Advertisement

Antigen in the Presence of DAMPs Induces Immunostimulatory Dendritic Cells to Promote Destructive Adaptive Immune Responses

  • Walter Gottlieb Land
Chapter

Abstract

This chapter highlights the role of DAMPs in the induction/activation of immunostimulatory dendritic cells which are regarded as the key cells for eliciting antigen-specific destructive adaptive immune responses. Various classes of DAMPs collaborate to promote the acquisition of immunogenic properties of dendritic cells which are characterized by upregulated expression of major histocompatibility molecules (signal 1), upregulation of costimulatory molecule expression (signal 2), and secretion of T cell-polarizing cytokines (signal 3). These three signals are needed to fully activate naïve T cells to proliferate and differentiate into different effector cell subsets of the adaptive immune response. Depending on the secretion by dendritic cells of different T cell-polarizing cytokines, naïve CD4+ T cells differentiate into several T helper cell subsets including but not limited to T helper 1, T helper 2, T helper 17, and memory T cells. These and other CD4+ T cell subsets are complemented by separate dendritic cell-promoted activation of cytotoxic CD8+ T cells including memory T cells. Besides their role in T cell-mediated adaptive immunity, immunostimulatory dendritic cells are also involved in B cell-mediated humoral immunity. In this scenario, follicular dendritic cells activate follicular T helper cells which in turn assist in B cell activation. Although peptide-specific follicular T helper cells are required for B cell responses to protein antigens, some nonprotein antigens such as bacterial polysaccharides can induce B cell activation in the absence of this type of helper cells. Final antibody production is produced by terminally differentiated B cells, known as plasmablasts and plasma cells, the formation of which is associated with marked alterations in the morphology, gene expression profile, and lifespan of the differentiated antibody-secreting cells. Together, depending on (1) the origin, nature, quality, and quantity of the underlying cell stress/tissue injury, (2) the consequential composition of various subclasses of DAMPs and their collaboration as well as (3) in the context of the microenvironment, immunostimulatory dendritic cells differentiate which induce distinct tailored, the respective situation adapted, that is “adaptive” immune responses.

References

  1. 1.
    Joffre O, Nolte MA, Spörri R, Reis e Sousa C. Inflammatory signals in dendritic cell activation and the induction of adaptive immunity. Immunol Rev. 2009;227:234–47.  https://doi.org/10.1111/j.1600-065X.2008.00718.x.CrossRefPubMedGoogle Scholar
  2. 2.
    Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20303872 PubMedCrossRefGoogle Scholar
  3. 3.
    Land WG. Innate Alloimmunity Part 2: innate immunity and allograft rejection. Baskent University, Ankara, Turkey; Pabst International Publishers, Lengerich, Germany; 2011. Available from: ISBN 978-3-89967-738-6Google Scholar
  4. 4.
    Broz P, Monack DM. Newly described pattern recognition receptors team up against intracellular pathogens. Nat Rev Immunol. 2013;13:551–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23846113 PubMedCrossRefGoogle Scholar
  5. 5.
    Zelenay S. Reis e Sousa C. Adaptive immunity after cell death. Trends Immunol. 2013;34:329–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23608152 CrossRefGoogle Scholar
  6. 6.
    Mattei F, Schiavoni G, Tough DF. Regulation of immune cell homeostasis by type I interferons. Cytokine Growth Factor Rev. 2010;21:227–36. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1359610110000365 PubMedCrossRefGoogle Scholar
  7. 7.
    Frenz T, Waibler Z, Hofmann J, Hamdorf M, Lantermann M, Reizis B, et al. Concomitant type I IFN receptor-triggering of T cells and of DC is required to promote maximal modified vaccinia virus Ankara-induced T-cell expansion. Eur J Immunol. 2010;40:2769–77.  https://doi.org/10.1002/eji.201040453.CrossRefPubMedGoogle Scholar
  8. 8.
    Diamond MS, Kinder M, Matsushita H, Mashayekhi M, Dunn GP, Archambault JM, et al. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J Exp Med. 2011;208:1989–2003.  https://doi.org/10.1084/jem.20101158.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med. 1996;184:747–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8760829 PubMedCrossRefGoogle Scholar
  10. 10.
    Di Rosa F, Ramaswamy S, Ridge JP, Matzinger P. On the lifespan of virgin T lymphocytes. J Immunol. 1999;163:1253–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10415021 PubMedGoogle Scholar
  11. 11.
    Shortman K, Naik SH. Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol. 2007;7:19–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17170756 PubMedCrossRefGoogle Scholar
  12. 12.
    Hammer GE, Ma A. Molecular control of steady-state dendritic cell maturation and immune homeostasis. Annu Rev Immunol. 2013;31:743–91.  https://doi.org/10.1146/annurev-immunol-020711-074929.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Dalod M, Chelbi R, Malissen B, Lawrence T. Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming. EMBO J. 2014;33:1104–16.  https://doi.org/10.1002/embj.201488027.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Vega-Ramos J, Roquilly A, Zhan Y, Young LJ, Mintern JD, Villadangos JA. Inflammation conditions mature dendritic cells to retain the capacity to present new antigens but with altered cytokine secretion function. J Immunol. 2014;193:3851–9.  https://doi.org/10.4049/jimmunol.1303215.CrossRefPubMedGoogle Scholar
  15. 15.
    Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, et al. Immunobiology of dendritic cells. Annu Rev Immunol. 2000;18:767–811.  https://doi.org/10.1146/annurev.immunol.18.1.767.CrossRefGoogle Scholar
  16. 16.
    Roche PA, Furuta K. The ins and outs of MHC class II-mediated antigen processing and presentation. Nat Rev Immunol. 2015;15:203–16.  https://doi.org/10.1038/nri3818.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Dustin ML, Baldari CT. The immune synapse: past, present, and future. Methods Mol Biol. 2017;1584:1–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28255692 PubMedCrossRefGoogle Scholar
  18. 18.
    Verboogen DRJ, Dingjan I, Revelo NH, Visser LJ, ter Beest M, van den Bogaart G. The dendritic cell side of the immunological synapse. Biomol Concepts. 2016;7:17–28. Available from: https://www.degruyter.com/view/j/bmc.2016.7.issue-1/bmc-2015-0028/bmc-2015-0028.xml PubMedCrossRefGoogle Scholar
  19. 19.
    Hubo M, Trinschek B, Kryczanowsky F, Tuettenberg A, Steinbrink K, Jonuleit H. Costimulatory molecules on immunogenic versus tolerogenic human dendritic cells. Front Immunol. 2013;4:82. Available from: http://journal.frontiersin.org/article/10.3389/fimmu.2013.00082/abstract PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Bakdash G, Sittig SP, van Dijk T, Figdor CG, de Vries IJM. The nature of activatory and tolerogenic dendritic cell-derived signal II. Front Immunol. 2013;4:53. Available from: http://journal.frontiersin.org/article/10.3389/fimmu.2013.00053/abstract PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Jonuleit H, Kühn U, Müller G, Steinbrink K, Paragnik L, Schmitt E, et al. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol. 1997;27:3135–42.  https://doi.org/10.1002/eji.1830271209.CrossRefPubMedGoogle Scholar
  22. 22.
    Curtsinger JM, Mescher MF. Inflammatory cytokines as a third signal for T cell activation. Curr Opin Immunol. 2010;22:333–40. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0952791510000476 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol. 2010;28:445–89.  https://doi.org/10.1146/annurev-immunol-030409-101212.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Walsh KP, Mills KHG. Dendritic cells and other innate determinants of T helper cell polarisation. Trends Immunol. 2013;34:521–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23973621 PubMedCrossRefGoogle Scholar
  25. 25.
    Schmitt N, Ueno H. Regulation of human helper T cell subset differentiation by cytokines. Curr Opin Immunol. 2015;34:130–6. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0952791515000552 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Crotty S. Follicular helper CD4 T cells (T FH). Annu Rev Immunol. 2011;29:621–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21314428 PubMedCrossRefGoogle Scholar
  27. 27.
    Oestreich KJ, Weinmann AS. Transcriptional mechanisms that regulate T helper 1 cell differentiation. Curr Opin Immunol. 2012;24:191–5. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0952791511001798 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Zundler S, Neurath MF. Interleukin-12: functional activities and implications for disease. Cytokine Growth Factor Rev. 2015;26:559–68. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1359610115000519 PubMedCrossRefGoogle Scholar
  29. 29.
    Durand M, Segura E. The known unknowns of the human dendritic cell network. Front Immunol. 2015;6:129. Available from: http://journal.frontiersin.org/Article/10.3389/fimmu.2015.00129/abstract PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Romagnani S, Maggi E, Liotta F, Cosmi L, Annunziato F. Properties and origin of human Th17 cells. Mol Immunol. 2009;47:3–7. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0161589008008110 PubMedCrossRefGoogle Scholar
  31. 31.
    Lochner M, Wang Z, Sparwasser T. The special relationship in the development and function of T Helper 17 and regulatory T cells. Prog Mol Biol Transl Sci. 2015;136:99–129. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1877117315001453 PubMedCrossRefGoogle Scholar
  32. 32.
    Ueno A, Ghosh A, Hung D, Li J, Jijon H. Th17 plasticity and its changes associated with inflammatory bowel disease. World J Gastroenterol. 2015;21:12283–95. Available from: http://www.wjgnet.com/1007-9327/full/v21/i43/12283.htm PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Zeng W. “All things considered”: transcriptional regulation of T helper type 2 cell differentiation from precursor to effector activation. Immunology. 2013;140:31–8.  https://doi.org/10.1111/imm.12121.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhang Y, Zhang Y, Gu W, Sun B. Th1/Th2 cell differentiation and molecular signals. Adv Exp Med Biol. 2014;841:15–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25261203 PubMedCrossRefGoogle Scholar
  35. 35.
    Gerritsen B, Pandit A. The memory of a killer T cell: models of CD8(+) T cell differentiation. Immunol Cell Biol. 2016;94:236–41.  https://doi.org/10.1038/icb.2015.118.CrossRefPubMedGoogle Scholar
  36. 36.
    Greyer M, Whitney PG, Stock AT, Davey GM, Tebartz C, Bachem A, et al. T cell help amplifies innate signals in CD8(+) DCs for optimal CD8(+) T cell priming. Cell Rep. 2016;14:586–97. Available from: http://linkinghub.elsevier.com/retrieve/pii/S2211124715014990 PubMedCrossRefGoogle Scholar
  37. 37.
    Collins LE, DeCourcey J, Soledad di Luca M, Rochfort KD, Loscher CE. An emerging role for SNARE proteins in dendritic cell function. Front Immunol. 2015;6:133. Available from: http://journal.frontiersin.org/Article/10.3389/fimmu.2015.00133/abstract PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Sánchez-Sánchez N, Riol-Blanco L, Rodríguez-Fernández JL. The multiple personalities of the chemokine receptor CCR7 in dendritic cells. J Immunol. 2006;176:5153–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16621978 PubMedCrossRefGoogle Scholar
  39. 39.
    Zlotnik A, Yoshie O. The chemokine superfamily revisited. Immunity. 2012;36:705–16. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1074761312001938 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Gouwy M, Struyf S, Leutenez L, Pörtner N, Sozzani S, Van Damme J. Chemokines and other GPCR ligands synergize in receptor-mediated migration of monocyte-derived immature and mature dendritic cells. Immunobiology. 2014;219:218–29. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0171298513001873 PubMedCrossRefGoogle Scholar
  41. 41.
    Johnson LA, Jackson DG. Control of dendritic cell trafficking in lymphatics by chemokines. Angiogenesis. 2014;17:335–45.  https://doi.org/10.1007/s10456-013-9407-0.CrossRefPubMedGoogle Scholar
  42. 42.
    Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D, Mackay CR, et al. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur J Immunol. 1998;28:2760–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9754563 PubMedCrossRefGoogle Scholar
  43. 43.
    Land WG. Emerging role of innate immunity in organ transplantation part II: potential of damage-associated molecular patterns to generate immunostimulatory dendritic cells. Transplant Rev (Orlando). 2012;26:73–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22074784 CrossRefGoogle Scholar
  44. 44.
    Land WG, Agostinis P, Gasser S, Garg AD, Linkermann A. Transplantation and damage associated molecular patterns (DAMPs). Am J Transplant. 2016;16:3338–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27421829 PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Sarhan M, Land WG, Tonnus W, Hugo Ch LA. Origin and consequences of necroinflammation. Physiol Rev. 2018;98(2):727–80.  https://doi.org/10.1152/physrev.00041.2016. PubMed PMID:29465288.CrossRefGoogle Scholar
  46. 46.
    Rovere-Querini P, Capobianco A, Scaffidi P, Valentinis B, Catalanotti F, Giazzon M, et al. HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep. 2004;5:825–30.  https://doi.org/10.1038/sj.embor.7400205.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Messmer D, Yang H, Telusma G, Knoll F, Li J, Messmer B, et al. High mobility group box protein 1: an endogenous signal for dendritic cell maturation and Th1 polarization. J Immunol. 2004;173:307–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15210788 PubMedCrossRefGoogle Scholar
  48. 48.
    Manfredi AA, Capobianco A, Bianchi ME, Rovere-Querini P. Regulation of dendritic- and T-cell fate by injury-associated endogenous signals. Crit Rev Immunol. 2009;29:69–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19348611 PubMedCrossRefGoogle Scholar
  49. 49.
    Yang D, Chen Q, Yang H, Tracey KJ, Bustin M, Oppenheim JJ. High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarmin. J Leukoc Biol. 2007;81:59–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16966386 PubMedCrossRefGoogle Scholar
  50. 50.
    Zhu X, Yao Y, Liang H, Xu S, Dong N, Yu Y, et al. The effect of high mobility group box-1 protein on splenic dendritic cell maturation in rats. J Interferon Cytokine Res. 2009;29:677–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19642897 PubMedCrossRefGoogle Scholar
  51. 51.
    Fang H, Ang B, Xu X, Huang X, Wu Y, Sun Y, et al. TLR4 is essential for dendritic cell activation and anti-tumor T-cell response enhancement by DAMPs released from chemically stressed cancer cells. Cell Mol Immunol. 2014;11:150–9.  https://doi.org/10.1038/cmi.2013.59.CrossRefPubMedGoogle Scholar
  52. 52.
    Dumitriu IE, Bianchi ME, Bacci M, Manfredi AA, Rovere-Querini P. The secretion of HMGB1 is required for the migration of maturing dendritic cells. J Leukoc Biol. 2007;81:84–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17035340 PubMedCrossRefGoogle Scholar
  53. 53.
    Zhang L, Yao Y, Dong Y-Q, Dong N, Yu Y, Sheng Z. Relationship between high-mobility group box 1 protein release and T-cell suppression in rats after thermal injury. Shock. 2008;30:449–55. Available from: http://content.wkhealth.com/linkback/openurl?sid=WKPTLP:landingpage&an=00024382-200810000-00017 PubMedCrossRefGoogle Scholar
  54. 54.
    Bethke K, Staib F, Distler M, Schmitt U, Jonuleit H, Enk AH, et al. Different efficiency of heat shock proteins (HSP) to activate human monocytes and dendritic cells: superiority of HSP60. J Immunol. 2002;169:6141–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12444117 PubMedCrossRefGoogle Scholar
  55. 55.
    Ashtekar AR, Zhang P, Katz J, Deivanayagam CCS, Rallabhandi P, Vogel SN, et al. TLR4-mediated activation of dendritic cells by the heat shock protein DnaK from Francisella tularensis. J Leukoc Biol. 2008;84:1434–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18708593 PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Jurewicz M, Takakura A, Augello A, Movahedi Naini S, Ichimura T, Zandi-Nejad K, et al. Ischemic injury enhances dendritic cell immunogenicity via TLR4 and NF-kappa B activation. J Immunol. 2010;184:2939–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20164431 PubMedCrossRefGoogle Scholar
  57. 57.
    Redzovic A, Gulic T, Laskarin G, Eminovic S, Haller H, Rukavina D. Heat-shock proteins 70 induce pro-inflammatory maturation program in Decidual CD1a(+) dendritic cells. Am J Reprod Immunol. 2015;74:38–53.  https://doi.org/10.1111/aji.12374.CrossRefPubMedGoogle Scholar
  58. 58.
    Boulé MW, Broughton C, Mackay F, Akira S, Marshak-Rothstein A, Rifkin IR. Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin-immunoglobulin G complexes. J Exp Med. 2004;199:1631–40.  https://doi.org/10.1084/jem.20031942.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Decker P, Singh-Jasuja H, Haager S, Kötter I. Rammensee H-G. Nucleosome, the main autoantigen in systemic lupus erythematosus, induces direct dendritic cell activation via a MyD88-independent pathway: consequences on inflammation. J Immunol. 2005;174:3326–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15749864 PubMedCrossRefGoogle Scholar
  60. 60.
    Yasuda K, Yu P, Kirschning CJ, Schlatter B, Schmitz F, Heit A, et al. Endosomal translocation of vertebrate DNA activates dendritic cells via TLR9-dependent and -independent pathways. J Immunol. 2005;174:6129–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15879108 PubMedCrossRefGoogle Scholar
  61. 61.
    Lande R, Gregorio J, Facchinetti V, Chatterjee B, Wang Y-H, Homey B, et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature. 2007;449:564–9.  https://doi.org/10.1038/nature06116.CrossRefPubMedGoogle Scholar
  62. 62.
    Ries M, Schuster P, Thomann S, Donhauser N, Vollmer J, Schmidt B. Identification of novel oligonucleotides from mitochondrial DNA that spontaneously induce plasmacytoid dendritic cell activation. J Leukoc Biol. 2013;94:123–35.  https://doi.org/10.1189/jlb.0612278.CrossRefPubMedGoogle Scholar
  63. 63.
    Pazmandi K, Agod Z, Kumar BV, Szabo A, Fekete T, Sogor V, et al. Oxidative modification enhances the immunostimulatory effects of extracellular mitochondrial DNA on plasmacytoid dendritic cells. Free Radic Biol Med. 2014;77:281–90. Available from: http://linkinghub.elsevier.com/retrieve/pii/S089158491400447X PubMedCrossRefGoogle Scholar
  64. 64.
    Maeda A, Fadeel B. Mitochondria released by cells undergoing TNF-α-induced necroptosis act as danger signals. Cell Death Dis. 2014;5:e1312.  https://doi.org/10.1038/cddis.2014.277.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Zhang H, Tang K, Zhang Y, Ma R, Ma J, Li Y, et al. Cell-free tumor microparticle vaccines stimulate dendritic cells via cGAS/STING signaling. Cancer Immunol Res. 2015;3:196–205.  https://doi.org/10.1158/2326-6066.CIR-14-0177.CrossRefPubMedGoogle Scholar
  66. 66.
    Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T, et al. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med. 2002;195:99–111. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11781369 PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Rizzo M, Bayo J, Piccioni F, Malvicini M, Fiore E, Peixoto E, et al. Low molecular weight hyaluronan-pulsed human dendritic cells showed increased migration capacity and induced resistance to tumor chemoattraction. PLoS One. 2014;9:e107944.  https://doi.org/10.1371/journal.pone.0107944.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Johnson GB, Brunn GJ, Kodaira Y, Platt JL. Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J Immunol. 2002;168:5233–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11994480 PubMedCrossRefGoogle Scholar
  69. 69.
    Wu M, Wang H, Shi J, Sun J, Duan Z, Li Y, et al. Gene expression profiles identify both MyD88-independent and MyD88-dependent pathways involved in the maturation of dendritic cells mediated by heparan sulfate: a novel adjuvant. Hum Vaccin Immunother. 2014;10:3711–21.  https://doi.org/10.4161/21645515.2014.980682.CrossRefPubMedGoogle Scholar
  70. 70.
    Raghavan M, Wijeyesakere SJ, Peters LR, Del Cid N. Calreticulin in the immune system: ins and outs. Trends Immunol. 2013;34:13–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22959412 PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Sukkurwala AQ, Martins I, Wang Y, Schlemmer F, Ruckenstuhl C, Durchschlag M, et al. Immunogenic calreticulin exposure occurs through a phylogenetically conserved stress pathway involving the chemokine CXCL8. Cell Death Differ. 2014;21:59–68.  https://doi.org/10.1038/cdd.2013.73.CrossRefPubMedGoogle Scholar
  72. 72.
    Rzepecka J, Rausch S, Klotz C, Schnöller C, Kornprobst T, Hagen J, et al. Calreticulin from the intestinal nematode Heligmosomoides polygyrus is a Th2-skewing protein and interacts with murine scavenger receptor-A. Mol Immunol. 2009;46:1109–19. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0161589008007414 PubMedCrossRefGoogle Scholar
  73. 73.
    Bak SP, Amiel E, Walters JJ, Berwin B. Calreticulin requires an ancillary adjuvant for the induction of efficient cytotoxic T cell responses. Mol Immunol. 2008;45:1414–23. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0161589007007304 PubMedCrossRefGoogle Scholar
  74. 74.
    Li Y, Zeng X, He L, Yuan H. Dendritic cell activation and maturation induced by recombinant calreticulin fragment 39-272. Int J Clin Exp Med. 2015;8:7288–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26221268 PubMedPubMedCentralGoogle Scholar
  75. 75.
    Liu X, Li J, Liu Y, Ding J, Tong Z, Liu Y, et al. Calreticulin acts as an adjuvant to promote dendritic cell maturation and enhances antigen-specific cytotoxic T lymphocyte responses against non-small cell lung cancer cells. Cell Immunol. 2016;300:46–53. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0008874915300447 PubMedCrossRefGoogle Scholar
  76. 76.
    Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med. 2009;15:1170–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19767732 CrossRefGoogle Scholar
  77. 77.
    Liu D, Rhebergen AM, Eisenbarth SC. Licensing adaptive immunity by NOD-like receptors. Front Immunol. 2013;4:486. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24409181 PubMedPubMedCentralGoogle Scholar
  78. 78.
    Winzler C, Rovere P, Rescigno M, Granucci F, Penna G, Adorini L, et al. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J Exp Med. 1997;185:317–28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9016880 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Fernandez MV, Miller E, Krammer F, Gopal R, Greenbaum BD, Bhardwaj N. Ion efflux and influenza infection trigger NLRP3 inflammasome signaling in human dendritic cells. J Leukoc Biol. 2016;99:723–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26574023 PubMedCrossRefGoogle Scholar
  80. 80.
    Jankovic D, Ganesan J, Bscheider M, Stickel N, Weber FC, Guarda G, et al. The Nlrp3 inflammasome regulates acute graft-versus-host disease. J Exp Med. 2013;210:1899–910. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23980097 PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Moretta L, Montaldo E, Vacca P, Del Zotto G, Moretta F, Merli P, et al. Human natural killer cells: origin, receptors, function, and clinical applications. Int Arch Allergy Immunol. 2014;164:253–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25323661 PubMedCrossRefGoogle Scholar
  82. 82.
    Lanier LL. NKG2D Receptor and its ligands in host defense. Cancer Immunol Res. 2015;3:575–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26041808 PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Münz C, Steinman RM, Fujii S. Dendritic cell maturation by innate lymphocytes: coordinated stimulation of innate and adaptive immunity. J Exp Med. 2005;202:203–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16027234 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Marcenaro E, Carlomagno S, Pesce S, Moretta A, Sivori S. NK/DC crosstalk in anti-viral response. Adv Exp Med Biol. 2012;946:295–308.  https://doi.org/10.1007/978-1-4614-0106-3_17.CrossRefPubMedGoogle Scholar
  85. 85.
    Holmes TD, Wilson EB, Black EVI, Benest AV, Vaz C, Tan B, et al. Licensed human natural killer cells aid dendritic cell maturation via TNFSF14/LIGHT. Proc Natl Acad Sci U S A. 2014;111:E5688–96.  https://doi.org/10.1073/pnas.1411072112.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Ferlazzo G, Moretta L. Dendritic cell editing by natural killer cells. Crit Rev Oncog. 2014;19:67–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24941374 PubMedCrossRefGoogle Scholar
  87. 87.
    Ferlazzo G, Morandi B. Cross-Talks between natural killer cells and distinct subsets of dendritic cells. Front Immunol. 2014;5:159. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24782864 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Deauvieau F, Ollion V, Doffin A-C, Achard C, Fonteneau J-F, Verronese E, et al. Human natural killer cells promote cross-presentation of tumor cell-derived antigens by dendritic cells. Int J Cancer. 2015;136:1085–94.  https://doi.org/10.1002/ijc.29087.CrossRefPubMedGoogle Scholar
  89. 89.
    Zhou W, Farrar CA, Abe K, Pratt JR, Marsh JE, Wang Y, et al. Predominant role for C5b-9 in renal ischemia/reperfusion injury. J Clin Invest. 2000;105:1363–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10811844 PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Peng Q, Li K, Smyth LA, Xing G, Wang N, Meader L, et al. C3a and C5a promote renal ischemia-reperfusion injury. J Am Soc Nephrol. 2012;23:1474–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22797180 PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Zhou W. The new face of anaphylatoxins in immune regulation. Immunobiology. 2012;217:225–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21856033 PubMedCrossRefGoogle Scholar
  92. 92.
    Zaal A, Lissenberg-Thunnissen SN, van Schijndel G, Wouters D, van Ham SM, ten Brinke A. Crosstalk between Toll like receptors and C5a receptor in human monocyte derived DCs suppress inflammatory cytokine production. Immunobiology. 2013;218:175–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22559913 PubMedCrossRefGoogle Scholar
  93. 93.
    Li K, Fazekasova H, Wang N, Peng Q, Sacks SH, Lombardi G, et al. Functional modulation of human monocytes derived DCs by anaphylatoxins C3a and C5a. Immunobiology. 2012;217:65–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21855168 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Zhu X, Yao F, Yao Y, Dong N, Yu Y, Sheng Z. Endoplasmic reticulum stress and its regulator XBP-1 contributes to dendritic cell maturation and activation induced by high mobility group box-1 protein. Int J Biochem Cell Biol. 2012;44:1097–105. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22504285 CrossRefGoogle Scholar
  95. 95.
    Zheng Y, Yin G, Le V, Zhang A, Lu Y, Yang M, et al. Hypericin-based photodynamic therapy induces a tumor-specific immune response and an effective DC-based cancer immunotherapy. Biochem Pharmacol. 2014.  https://doi.org/10.1016/j.bcp.2014.01.036. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24508834
  96. 96.
    Luís A, Martins JD, Silva A, Ferreira I, Cruz MT, Neves BM. Oxidative stress-dependent activation of the eIF2α–ATF4 unfolded protein response branch by skin sensitizer 1-fluoro-2,4-dinitrobenzene modulates dendritic-like cell maturation and inflammatory status in a biphasic manner [corrected]. Free Radic Biol Med. 2014;77:217–29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25236743
  97. 97.
    Olagnier D, Peri S, Steel C, van Montfoort N, Chiang C, Beljanski V, et al. Cellular oxidative stress response controls the antiviral and apoptotic programs in dengue virus-infected dendritic cells. PLoS Pathog. 2014;10:e1004566. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25521078 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Knippertz I, Stein MF, Dörrie J, Schaft N, Müller I, Deinzer A, et al. Mild hyperthermia enhances human monocyte-derived dendritic cell functions and offers potential for applications in vaccination strategies. Int J Hyperthermia. 2011;27:591–603. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21846195 PubMedCrossRefGoogle Scholar
  99. 99.
    Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol. 2015;16:343–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25789684 PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Zhu J, Paul WE. Peripheral CD4+ T-cell differentiation regulated by networks of cytokines and transcription factors. Immunol Rev. 2010;238:247–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20969597 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Mosmann TR, Coffman RL. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–73.  https://doi.org/10.1146/annurev.iy.07.040189.001045.CrossRefGoogle Scholar
  102. 102.
    Romagnani S. The Th1/Th2 paradigm. Immunol Today. 1997;18:263–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9190109 CrossRefGoogle Scholar
  103. 103.
    Magombedze G, Reddy PBJ, Eda S, Ganusov VV. Cellular and population plasticity of helper CD4+ T cell responses. Front Physiol. 2013;4:206. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23966946
  104. 104.
    Geginat J, Paroni M, Maglie S, Alfen JS, Kastirr I, Gruarin P, et al. Plasticity of human CD4 T cell subsets. Front Immunol. 2014;5:630. Available from: http://journal.frontiersin.org/article/10.3389/fimmu.2014.00630/abstract PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Geginat J, Nizzoli G, Paroni M, Maglie S, Larghi P, Pascolo S, et al. Immunity to pathogens taught by specialized human dendritic cell subsets. Front Immunol. 2015;6:527. Available from: http://journal.frontiersin.org/Article/10.3389/fimmu.2015.00527/abstract PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Wang C, Collins M, Kuchroo VK. Effector T cell differentiation: are master regulators of effector T cells still the masters? Curr Opin Immunol. 2015;37:6–10. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0952791515001089 PubMedCrossRefGoogle Scholar
  107. 107.
    Schaller M, Ito T, Allen RM, Kroetz D, Kittan N, Ptaschinski C, et al. Epigenetic regulation of IL-12-dependent T cell proliferation. J Leukoc Biol. 2015;98:601–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26059830 PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Agarwal S, Rao A. Modulation of chromatin structure regulates cytokine gene expression during T cell differentiation. Immunity. 1998;9:765–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9881967 PubMedCrossRefGoogle Scholar
  109. 109.
    Mukasa R, Balasubramani A, Lee YK, Whitley SK, Weaver BT, Shibata Y, et al. Epigenetic instability of cytokine and transcription factor gene loci underlies plasticity of the T helper 17 cell lineage. Immunity. 2010;32:616–27. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1074761310001652 PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Kanno Y, Vahedi G, Hirahara K, Singleton K, O’Shea JJ. Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu Rev Immunol. 2012;30:707–31.  https://doi.org/10.1146/annurev-immunol-020711-075058.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Vahedi G, Takahashi H, Nakayamada S, Sun H-W, Sartorelli V, Kanno Y, et al. STATs shape the active enhancer landscape of T cell populations. Cell. 2012;151:981–93. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0092867412012974 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Allan RS, Zueva E, Cammas F, Schreiber HA, Masson V, Belz GT, et al. An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature. 2012;487:249–53.  https://doi.org/10.1038/nature11173.CrossRefPubMedGoogle Scholar
  113. 113.
    Dahlgren MW, Gustafsson-Hedberg T, Livingston M, Cucak H, Alsén S, Yrlid U, et al. T follicular helper, but not Th1, cell differentiation in the absence of conventional dendritic cells. J Immunol. 2015;194:5187–99.  https://doi.org/10.4049/jimmunol.1401938.CrossRefPubMedGoogle Scholar
  114. 114.
    Crane IJ, Forrester JV. Th1 and Th2 lymphocytes in autoimmune disease. Crit Rev Immunol. 2005;25:75–102. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15952931 PubMedCrossRefGoogle Scholar
  115. 115.
    Haabeth OAW, Tveita AA, Fauskanger M, Schjesvold F, Lorvik KB, Hofgaard PO, et al. How do CD4+ T cells detect and eliminate tumor cells that either lack or express MHC class II molecules? Front Immunol. 2014;5:174. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24782871
  116. 116.
    Atalar K, Afzali B, Lord G, Lombardi G. Relative roles of Th1 and Th17 effector cells in allograft rejection. Curr Opin Organ Transplant. 2009;14:23–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19337142 PubMedCrossRefGoogle Scholar
  117. 117.
    Zambrano-Zaragoza JF, Romo-Martínez EJ, Durán-Avelar Mde J, García-Magallanes N, Vibanco-Pérez N. Th17 cells in autoimmune and infectious diseases. Int J Inflam. 2014;2014:651503. Available from: http://www.hindawi.com/journals/iji/2014/651503/ PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Burkett PR, Meyer zu Horste G, Kuchroo VK. Pouring fuel on the fire: Th17 cells, the environment, and autoimmunity. J Clin Invest. 2015;125:2211–9. Available from: http://www.jci.org/articles/view/78085 PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Isailovic N, Daigo K, Mantovani A, Selmi C. Interleukin-17 and innate immunity in infections and chronic inflammation. J Autoimmun. 2015;60:1–11. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0896841115000591 PubMedCrossRefGoogle Scholar
  120. 120.
    Noack M, Miossec P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases. Autoimmun Rev. 2014;13:668–77. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1568997214000081 PubMedCrossRefGoogle Scholar
  121. 121.
    Paul WE, Zhu J. How are T(H)2-type immune responses initiated and amplified? Nat Rev Immunol. 2010;10:225–35.  https://doi.org/10.1038/nri2735.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Wynn TA. Type 2 cytokines: mechanisms and therapeutic strategies. Nat Rev Immunol. 2015;15:271–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25882242 PubMedCrossRefGoogle Scholar
  123. 123.
    Gao Y, Nish SA, Jiang R, Hou L, Licona-Limón P, Weinstein JS, et al. Control of T helper 2 responses by transcription factor IRF4-dependent dendritic cells. Immunity. 2013;39:722–32. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1074761313003804 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    King C. New insights into the differentiation and function of T follicular helper cells. Nat Rev Immunol. 2009;9:757–66.  https://doi.org/10.1038/nri2644.CrossRefPubMedGoogle Scholar
  125. 125.
    Ramiscal RR, Vinuesa CG. T-cell subsets in the germinal center. Immunol Rev. 2013;252:146–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23405902 PubMedCrossRefGoogle Scholar
  126. 126.
    Crotty S. T follicular helper cell differentiation, function, and roles in disease. Immunity. 2014;41:529–42. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1074761314003604 PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    MacLeod MKL, Kappler JW, Marrack P. Memory CD4 T cells: generation, reactivation and re-assignment. Immunology. 2010;130:10–5.  https://doi.org/10.1111/j.1365-2567.2010.03260.x.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Kleinewietfeld M, Hafler DA. The plasticity of human Treg and Th17 cells and its role in autoimmunity. Semin Immunol. 2013;25:305–12. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1044532313000900 PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Bevan MJ. Helping the CD8(+) T-cell response. Nat Rev Immunol. 2004;4:595–602.  https://doi.org/10.1038/nri1413.CrossRefPubMedGoogle Scholar
  130. 130.
    Zhang N, Bevan MJ. CD8(+) T cells: foot soldiers of the immune system. Immunity. 2011;35:161–8. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1074761311003037 PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature. 1998;393:478–80.  https://doi.org/10.1038/30996.CrossRefPubMedGoogle Scholar
  132. 132.
    Ridge JP, Di Rosa F, Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature. 1998;393:474–8.  https://doi.org/10.1038/30989.PubMedCrossRefGoogle Scholar
  133. 133.
    Schoenberger SP, Toes REM, van der Voort EIH, Offringa R, Melief CJM. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature. 1998;393:480–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9624005 PubMedCrossRefGoogle Scholar
  134. 134.
    Wiesel M, Oxenius A. From crucial to negligible: functional CD8+ T-cell responses and their dependence on CD4+ T-cell help. Eur J Immunol. 2012;42:1080–8.  https://doi.org/10.1002/eji.201142205.CrossRefPubMedGoogle Scholar
  135. 135.
    Nizzoli G, Krietsch J, Weick A, Steinfelder S, Facciotti F, Gruarin P, et al. Human CD1c+ dendritic cells secrete high levels of IL-12 and potently prime cytotoxic T-cell responses. Blood. 2013;122:932–42.  https://doi.org/10.1182/blood-2013-04-495424.CrossRefPubMedGoogle Scholar
  136. 136.
    Hassin D, Garber OG, Meiraz A, Schiffenbauer YS, Berke G. Cytotoxic T lymphocyte perforin and Fas ligand working in concert even when Fas ligand lytic action is still not detectable. Immunology. 2011;133:190–6.  https://doi.org/10.1111/j.1365-2567.2011.03426.x.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Osińska I, Popko K, Demkow U. Perforin: an important player in immune response. Cent J Immunol. 2014;39:109–15.  https://doi.org/10.5114/ceji.2014.42135.CrossRefGoogle Scholar
  138. 138.
    Waring P, Müllbacher A. Cell death induced by the Fas/Fas ligand pathway and its role in pathology. Immunol Cell Biol. 1999;77:312–7.  https://doi.org/10.1046/j.1440-1711.1999.00837.x.CrossRefPubMedGoogle Scholar
  139. 139.
    Chávez-Galán L, Arenas-Del Angel MC, Zenteno E, Chávez R, Lascurain R. Cell death mechanisms induced by cytotoxic lymphocytes. Cell Mol Immunol. 2009;6:15–25.  https://doi.org/10.1038/cmi.2009.3.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Kurts C, Robinson BWS, Knolle PA. Cross-priming in health and disease. Nat Rev Immunol. 2010;10:403–14.  https://doi.org/10.1038/nri2780.CrossRefPubMedGoogle Scholar
  141. 141.
    Cruz FM, Colbert JD, Merino E, Kriegsman BA, Rock KL. The biology and underlying mechanisms of cross-presentation of exogenous antigens on MHC-I molecules. Annu Rev Immunol. 2017;35:149–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28125356 PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Calderon B, Unanue ER. Antigen presentation events in autoimmune diabetes. Curr Opin Immunol. 2012;24:119–28. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0952791511001701 PubMedCrossRefGoogle Scholar
  143. 143.
    Duewell P, Steger A, Lohr H, Bourhis H, Hoelz H, Kirchleitner SV, et al. RIG-I-like helicases induce immunogenic cell death of pancreatic cancer cells and sensitize tumors toward killing by CD8+ T cells. Cell Death Differ. 2014;21:1825–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25012502 CrossRefGoogle Scholar
  144. 144.
    Heesters BA, Myers RC, Carroll MC. Follicular dendritic cells: dynamic antigen libraries. Nat Rev Immunol. 2014;14:495–504.  https://doi.org/10.1038/nri3689.CrossRefPubMedGoogle Scholar
  145. 145.
    Das A, Heesters BA, Bialas A, O’Flynn J, Rifkin IR, Ochando J, et al. Follicular dendritic cell activation by TLR ligands promotes autoreactive B cell responses. Immunity. 2017;46:106–19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28099860 PubMedCrossRefGoogle Scholar
  146. 146.
    Vinuesa CG, Linterman MA, Yu D, ICM ML. Follicular helper t cells. Annu Rev Immunol. 2016;34:335–68. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26907215 PubMedCrossRefGoogle Scholar
  147. 147.
    Webb LMC, Linterman MA. Signals that drive T follicular helper cell formation. Immunology. 2017;152:185–94.  https://doi.org/10.1111/imm.12778.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Corcoran LM, Tarlinton DM. Regulation of germinal center responses, memory B cells and plasma cell formation-an update. Curr Opin Immunol. 2016;39:59–67. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0952791516000030 PubMedCrossRefGoogle Scholar
  149. 149.
    Fairfax KA, Kallies A, Nutt SL, Tarlinton DM. Plasma cell development: from B-cell subsets to long-term survival niches. Semin Immunol. 2008;20:49–58. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1044532307001133 PubMedCrossRefGoogle Scholar
  150. 150.
    Vos Q, Snapper CM, Mond JJ. T(h)1 versus T(h)2 cytokine profile determines the modulation of in vitro T cell-independent type 2 responses by IL-4. Int Immunol. 2000;12:1337–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10967029 PubMedCrossRefGoogle Scholar
  151. 151.
    Pone EJ, Zan H, Zhang J, Al-Qahtani A, Xu Z, Casali P. Toll-like receptors and B-cell receptors synergize to induce immunoglobulin class-switch DNA recombination: relevance to microbial antibody responses. Crit Rev Immunol. 2010;30:1–29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20370617 PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Pasare C, Medzhitov R. Control of B-cell responses by Toll-like receptors. Nature. 2005;438:364–8.  https://doi.org/10.1038/nature04267.CrossRefPubMedGoogle Scholar
  153. 153.
    Marshak-Rothstein A. Toll-like receptors in systemic autoimmune disease. Nat Rev Immunol. 2006;6:823–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17063184 PubMedCrossRefGoogle Scholar
  154. 154.
    Hua Z, Hou B. TLR signaling in B-cell development and activation. Cell Mol Immunol. 2013;10:103–6.  https://doi.org/10.1038/cmi.2012.61.CrossRefPubMedGoogle Scholar
  155. 155.
    Green NM, Moody K-S, Debatis M, Marshak-Rothstein A. Activation of autoreactive B cells by endogenous TLR7 and TLR3 RNA ligands. J Biol Chem. 2012;287:39789–99.  https://doi.org/10.1074/jbc.M112.383000.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Moody KL, Uccellini MB, Avalos AM, Marshak-Rothstein A, Viglianti GA. Toll-like receptor-dependent immune complex activation of B cells and dendritic cells. Methods Mol Biol. 2016;1390:249–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26803634 PubMedCrossRefGoogle Scholar
  157. 157.
    Nutt SL, Hodgkin PD, Tarlinton DM, Corcoran LM. The generation of antibody-secreting plasma cells. Nat Rev Immunol. 2015;15:160–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25698678 PubMedCrossRefGoogle Scholar
  158. 158.
    Naradikian MS, Hao Y, Cancro MP. Age-associated B cells: key mediators of both protective and autoreactive humoral responses. Immunol Rev. 2016;269:118–29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26683149 PubMedCrossRefGoogle Scholar
  159. 159.
    Rubtsova K, Rubtsov AV, Cancro MP, Marrack P. Age-associated B cells: a T-bet–dependent effector with roles in protective and pathogenic immunity. J Immunol. 2015;195:1933–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26297793 PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Otipoby KL, Waisman A, Derudder E, Srinivasan L, Franklin A, Rajewsky K. The B-cell antigen receptor integrates adaptive and innate immune signals. Proc Natl Acad Sci U S A. 2015;112:12145–50.  https://doi.org/10.1073/pnas.1516428112.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of StrasbourgMolecular ImmunoRheumatology, Laboratory of Excellence TransplantexStrasbourgFrance

Personalised recommendations