutionary Computation – GECCO-2003, Chicago, 12–16 July 2003, ed. by E. Cantú-Paz, J.A. Foster, K. Deb, D. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer, R. Standish, G. Kendall, S. Wilson, M. Harman, J. Wegener, D. Dasgupta, M.A. Potter, A.C. Schultz, K. Dowsland, N. Jonoska, J. Miller. Lecture Notes in Computer Science, vol. 2724 (Springer, Berlin, 2003), pp. 1752–1763Google Scholar
  89. 89.
    J.M. Swafford, M. O’Neill, M. Nicolau, A. Brabazon, Exploring grammatical modification with modules in grammatical evolution, in Proceedings of the 14th European Conference on Genetic Programming, EuroGP 2011, Turin, Italy, ed. S. Silva, J.A. Foster, M. Nicolau, M. Giacobini, P. Machado. Lecture Notes in Computer Science, vol. 6621. (Springer, Berlin, 2011), pp. 310–321. https://doi.org/10.1007/978-3-642-20407-4_27
  90. 90.
    J.M. Swafford, E. Hemberg, M. O’Neill, A. Brabazon, Analyzing module usage in grammatical evolution, in Parallel Problem Solving from Nature, PPSN XII (part 1), Taormina, Italy, ed. by C.A. Coello Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, M. Pavone. Lecture Notes in Computer Science, vol. 7491 (Springer, Berlin, 2012), pp. 347–356. https://doi.org/10.1007/978-3-642-32937-1_35
  91. 91.
    J.M. Swafford, E. Hemberg, M. O’Neill, M. Nicolau, A. Brabazon, A non-destructive grammar modification approach to modularity in grammatical evolution, in Gecco’11: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, Dublin, Ireland, ed. by N. Krasnogor, P.L. Lanzi, A. Engelbrecht, D. Pelta, C. Gershenson, G. Squillero, A. Freitas, M, Ritchie, M. Preuss, C. Gagne, Y.S. Ong, G. Raidl, M. Gallager, J. Lozano, C. Coello-Coello, D.L. Silva, N. Hansen, S. Meyer-Nieberg, J. Smith, G. Eiben, E. Bernado-Mansilla, W. Browne, L. Spector, T. Yu, J. Clune, G. Hornby, M.-L. Wong, P. Collet, S. Gustafson, J.-P. Watson, M. Sipper, S. Poulding, G. Ochoa, M. Schoenauer, C. Witt, A. Auger (ACM, New York, 2011), pp. 1411–1418. https://doi.org/10.1145/2001576.2001766
  92. 92.
    J. Swafford, M. Nicolau, E. Hemberg, M. O’Neill, A. Brabazon, Comparing methods for module identification in grammatical evolution, in GECCO’12: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference, Philadelphia, PA, ed. by T. Soule, A. Auger, J. Moore, D. Pelta, C. Solnon, M. Preuss, A. Dorin, Y.-S. Ong, C. Blum, D.L. Silva, F. Neumann, T. Yu, A. Ekart, W. Browne, T. Kovacs, M.-L. Wong, C. Pizzuti, J. Rowe, T. Friedrich, G. Squillero, N. Bredeche, S.L. Smith, A. Motsinger-Reif, J. Lozano, M. Pelikan, S. Meyer-Nienberg, C. Igel, G. Hornby, R. Doursat, S. Gustafson, G. Olague, S. Yoo, J. Clark, G. Ochoa, G. Pappa, F. Lobo, D. Tauritz, J. Branke, K. Deb (ACM, New York, 2012), pp. 823–830. https://doi.org/10.1145/2330163.2330277
  93. 93.
    A. Thompson, Silicon evolution, in Genetic Programming 1996: Proceedings of the First Annual Conference, Stanford University, CA, USA, 28–31 July 1996, ed. by J.R. Koza, D.E. Goldberg, D.B. Fogel, R.L. Riolo (MIT Press, Cambridge, 1996), pp. 444–452Google Scholar
  94. 94.
    P.A. Whigham, Grammatically-based genetic programming, in Proceedings of the Workshop on Genetic Programming: From Theory to Real-World Applications, Tahoe City, California, USA, 9 July 1995, ed. by J.P. Rosca (1995), pp. 33–41Google Scholar
  95. 95.
    P.A. Whigham, A schema theorem for context-free grammars, in 1995 IEEE Conference on Evolutionary Computation, Perth, Australia, 29 Nov.–1 Dec. 1995, vol. 1 (IEEE Press, New York, 1995), pp. 178–181Google Scholar
  96. 96.
    P.A. Whigham, Grammatical bias for evolutionary learning. Ph.D. Thesis, School of Computer Science, University College, University of New South Wales, Australian Defence Force Academy, Canberra, Australia, 14 Oct. 1996Google Scholar
  97. 97.
    P.A. Whigham, Search bias, language bias, and genetic programming, in Genetic Programming 1996: Proceedings of the First Annual Conference, Stanford University, CA, USA, 28–31 July 1996, ed. by J.R. Koza, D.E. Goldberg, D.B. Fogel, R.L. Riolo (MIT Press, Cambridge, 1996), pp. 230–237Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science and Information SystemsUniversity of LimerickCastletroy, LimerickIreland
  2. 2.School of BusinessUniversity College DublinDublinIreland

Personalised recommendations