Advertisement

Cellular Inflammatory Responses

  • Walter Gottlieb Land
Chapter

Abstract

This chapter contains the core of the innate immune defense systems and consequently marks the most voluminous chapter of the book. It consists of an initial recognition part and a subsequent executive part. Perception of infectious or sterile injury is ensured by PRM-bearing innate immune cells which possess the property to recognize MAMPs and DAMPs. Following recognition, the various cell-bound PRMs including TLRs, NLRs, RLRs, and ALRs trigger signalling pathways which promote, via strictly regulated transcriptional and translational processes, the secretion of mediator substances to elicit efferent inflammatory responses. Intracellular formation of multiprotein complexes, the inflammasomes, plays a pivotal role in the establishment of the inflammatory milieu. Among the vital mediator substances of inflammation, several families of pro-inflammatory or anti-inflammatory cytokines such as the interleukin-1 family, interferons, tumor necrosis factor, and interleukin-17 family, as well as the chemokine family, take center stage in shaping and regulating promotion and resolution of inflammation. The efforts of all these substances in ensuring effective defense are supported and complemented by the process of phagocytosis that can be recognized as one of the critical biological events of the innate immune defense system mainly executed by the “professionals” among phagocytosing cells, the macrophages, neutrophils, and dendritic cells. In fact, dangerous foreign bodies such as bacteria or fungi as well as apoptotic and necrotic cells can be cleared from infectiously or sterilely damaged tissue by these professional phagocytes. The chapter closes with the notoriously repeated comment that all these sophisticated pathways of a robust innate immune defense may lead to pathologies and many human diseases, when they take place in an uncontrolled and dysregulated way.

References

  1. 1.
    Nathan C. Points of control in inflammation. Nature. 2002;420:846–52. Available from: http://www.nature.com/doifinder/10.1038/nature01320 CrossRefPubMedGoogle Scholar
  2. 2.
    Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454:428–35. Available from: http://www.nature.com/doifinder/10.1038/nature07201 CrossRefPubMedGoogle Scholar
  3. 3.
    Nathan C, Ding A. Nonresolving inflammation. Cell. 2010;140:871–82. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0092867410001820 CrossRefGoogle Scholar
  4. 4.
    Martin AJ. Academy papyrus to be exhibited at the metropolitan museum of art. New York: The New York Academy of Medicine; 2005. Available from: http://www.nyam.org/news/2493.html Google Scholar
  5. 5.
  6. 6.
    Full text of “Handbuch der Geschichte der Medizin. Bearb. von Arndt [et al.]”. Available from: https://archive.org/stream/handbuchdergesch01puscuoft/handbuchdergesch01puscuoft_djvu.txt
  7. 7.
    Virchow R. Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. 1. Auflage. Berlin; 1858. Available from: http://www.deutschestextarchiv.de/book/show/virchow_cellularpathologie_1858
  8. 8.
    Browning CH. Emil Behring and Paul Ehrlich: their contributions to science. Nature. 1955;175:616–9; concl. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14370180 CrossRefPubMedGoogle Scholar
  9. 9.
    Schmalstieg FC, Goldman AS. Birth of the science of immunology. J Med Biogr. 2010;18:88–98. Available from: http://journals.sagepub.com/doi/10.1258/jmb.2010.010009 CrossRefPubMedGoogle Scholar
  10. 10.
    Silverstein A. A history of immunology. 2nd ed. Amsterdam: Academic Press/Elsevier; 2009. Available from: https://www.elsevier.com/books/a-history-of-immunology/silverstein/978-0-12-370586-0 Google Scholar
  11. 11.
    Mendelsohn JA. “Like all that lives”: biology, medicine and bacteria in the age of Pasteur and Koch. Hist Philos Life Sci. 2002;24:3–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12664951 CrossRefPubMedGoogle Scholar
  12. 12.
    Kulkarni OP, Lichtnekert J, Anders H-J, Mulay SR. The immune system in tissue environments regaining homeostasis after injury: is “inflammation” always inflammation? Mediat Inflamm. 2016;2016:1–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27597803 CrossRefGoogle Scholar
  13. 13.
    Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell. 2010;140:771–6. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0092867410002424 CrossRefPubMedGoogle Scholar
  14. 14.
    Rivera A, Siracusa MC, Yap GS, Gause WC. Innate cell communication kick-starts pathogen-specific immunity. Nat Immunol. 2016;17:356–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27002843 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Whitsett JA, Alenghat T. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat Immunol. 2015;16:27–35. Available from: http://www.nature.com/doifinder/10.1038/ni.3045 CrossRefPubMedGoogle Scholar
  16. 16.
    Nauseef WM, Borregaard N. Neutrophils at work. Nat Immunol. 2014;15:602–11. Available from: http://www.nature.com/doifinder/10.1038/ni.2921 CrossRefPubMedGoogle Scholar
  17. 17.
    Lakschevitz FS, Visser MB, Sun C, Glogauer M. Neutrophil transcriptional profile changes during transit from bone marrow to sites of inflammation. Cell Mol Immunol. 2015;12:53–65. Available from: http://www.nature.com/doifinder/10.1038/cmi.2014.37 CrossRefPubMedGoogle Scholar
  18. 18.
    Fahey S, Dempsey E, Long A. The role of chemokines in acute and chronic hepatitis C infection. Cell Mol Immunol. 2014;11:25–40. Available from: http://www.nature.com/doifinder/10.1038/cmi.2013.37 CrossRefPubMedGoogle Scholar
  19. 19.
    Kolaczkowska E, Kubes P. Neutrophil recruitment and function in health and inflammation. Nat Rev Immunol. 2013;13:159–75. Available from: http://www.nature.com/doifinder/10.1038/nri3399 CrossRefPubMedGoogle Scholar
  20. 20.
    Vestweber D. How leukocytes cross the vascular endothelium. Nat Rev Immunol. 2015;15:692–704. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26471775 CrossRefPubMedGoogle Scholar
  21. 21.
    Land WG. Innate alloimmunity. Part 2: Innate immunity and allograft rejection. BaskentUniversity, Ankara; Pabst Science Publishers, Lengerich. 2011. Available from: ISBN 978-3-89967-738-6.Google Scholar
  22. 22.
    Schmidt S, Moser M, Sperandio M. The molecular basis of leukocyte recruitment and its deficiencies. Mol Immunol. 2013;55:49–58. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0161589012004646 CrossRefPubMedGoogle Scholar
  23. 23.
    Muller WA. The regulation of transendothelial migration: new knowledge and new questions. Cardiovasc Res. 2015;107:310–20. Available from: https://academic.oup.com/cardiovascres/article-lookup/doi/10.1093/cvr/cvv145 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Serhan CN, Chiang N, Van Dyke TE. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol. 2008;8:349–61. Available from: http://www.nature.com/doifinder/10.1038/nri2294 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sugimoto MA, Sousa LP, Pinho V, Perretti M, Teixeira MM. Resolution of inflammation: what controls its onset? Front Immunol. 2016;7:160. Available from: http://journal.frontiersin.org/Article/10.3389/fimmu.2016.00160/abstract CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    O’Callaghan G, Houston A. Prostaglandin E2 and the EP receptors in malignancy: possible therapeutic targets? Br J Pharmacol. 2015;172:5239–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26377664 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kawahara K, Hohjoh H, Inazumi T, Tsuchiya S, Sugimoto Y. Prostaglandin E2-induced inflammation: relevance of prostaglandin E receptors. Biochim Biophys Acta Mol Cell Biol Lipids. 2015;1851:414–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25038274 CrossRefGoogle Scholar
  28. 28.
    Hangai S, Ao T, Kimura Y, Matsuki K, Kawamura T, Negishi H, et al. PGE2 induced in and released by dying cells functions as an inhibitory DAMP. Proc Natl Acad Sci U S A. 2016;113:3844–9. Available from: http://www.pnas.org/lookup/doi/10.1073/pnas.1602023113 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Koga K, Takaesu G, Yoshida R, Nakaya M, Kobayashi T, Kinjyo I, et al. Cyclic adenosine monophosphate suppresses the transcription of proinflammatory cytokines via the phosphorylated c-Fos protein. Immunity. 2009;30:372–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19285436 CrossRefPubMedGoogle Scholar
  30. 30.
    Sokolowska M, Chen L-Y, Liu Y, Martinez-Anton A, Qi H-Y, Logun C, et al. Prostaglandin E2 inhibits NLRP3 inflammasome activation through EP4 receptor and intracellular cyclic AMP in human macrophages. J Immunol. 2015;194:5472–87. Available from: http://www.jimmunol.org/lookup/doi/10.4049/jimmunol.1401343 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lima KM, Vago JP, Caux TR, Negreiros-Lima GL, Sugimoto MA, Tavares LP, et al. The resolution of acute inflammation induced by cyclic AMP is dependent on annexin A1. J Biol Chem. 2017;jbc.M117.800391. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28655761
  32. 32.
    Perretti M, D’Acquisto F. Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol. 2009;9:62–70. Available from: http://www.nature.com/doifinder/10.1038/nri2470 CrossRefPubMedGoogle Scholar
  33. 33.
    Gavins FNE, Hickey MJ. Annexin A1 and the regulation of innate and adaptive immunity. Front Immunol. 2012;3:354. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23230437 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sousa LP, Alessandri AL, Pinho V, Teixeira MM. Pharmacological strategies to resolve acute inflammation. Curr Opin Pharmacol. 2013;13:625–31. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1471489213000416 CrossRefPubMedGoogle Scholar
  35. 35.
    Sugimoto MA, Vago JP, Teixeira MM, Sousa LP. Annexin A1 and the resolution of inflammation: modulation of neutrophil recruitment, apoptosis, and clearance. J Immunol Res. 2016;2016:1–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26885535 CrossRefGoogle Scholar
  36. 36.
    Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510:92–101. Available from: http://www.nature.com/doifinder/10.1038/nature13479 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Basil MC, Levy BD. Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. Nat Rev Immunol. 2015;16:51–67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26688348 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Serhan CN, Chiang N, Dalli J, Levy BD. Lipid mediators in the resolution of inflammation. Cold Spring Harb Perspect Biol. 2014;7:a016311. Available from: http://cshperspectives.cshlp.org/lookup/doi/10.1101/cshperspect.a016311 CrossRefPubMedGoogle Scholar
  39. 39.
    Anderson HA, Maylock CA, Williams JA, Paweletz CP, Shu H, Shacter E. Serum-derived protein S binds to phosphatidylserine and stimulates the phagocytosis of apoptotic cells. Nat Immunol. 2003;4:87–91. Available from: http://www.nature.com/doifinder/10.1038/ni871 CrossRefPubMedGoogle Scholar
  40. 40.
    Frasch SC, Bratton DL. Emerging roles for lysophosphatidylserine in resolution of inflammation. Prog Lipid Res. 2012;51:199–207. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22465125 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Frasch SC, Fernandez-Boyanapalli RF, Berry KAZ, Murphy RC, Leslie CC, Nick JA, et al. Neutrophils regulate tissue neutrophilia in inflammation via the oxidant-modified lipid lysophosphatidylserine. J Biol Chem. 2013;288:4583–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23293064 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Zagórska A, Través PG, Lew ED, Dransfield I, Lemke G. Diversification of TAM receptor tyrosine kinase function. Nat Immunol. 2014;15:920–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25194421 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Franz S, Muñoz LE, Heyder P, Herrmann M, Schiller M. Unconventional apoptosis of polymorphonuclear neutrophils (PMN): staurosporine delays exposure of phosphatidylserine and prevents phagocytosis by MΦ-2 macrophages of PMN. Clin Exp Immunol. 2015;179:75–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24995908 CrossRefPubMedGoogle Scholar
  44. 44.
    Griffiths HR, Gao D, Pararasa C. Redox regulation in metabolic programming and inflammation. Redox Biol. 2017;12:50–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28212523 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lemke G. Phosphatidylserine is the signal for TAM receptors and their ligands. Trends Biochem Sci. 2017;42:738–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28734578 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016;44:450–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26982353 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Martin K, Ohayon D, Witko-Sarsat V. Promoting apoptosis of neutrophils and phagocytosis by macrophages: novel strategies in the resolution of inflammation. Swiss Med Wkly. 2015;145:w14056. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25701669 PubMedGoogle Scholar
  48. 48.
    Robb CT, Regan KH, Dorward DA, Rossi AG. Key mechanisms governing resolution of lung inflammation. Semin Immunopathol. 2016;38:425–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27116944 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Biermann MHC, Podolska MJ, Knopf J, Reinwald C, Weidner D, Maueröder C, et al. Oxidative burst-dependent NETosis is implicated in the resolution of necrosis-associated sterile inflammation. Front Immunol. 2016;7:557. Available from: http://journal.frontiersin.org/article/10.3389/fimmu.2016.00557/full CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Carson WF, Kunkel SL. Regulation of cellular immune responses in sepsis by histone modifications. Adv Protein Chem Struct Biol. 2017;106:191–225. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28057212 CrossRefPubMedGoogle Scholar
  51. 51.
    Kittan NA, Allen RM, Dhaliwal A, Cavassani KA, Schaller M, Gallagher KA, et al. Cytokine induced phenotypic and epigenetic signatures are key to establishing specific macrophage phenotypes. PLoS One. 2013;8:e78045. Available from: http://dx.plos.org/10.1371/journal.pone.0078045 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kroetz DN, Allen RM, Schaller MA, Cavallaro C, Ito T, Kunkel SL. Type I interferon induced epigenetic regulation of macrophages suppresses innate and adaptive immunity in acute respiratory viral infection. PLoS Pathog. 2015;11:e1005338. Available from: http://dx.plos.org/10.1371/journal.ppat.1005338 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Schliehe C, Flynn EK, Vilagos B, Richson U, Swaminathan S, Bosnjak B, et al. The methyltransferase Setdb2 mediates virus-induced susceptibility to bacterial superinfection. Nat Immunol. 2015;16:67–74. Available from: http://www.nature.com/doifinder/10.1038/ni.3046 CrossRefPubMedGoogle Scholar
  54. 54.
    Kapellos TS, Iqbal AJ. Epigenetic control of macrophage polarisation and soluble mediator gene expression during inflammation. Mediat Inflamm. 2016;2016:1–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27143818 CrossRefGoogle Scholar
  55. 55.
    Novak ML, Thorp EB. Shedding light on impaired efferocytosis and nonresolving inflammation. Circ Res. 2013;113:9–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23788501 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Fredman G, Li Y, Dalli J, Chiang N, Serhan CN. Self-limited versus delayed resolution of acute inflammation: temporal regulation of pro-resolving mediators and microRNA. Sci Rep. 2012;2:639. Available from: http://www.nature.com/articles/srep00639 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Deschamps M, Laval G, Fagny M, Itan Y, Abel L, Casanova J-L, et al. Genomic signatures of selective pressures and introgression from archaic hominins at human innate immunity genes. Am J Hum Genet. 2016;98:5–21. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0002929715004851 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21:335–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12524386 CrossRefPubMedGoogle Scholar
  59. 59.
    Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20303872 CrossRefPubMedGoogle Scholar
  60. 60.
    Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20404851 CrossRefPubMedGoogle Scholar
  61. 61.
    Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34:637–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21616434 CrossRefPubMedGoogle Scholar
  62. 62.
    Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol. 2012;4:a006049. Available from: http://cshperspectives.cshlp.org/lookup/doi/10.1101/cshperspect.a006049 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Iwasaki A, Medzhitov R. Control of adaptive immunity by the innate immune system. Nat Immunol. 2015;16:343–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25789684 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Braza F, Brouard S, Chadban S, Goldstein DR. Role of TLRs and DAMPs in allograft inflammation and transplant outcomes. Nat Rev Nephrol. 2016;12:281–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27026348 CrossRefPubMedGoogle Scholar
  65. 65.
    Takeda K, Akira S. Toll-Like receptors. In: Coico R, editor. Current protocols in immunology. Malden, MA: Wiley; 2015. p. 14.12.1–14.12.10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25845562.CrossRefGoogle Scholar
  66. 66.
    Satoh T, Akira S. Toll-like receptor signaling and its inducible proteins. Microbiol Spectr. 2016.  https://doi.org/10.1128/microbiolspec.MCHD-0040-2016. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28084212
  67. 67.
    Geng J, Sun X, Wang P, Zhang S, Wang X, Wu H, et al. Kinases Mst1 and Mst2 positively regulate phagocytic induction of reactive oxygen species and bactericidal activity. Nat Immunol. 2015;16:1142–52. Available from: http://www.nature.com/doifinder/10.1038/ni.3268 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Stuart LM, Lacy-Hulbert A. De-Mst-ifying microbicidal killing. Nat Immunol. 2015;16:1107–8. Available from: http://www.nature.com/doifinder/10.1038/ni.3291 CrossRefPubMedGoogle Scholar
  69. 69.
    Barratt-Due A, Pischke SE, Nilsson PH, Espevik T, Mollnes TE. Dual inhibition of complement and Toll-like receptors as a novel approach to treat inflammatory diseases-C3 or C5 emerge together with CD14 as promising targets. J Leukoc Biol. 2017;101:193–204. Available from: http://www.jleukbio.org/lookup/doi/10.1189/jlb.3VMR0316-132R CrossRefPubMedGoogle Scholar
  70. 70.
    Lee CC, Avalos AM, Ploegh HL. Accessory molecules for Toll-like receptors and their function. Nat Rev Immunol. 2012;12:168–79. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22301850 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Tan Y, Kagan JC. Microbe-inducible trafficking pathways that control Toll-like receptor signaling. Traffic. 2017;18:6–17. Available from: http://doi.wiley.com/10.1111/tra.12454 CrossRefPubMedGoogle Scholar
  72. 72.
    Kieser KJ, Kagan JC. Multi-receptor detection of individual bacterial products by the innate immune system. Nat Rev Immunol. 2017;17:376–90. Available from: http://www.nature.com/doifinder/10.1038/nri.2017.25 CrossRefPubMedGoogle Scholar
  73. 73.
    Pandey S, Kawai T, Akira S. Microbial sensing by Toll-like receptors and intracellular nucleic acid sensors. Cold Spring Harb Perspect Biol. 2014;7:a016246. Available from: http://cshperspectives.cshlp.org/lookup/doi/10.1101/cshperspect.a016246 CrossRefPubMedGoogle Scholar
  74. 74.
    Steimle A, Autenrieth IB, Frick J-S. Structure and function: lipid A modifications in commensals and pathogens. Int J Med Microbiol. 2016;306:290–301. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1438422116300169 CrossRefPubMedGoogle Scholar
  75. 75.
    Guiducci C, Coffman RL, Barrat FJ. Signalling pathways leading to IFN-α production in human plasmacytoid dendritic cell and the possible use of agonists or antagonists of TLR7 and TLR9 in clinical indications. J Intern Med. 2009;265:43–57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19093959 CrossRefPubMedGoogle Scholar
  76. 76.
    Miyake K, Shibata T, Ohto U, Shimizu T. Emerging roles of the processing of nucleic acids and Toll-like receptors in innate immune responses to nucleic acids. J Leukoc Biol. 2017;101:135–42. Available from: http://www.jleukbio.org/lookup/doi/10.1189/jlb.4MR0316-108R CrossRefPubMedGoogle Scholar
  77. 77.
    Ramnath D, Powell EE, Scholz GM, Sweet MJ. The toll-like receptor 3 pathway in homeostasis, responses to injury and wound repair. Semin Cell Dev Biol. 2017;61:22–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27552920 CrossRefPubMedGoogle Scholar
  78. 78.
    Ullah MO, Sweet MJ, Mansell A, Kellie S, Kobe B. TRIF-dependent TLR signaling, its functions in host defense and inflammation, and its potential as a therapeutic target. J Leukoc Biol. 2016;100:27–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27162325 CrossRefPubMedGoogle Scholar
  79. 79.
    Husebye H, Aune MH, Stenvik J, Samstad E, Skjeldal F, Halaas O, et al. The Rab11a GTPase controls Toll-like receptor 4-induced activation of interferon regulatory factor-3 on phagosomes. Immunity. 2010;33:583–96. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1074761310003523 CrossRefPubMedGoogle Scholar
  80. 80.
    Zanoni I, Ostuni R, Marek LR, Barresi S, Barbalat R, Barton GM, et al. CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell. 2011;147:868–80. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0092867411012219 CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Gay NJ, Symmons MF, Gangloff M, Bryant CE. Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol. 2014;14:546–58. Available from: http://www.nature.com/doifinder/10.1038/nri3713 CrossRefPubMedGoogle Scholar
  82. 82.
    Kaiser WJ, Offermann MK. Apoptosis induced by the toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif. J Immunol. 2005;174:4942–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15814722 CrossRefPubMedGoogle Scholar
  83. 83.
    He S, Liang Y, Shao F, Wang X. Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc Natl Acad Sci U S A. 2011;108:20054–9. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1116302108 CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Polumuri SK, Toshchakov VY, Vogel SN. Role of phosphatidylinositol-3 kinase in transcriptional regulation of TLR-induced IL-12 and IL-10 by Fc gamma receptor ligation in murine macrophages. J Immunol. 2007;179:236–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17579043 CrossRefPubMedGoogle Scholar
  85. 85.
    Utsugi M, Dobashi K, Ono A, Ishizuka T, Matsuzaki S, Hisada T, et al. PI3K p110beta positively regulates lipopolysaccharide-induced IL-12 production in human macrophages and dendritic cells and JNK1 plays a novel role. J Immunol. 2009;182:5225–31. Available from: http://www.jimmunol.org/cgi/doi/10.4049/jimmunol.0801352 CrossRefPubMedGoogle Scholar
  86. 86.
    Troutman TD, Bazan JF, Pasare C. Toll-like receptors, signaling adapters and regulation of the pro-inflammatory response by PI3K. Cell Cycle. 2012;11:3559–67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22895011 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Chen C-W, Chen C-C, Jian C-Y, Lin P-H, Chou J-C, Teng H-S, et al. Attenuation of exercise effect on inflammatory responses via novel role of TLR4/PI3K/Akt signaling in rat splenocytes. J Appl Physiol. 2016;121:870–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27539497 CrossRefPubMedGoogle Scholar
  88. 88.
    Zhang X, Jiang D, Jiang W, Zhao M, Gan J. Role of TLR4-mediated PI3K/AKT/GSK-3 β signaling pathway in apoptosis of rat hepatocytes. Biomed Res Int. 2015;2015:1–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26770978 Google Scholar
  89. 89.
    He L, Zang A, Du M, Ma D, Yuan C, Zhou C, et al. mTOR regulates TLR-induced c-fos and Th1 responses to HBV and HCV vaccines. Virol Sin. 2015;30:174–89. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26122641 CrossRefPubMedGoogle Scholar
  90. 90.
    Abdel-Nour M, Tsalikis J, Kleinman D, Girardin SE. The emerging role of mTOR signalling in antibacterial immunity. Immunol Cell Biol. 2014;92:346–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24518980 CrossRefPubMedGoogle Scholar
  91. 91.
    Paracha RZ, Ahmad J, Ali A, Hussain R, Niazi U, Tareen SHK, et al. Formal modelling of Toll like receptor 4 and JAK/STAT signalling pathways: insight into the roles of SOCS-1, interferon-β and proinflammatory cytokines in sepsis. PLoS One. 2014;9:e108466. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25255432 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Luu K, Greenhill CJ, Majoros A, Decker T, Jenkins BJ, Mansell A. STAT1 plays a role in TLR signal transduction and inflammatory responses. Immunol Cell Biol. 2014;92:761–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25027037 CrossRefPubMedGoogle Scholar
  93. 93.
    Bellacosa A, Kumar CC, Di Cristofano A, Testa JR. Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res. 2005;94:29–86. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0065230X05940025 CrossRefPubMedGoogle Scholar
  94. 94.
    Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7:606–19. Available from: http://www.nature.com/doifinder/10.1038/nrg1879 CrossRefPubMedGoogle Scholar
  95. 95.
    Manning BD, Cantley LC, Accili D, Arden KC, Ackah E, Yu J, et al. AKT/PKB signaling: navigating downstream. Cell. 2007;129:1261–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17604717 CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Lopiccolo J, Blumenthal G, Bernstein W, Dennis P. Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist Updat. 2008;11:32–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18166498 CrossRefPubMedGoogle Scholar
  97. 97.
    Cheng H, Shcherba M, Pendurti G, Liang Y, Piperdi B, Perez-Soler R. Targeting the PI3K/AKT/mTOR pathway: potential for lung cancer treatment. Lung Cancer Manag. 2014;3:67–75. Available from: http://www.futuremedicine.com/doi/10.2217/lmt.13.72 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Xia P, Xu X-Y. PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application. Am J Cancer Res. 2015;5:1602–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26175931 PubMedPubMedCentralGoogle Scholar
  99. 99.
    Brenner A, Andersson Tvedt T, Bruserud Ø. The complexity of targeting PI3K-Akt-mTOR signalling in human acute myeloid leukaemia: the importance of leukemic cell heterogeneity, neighbouring mesenchymal stem cells and immunocompetent cells. Molecules. 2016;21:1512. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27845732 CrossRefGoogle Scholar
  100. 100.
    Sharma VR, Gupta GK, Sharma AK, Batra N, Sharma DK, Joshi A, et al. PI3K/Akt/mTOR intracellular pathway and breast cancer: factors, mechanism and regulation. Curr Pharm Des. 2017;23(11):1633–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27848885 CrossRefPubMedGoogle Scholar
  101. 101.
    Gao Y, Yuan CY, Yuan W. Will targeting PI3K/Akt/mTOR signaling work in hematopoietic malignancies? Stem Cell Investig. 2016;3:31. Available from: http://sci.amegroups.com/article/view/11050/11609 CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Asati V, Mahapatra DK, Bharti SK. PI3K/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways inhibitors as anticancer agents: structural and pharmacological perspectives. Eur J Med Chem. 2016;109:314–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26807863 CrossRefPubMedGoogle Scholar
  103. 103.
    Ward AC, Touw I, Yoshimura A. The Jak-Stat pathway in normal and perturbed hematopoiesis. Blood. 2000;95:19–29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10607680 PubMedGoogle Scholar
  104. 104.
    Leonard WJ, O’Shea JJ. Jaks and STATs: biological implications. Annu Rev Immunol. 1998;16:293–322. Available from: http://www.annualreviews.org/doi/10.1146/annurev.immunol.16.1.293 CrossRefPubMedGoogle Scholar
  105. 105.
    O’Shea JJ, Plenge R. JAK and STAT signaling molecules in immunoregulation and immune-mediated disease. Immunity. 2012;36:542–50. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1074761312001343 CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    O’Shea JJ, Holland SM, Staudt LM. JAKs and STATs in immunity, immunodeficiency, and cancer. N Engl J Med. 2013;368:161–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23301733 CrossRefPubMedGoogle Scholar
  107. 107.
    Schwartz DM, Bonelli M, Gadina M, O’Shea JJ. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol. 2016;12:25–36. Available from: http://www.nature.com/doifinder/10.1038/nrrheum.2015.167 CrossRefPubMedGoogle Scholar
  108. 108.
    Gao Q, Liang X, Shaikh AS, Zang J, Xu W, Zhang Y. JAK/STAT signal transduction: promising attractive targets for immune, inflammatory and hematopoietic diseases. Curr Drug Targets 2016. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27928945
  109. 109.
    Mizuguchi R, Noto S, Yamada M, Ashizawa S, Higashi H, Hatakeyama M. Ras and signal transducer and activator of transcription (STAT) are essential and sufficient downstream components of Janus kinases in cell proliferation. Jpn J Cancer Res. 2000;91:527–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10835498 CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Rane SG, Reddy EP. Janus kinases: components of multiple signaling pathways. Oncogene. 2000;19:5662–79. Available from: http://www.nature.com/doifinder/10.1038/sj.onc.1203925 CrossRefPubMedGoogle Scholar
  111. 111.
    Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer. 2009;9:798–809. Available from: http://www.nature.com/doifinder/10.1038/nrc2734 CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Stark GR, Darnell JE. The JAK-STAT pathway at twenty. Immunity. 2012;36:503–14. Available from: http://linkinghub.elsevier.com/retrieve/pii/S107476131200132X CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Buchon N, Silverman N, Cherry S. Immunity in Drosophila melanogaster—from microbial recognition to whole-organism physiology. Nat Rev Immunol. 2014;14:796–810. Available from: http://www.nature.com/doifinder/10.1038/nri3763 CrossRefPubMedGoogle Scholar
  114. 114.
    Shaukat Z, Liu D, Gregory S. Sterile inflammation in Drosophila. Mediat Inflamm. 2015;2015:369286. Available from: http://www.hindawi.com/journals/mi/2015/369286/ CrossRefGoogle Scholar
  115. 115.
    Chamaillard M, Hashimoto M, Horie Y, Masumoto J, Qiu S, Saab L, et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol. 2003;4:702–7. Available from: http://www.nature.com/doifinder/10.1038/ni945 CrossRefPubMedGoogle Scholar
  116. 116.
    Travassos LH, Carneiro LAM, Ramjeet M, Hussey S, Kim Y-G, Magalhães JG, et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol. 2010;11:55–62. Available from: http://www.nature.com/doifinder/10.1038/ni.1823 CrossRefPubMedGoogle Scholar
  117. 117.
    Werts C, Rubino S, Ling A, Girardin SE, Philpott DJ. Nod-like receptors in intestinal homeostasis, inflammation, and cancer. J Leukoc Biol. 2011;90:471–82. Available from: http://www.jleukbio.org/cgi/doi/10.1189/jlb.0411183 CrossRefPubMedGoogle Scholar
  118. 118.
    Philpott DJ, Sorbara MT, Robertson SJ, Croitoru K, Girardin SE. NOD proteins: regulators of inflammation in health and disease. Nat Rev Immunol. 2014;14:9–23. Available from: http://www.nature.com/doifinder/10.1038/nri3565 CrossRefPubMedGoogle Scholar
  119. 119.
    Shibutani ST, Saitoh T, Nowag H, Münz C, Yoshimori T. Autophagy and autophagy-related proteins in the immune system. Nat Immunol. 2015;16:1014–24. Available from: http://www.nature.com/doifinder/10.1038/ni.3273 CrossRefPubMedGoogle Scholar
  120. 120.
    Rauch I, Tenthorey JL, Nichols RD, Al Moussawi K, Kang JJ, Kang C, et al. NAIP proteins are required for cytosolic detection of specific bacterial ligands in vivo. J Exp Med. 2016;213:657–65. Available from: http://www.jem.org/lookup/doi/10.1084/jem.20151809 CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Robertson SJ, Zhou JY, Geddes K, Rubino SJ, Cho JH, Girardin SE, et al. Nod1 and Nod2 signaling does not alter the composition of intestinal bacterial communities at homeostasis. Gut Microbes. 2013;4:222–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23549220 CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Robertson SJ, Geddes K, Maisonneuve C, Streutker CJ, Philpott DJ. Resilience of the intestinal microbiota following pathogenic bacterial infection is independent of innate immunity mediated by NOD1 or NOD2. Microbes Infect. 2016;18:460–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27083475 CrossRefPubMedGoogle Scholar
  123. 123.
    Keestra-Gounder AM, Byndloss MX, Seyffert N, Young BM, Chávez-Arroyo A, Tsai AY, et al. NOD1 and NOD2 signalling links ER stress with inflammation. Nature. 2016;532:394–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27007849 CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Byndloss MX, Keestra-Gounder AM, Bäumler AJ, Tsolis RM. NOD1 and NOD2: new functions linking endoplasmic reticulum stress and inflammation. DNA Cell Biol. 2016;35:311–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27341284 CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Caruso R, Núñez G. Innate immunity: ER stress recruits NOD1 and NOD2 for delivery of inflammation. Curr Biol. 2016;26:R508–11. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0960982216304791 CrossRefPubMedGoogle Scholar
  126. 126.
    Kaparakis-Liaskos M. The intracellular location, mechanisms and outcomes of NOD1 signaling. Cytokine. 2015;74:207–12. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1043466615000770 CrossRefPubMedGoogle Scholar
  127. 127.
    Caruso R, Warner N, Inohara N, Núñez G. NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity. 2014;41:898–908. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25526305 CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Juárez E, Carranza C, Hernández-Sánchez F, Loyola E, Escobedo D, León-Contreras JC, et al. Nucleotide-oligomerizing domain-1 (NOD1) receptor activation induces pro-inflammatory responses and autophagy in human alveolar macrophages. BMC Pulm Med. 2014;14:152. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25253572 CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Irving AT, Mimuro H, Kufer TA, Lo C, Wheeler R, Turner LJ, et al. The immune receptor NOD1 and kinase RIP2 interact with bacterial peptidoglycan on early endosomes to promote autophagy and inflammatory signaling. Cell Host Microbe. 2014;15:623–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24746552 CrossRefPubMedGoogle Scholar
  130. 130.
    Pichlmair A, Schulz O, Tan CP, Näslund TI, Liljeström P, Weber F, et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science. 2006;314:997–1001. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1132998 CrossRefPubMedGoogle Scholar
  131. 131.
    Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006;441:101–5. Available from: http://www.nature.com/doifinder/10.1038/nature04734 CrossRefPubMedGoogle Scholar
  132. 132.
    Schlee M, Hartmann G. Discriminating self from non-self in nucleic acid sensing. Nat Rev Immunol. 2016;16:566–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27455396 CrossRefPubMedGoogle Scholar
  133. 133.
    Wu J, Chen ZJ. Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol. 2014;32:461–88. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24655297 CrossRefPubMedGoogle Scholar
  134. 134.
    Ahlers LRH, Goodman AG. Nucleic acid sensing and innate immunity: signaling pathways controlling viral pathogenesis and autoimmunity. Curr Clin Microbiol Rep. 2016;3:132–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27857881 CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Vabret N, Bhardwaj N, Greenbaum BD. Sequence-specific sensing of nucleic acids. Trends Immunol. 2017;38:53–65. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1471490616301703 CrossRefPubMedGoogle Scholar
  136. 136.
    Hartmann G. Nucleic acid immunity. Adv Immunol. 2017;133:121–69. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28215278 CrossRefPubMedGoogle Scholar
  137. 137.
    Runge S, Sparrer KMJ, Lässig C, Hembach K, Baum A, García-Sastre A, et al. In vivo ligands of MDA5 and RIG-I in measles virus-infected cells. PLoS Pathog. 2014;10:e1004081. Available from: http://dx.plos.org/10.1371/journal.ppat.1004081 CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Sanchez David RY, Combredet C, Sismeiro O, Dillies M-A, Jagla B, Coppée J-Y, et al. Comparative analysis of viral RNA signatures on different RIG-I-like receptors. elife. 2016;5:e11275. Available from: http://elifesciences.org/lookup/doi/10.7554/eLife.11275 CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Wang Y, Ludwig J, Schuberth C, Goldeck M, Schlee M, Li H, et al. Structural and functional insights into 5′-ppp RNA pattern recognition by the innate immune receptor RIG-I. Nat Struct Mol Biol. 2010;17:781–7. Available from: http://www.nature.com/doifinder/10.1038/nsmb.1863 CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Luo D, Ding SC, Vela A, Kohlway A, Lindenbach BD, Pyle AM. Structural insights into RNA recognition by RIG-I. Cell. 2011;147:409–22. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0092867411010841 CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Jiang F, Ramanathan A, Miller MT, Tang G-Q, Gale M, Patel SS, et al. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature. 2011;479:423–7. Available from: http://www.nature.com/doifinder/10.1038/nature10537 CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Schlee M, Roth A, Hornung V, Hagmann CA, Wimmenauer V, Barchet W, et al. Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity. 2009;31:25–34. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1074761309002714 CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Ahmad S, Hur S. Helicases in antiviral immunity: dual properties as sensors and effectors. Trends Biochem Sci. 2015;40:576–85. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0968000415001413 CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Belgnaoui SM, Paz S, Hiscott J. Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter. Curr Opin Immunol. 2011;23:564–72. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0952791511001038 CrossRefPubMedGoogle Scholar
  145. 145.
    Jacobs JL, Coyne CB. Mechanisms of MAVS regulation at the mitochondrial membrane. J Mol Biol. 2013;425:5009–19. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0022283613006335 CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Vazquez C, Horner SM. MAVS coordination of antiviral innate immunity. J Virol. 2015;89:6974–7. Available from: http://jvi.asm.org/lookup/doi/10.1128/JVI.01918-14 CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Chan YK, Gack MU. RIG-I-like receptor regulation in virus infection and immunity. Curr Opin Virol. 2015;12:7–14. Available from: http://linkinghub.elsevier.com/retrieve/pii/S187962571500005X CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Zevini A, Olagnier D, Hiscott J. Crosstalk between cytoplasmic RIG-I and STING sensing pathways. Trends Immunol. 2017;38(3):194–205. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28073693 CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Liu Y, Olagnier D, Lin R. Host and viral modulation of RIG-I-mediated antiviral immunity. Front Immunol. 2017;7:662. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28096803 CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Loo Y-M, Gale M. Immune signaling by RIG-I-like receptors. Immunity. 2011;34:680–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21616437 CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Yao H, Dittmann M, Peisley A, Hoffmann H-H, Gilmore RH, Schmidt T, et al. ATP-dependent effector-like functions of RIG-I-like receptors. Mol Cell. 2015;58:541–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25891073 CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Franchi L, Eigenbrod T, Muñoz-Planillo R, Ozkurede U, Kim Y-G, Chakrabarti A, et al. Cytosolic double-stranded RNA activates the NLRP3 inflammasome via MAVS-induced membrane permeabilization and K+ efflux. J Immunol. 2014;193:4214–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25225670 CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Schock SN, Chandra NV, Sun Y, Irie T, Kitagawa Y, Gotoh B, et al. Induction of necroptotic cell death by viral activation of the RIG-I or STING pathway. Cell Death Differ. 2017;24(4):615–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28060376 CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Li Y, Banerjee S, Wang Y, Goldstein SA, Dong B, Gaughan C, et al. Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses. Proc Natl Acad Sci U S A. 2016;113:2241–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26858407 CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Laessig C, Hopfner K-P. Discrimination of cytosolic self and non-self RNA by RIG-I-like receptors. J Biol Chem. 2017;jbc.R117.788398. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28411239
  156. 156.
    Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature. 2009;461:788–92. Available from: http://www.nature.com/doifinder/10.1038/nature08476 CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Zhong B, Zhang L, Lei C, Li Y, Mao A-P, Yang Y, et al. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity. 2009;30:397–407. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19285439 CrossRefPubMedGoogle Scholar
  158. 158.
    Sun W, Li Y, Chen L, Chen H, You F, Zhou X, et al. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc Natl Acad Sci U S A. 2009;106:8653–8. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.0900850106 CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature. 2011;478:515–8. Available from: http://www.nature.com/doifinder/10.1038/nature10429 CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Barber GN. STING: infection, inflammation and cancer. Nat Rev Immunol. 2015;15:760–70. Available from: http://www.nature.com/doifinder/10.1038/nri3921 CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Liu X, Wang C. The emerging roles of the STING adaptor protein in immunity and diseases. Immunology. 2016;147:285–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26643733 CrossRefPubMedGoogle Scholar
  162. 162.
    Sauer J-D, Sotelo-Troha K, von Moltke J, Monroe KM, Rae CS, Brubaker SW, et al. The N-ethyl-N-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides. Infect Immun. 2011;79:688–94. Available from: http://iai.asm.org/cgi/doi/10.1128/IAI.00999-10 CrossRefPubMedGoogle Scholar
  163. 163.
    Ahn J, Barber GN. Self-DNA, STING-dependent signaling and the origins of autoinflammatory disease. Curr Opin Immunol. 2014;31:121–6. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0952791514001332 CrossRefPubMedGoogle Scholar
  164. 164.
    Corrales L, Matson V, Flood B, Spranger S, Gajewski TF. Innate immune signaling and regulation in cancer immunotherapy. Cell Res. 2017;27:96–108. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27981969 CrossRefPubMedGoogle Scholar
  165. 165.
    Wu J, Sun L, Chen X, Du F, Shi H, Chen C, et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science. 2013;339:826–30. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1229963 CrossRefPubMedGoogle Scholar
  166. 166.
    Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339:786–91. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1232458 CrossRefPubMedGoogle Scholar
  167. 167.
    Liang Q, Seo GJ, Choi YJ, Kwak M-J, Ge J, Rodgers MA, et al. Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses. Cell Host Microbe. 2014;15:228–38. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1931312814000328 CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Cai X, Chiu Y-H, Chen ZJ. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol Cell. 2014;54:289–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24766893 CrossRefPubMedGoogle Scholar
  169. 169.
    Ablasser A, Gulen MF. The role of cGAS in innate immunity and beyond. J Mol Med. 2016;94:1085–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27154323 CrossRefPubMedGoogle Scholar
  170. 170.
    Tao J, Zhou X, Jiang Z. cGAS-cGAMP-STING: the three musketeers of cytosolic DNA sensing and signaling. IUBMB Life. 2016;68:858–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27706894 CrossRefPubMedGoogle Scholar
  171. 171.
    Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS–STING pathway of cytosolic DNA sensing. Nat Immunol. 2016;17:1142–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27648547 CrossRefPubMedGoogle Scholar
  172. 172.
    Konno H, Konno K, Barber GN. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell. 2013;155:688–98. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0092867413012233 CrossRefPubMedGoogle Scholar
  173. 173.
    Gao D, Wu J, Wu Y-T, Du F, Aroh C, Yan N, et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science. 2013;341:903–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23929945 CrossRefPubMedGoogle Scholar
  174. 174.
    Liu S, Feng M, Guan W. Mitochondrial DNA sensing by STING signaling participates in inflammation, cancer and beyond. Int J Cancer. 2016;139:736–41. Available from: http://doi.wiley.com/10.1002/ijc.30074 CrossRefPubMedGoogle Scholar
  175. 175.
    White MJ, McArthur K, Metcalf D, Lane RM, Cambier JC, Herold MJ, et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell. 2014;159:1549–62. Available from: http://linkinghub.elsevier.com/retrieve/pii/S009286741401513X CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Zelensky AN, Gready JE. The C-type lectin-like domain superfamily. FEBS J. 2005;272:6179–217. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16336259 CrossRefPubMedGoogle Scholar
  177. 177.
    Mayer S, Raulf M-K, Lepenies B. C-type lectins: their network and roles in pathogen recognition and immunity. Histochem Cell Biol. 2017;147:223–37. Available from: http://link.springer.com/10.1007/s00418-016-1523-7 CrossRefPubMedGoogle Scholar
  178. 178.
    Dambuza IM, Brown GD. C-type lectins in immunity: recent developments. Curr Opin Immunol. 2015;32:21–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25553393 CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Yamasaki S, Ishikawa E, Sakuma M, Hara H, Ogata K, Saito T. Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol. 2008;9:1179–88. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18776906 CrossRefPubMedGoogle Scholar
  180. 180.
    Plato A, Hardison SE, Brown GD. Pattern recognition receptors in antifungal immunity. Semin Immunopathol. 2015;37:97–106. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25420452 CrossRefPubMedGoogle Scholar
  181. 181.
    Drummond RA, Brown GD. Signalling C-Type lectins in antimicrobial immunity. PLoS Pathog. 2013;9:e1003417. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23935480 CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Iborra S, Sancho D. Signalling versatility following self and non-self sensing by myeloid C-type lectin receptors. Immunobiology. 2015;220:175–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25269828 CrossRefPubMedGoogle Scholar
  183. 183.
    Kiyotake R, Oh-hora M, Ishikawa E, Miyamoto T, Ishibashi T, Yamasaki S. Human mincle binds to cholesterol crystals and triggers innate immune responses. J Biol Chem. 2015;290:25322–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26296894 CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Sancho D, Reis e Sousa C. Signaling by myeloid C-type lectin receptors in immunity and homeostasis. Annu Rev Immunol. 2012;30:491–529. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22224766 CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Sancho D, Reis e Sousa C. Sensing of cell death by myeloid C-type lectin receptors. Curr Opin Immunol. 2013;25:46–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23332826 CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Goodridge HS, Reyes CN, Becker CA, Katsumoto TR, Ma J, Wolf AJ, et al. Activation of the innate immune receptor Dectin-1 upon formation of a “phagocytic synapse”. Nature. 2011;472:471–5. Available from: http://www.nature.com/doifinder/10.1038/nature10071 CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Zhang J-G, Czabotar PE, Policheni AN, Caminschi I, Wan SS, Kitsoulis S, et al. The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity. 2012;36:646–57. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1074761312001276 CrossRefPubMedGoogle Scholar
  188. 188.
    Srinivasan N, Gordon O, Ahrens S, Franz A, Deddouche S, Chakravarty P, et al. Actin is an evolutionarily-conserved damage-associated molecular pattern that signals tissue injury in Drosophila melanogaster. elife. 2016.  https://doi.org/10.7554/eLife.19662. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27871362
  189. 189.
    Neumann K, Castiñeiras-Vilariño M, Höckendorf U, Hannesschläger N, Lemeer S, Kupka D, et al. Clec12a is an inhibitory receptor for uric acid crystals that regulates inflammation in response to cell death. Immunity. 2014;40:389–99. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24631154 CrossRefPubMedGoogle Scholar
  190. 190.
    Kerscher B, Willment JA, Brown GD. The Dectin-2 family of C-type lectin-like receptors: an update. Int Immunol. 2013;25:271–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23606632 CrossRefPubMedPubMedCentralGoogle Scholar
  191. 191.
    Bongarzone S, Savickas V, Luzi F, Gee AD. Targeting the receptor for advanced glycation endproducts (RAGE): a medicinal chemistry perspective. J Med Chem. 2017;60:7213–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28482155 CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Hudson BI, Lippman ME. Targeting RAGE signaling in inflammatory disease. Annu Rev Med. 2018;69:annurev-med-041316-085215. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29106804
  193. 193.
    Luttrell LM. GPCR signaling rides a wave of conformational changes. Cell. 2016;167:602–3. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0092867416313873 CrossRefPubMedGoogle Scholar
  194. 194.
    Luttrell LM, Gesty-Palmer D, Sibley DR. Beyond desensitization: physiological relevance of arrestin-dependent signaling. Pharmacol Rev. 2010;62:305–30. Available from: http://pharmrev.aspetjournals.org/cgi/doi/10.1124/pr.109.002436 CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors. Nat Rev Mol Cell Biol. 2002;3:639–50. Available from: http://www.nature.com/doifinder/10.1038/nrm908 CrossRefPubMedGoogle Scholar
  196. 196.
    Bachelerie F, Graham GJ, Locati M, Mantovani A, Murphy PM, Nibbs R, et al. An atypical addition to the chemokine receptor nomenclature: IUPHAR review 15. Br J Pharmacol. 2015;172:3945–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25958743 CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Thomsen ARB, Plouffe B, Cahill TJ, Shukla AK, Tarrasch JT, Dosey AM, et al. GPCR-G protein-β-arrestin super-complex mediates sustained G protein signaling. Cell. 2016;166:907–19. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0092867416309102 CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    Liu J, Cao X. Cellular and molecular regulation of innate inflammatory responses. Cell Mol Immunol. 2016;13:711–21. Available from: http://www.nature.com/doifinder/10.1038/cmi.2016.58 CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Ostrop J, Lang R. Contact, collaboration, and conflict: signal integration of Syk-coupled C-type lectin receptors. J Immunol. 2017;198:1403–14. Available from: http://www.jimmunol.org/lookup/doi/10.4049/jimmunol.1601665 CrossRefPubMedGoogle Scholar
  200. 200.
    Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10:417–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12191486 CrossRefPubMedGoogle Scholar
  201. 201.
    Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006;440:228–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16407890 CrossRefPubMedGoogle Scholar
  202. 202.
    Kanneganti T-D, Ozören N, Body-Malapel M, Amer A, Park J-H, Franchi L, et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature. 2006;440:233–6. Available from: http://www.nature.com/doifinder/10.1038/nature04517 CrossRefPubMedGoogle Scholar
  203. 203.
    Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440:237–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16407889 CrossRefPubMedGoogle Scholar
  204. 204.
    Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol. 2013;13:397–411. Available from: http://www.nature.com/doifinder/10.1038/nri3452 CrossRefPubMedGoogle Scholar
  205. 205.
    de Zoete MR, Palm NW, Zhu S, Flavell RA. Inflammasomes. Cold Spring Harb Perspect Biol. 2014;6:a016287. Available from: http://cshperspectives.cshlp.org/lookup/doi/10.1101/cshperspect.a016287 CrossRefPubMedPubMedCentralGoogle Scholar
  206. 206.
    Lamkanfi M, Dixit VM. Mechanisms and functions of inflammasomes. Cell. 2014;157:1013–22. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0092867414004759 CrossRefPubMedGoogle Scholar
  207. 207.
    Kono H, Kimura Y, Latz E. Inflammasome activation in response to dead cells and their metabolites. Curr Opin Immunol. 2014;30:91–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25282339 CrossRefPubMedGoogle Scholar
  208. 208.
    Guo H, Callaway JB, Ting JP-Y. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med. 2015;21:677–87. Available from: http://www.nature.com/doifinder/10.1038/nm.3893 CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Vanaja SK, Rathinam VAK, Fitzgerald KA. Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol. 2015;25:308–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25639489 CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    Man SM, Kanneganti T-D. Regulation of inflammasome activation. Immunol Rev. 2015;265:6–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25879280 CrossRefPubMedPubMedCentralGoogle Scholar
  211. 211.
    Broggi A, Granucci F. Microbe- and danger-induced inflammation. Mol Immunol. 2015;63:127–33. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0161589014001680 CrossRefPubMedGoogle Scholar
  212. 212.
    Jo E-K, Kim JK, Shin D-M, Sasakawa C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol. 2016;13:148–59. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26549800 CrossRefPubMedGoogle Scholar
  213. 213.
    Man SM, Kanneganti T-D. Converging roles of caspases in inflammasome activation, cell death and innate immunity. Nat Rev Immunol. 2016;16:7–21. Available from: http://www.nature.com/doifinder/10.1038/nri.2015.7 CrossRefPubMedGoogle Scholar
  214. 214.
    Próchnicki T, Mangan MS, Latz E. Recent insights into the molecular mechanisms of the NLRP3 inflammasome activation. F1000Research. 2016;5:1–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27508077 CrossRefGoogle Scholar
  215. 215.
    Pellegrini C, Antonioli L, Lopez-Castejon G, Blandizzi C, Fornai M. Canonical and non-canonical activation of NLRP3 inflammasome at the crossroad between immune tolerance and intestinal inflammation. Front Immunol. 2017;8:36. Available from: http://journal.frontiersin.org/article/10.3389/fimmu.2017.00036/full CrossRefPubMedPubMedCentralGoogle Scholar
  216. 216.
    Yu J-W, Lee M-S. Mitochondria and the NLRP3 inflammasome: physiological and pathological relevance. Arch Pharm Res. 2016;39(11):1503–18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27600432 CrossRefPubMedGoogle Scholar
  217. 217.
    Elliott EI, Sutterwala FS. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev. 2015;265:35–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25879282 CrossRefPubMedPubMedCentralGoogle Scholar
  218. 218.
    Sharma D, Kanneganti T-D. The cell biology of inflammasomes: mechanisms of inflammasome activation and regulation. J Cell Biol. 2016;213:617–29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27325789 CrossRefPubMedPubMedCentralGoogle Scholar
  219. 219.
    Man SM, Karki R, Briard B, Burton A, Gingras S, Pelletier S, et al. Differential roles of caspase-1 and caspase-11 in infection and inflammation. Sci Rep. 2017;7:45126. Available from: http://www.nature.com/articles/srep45126 CrossRefPubMedGoogle Scholar
  220. 220.
    He W, Wan H, Hu L, Chen P, Wang X, Huang Z, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res. 2015;25:1285–98. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26611636 CrossRefPubMedPubMedCentralGoogle Scholar
  221. 221.
    Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526:660–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26375003 CrossRefPubMedGoogle Scholar
  222. 222.
    Vince JE, Silke J. The intersection of cell death and inflammasome activation. Cell Mol Life Sci. 2016;73:2349–67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27066895 CrossRefPubMedGoogle Scholar
  223. 223.
    Man SM, Kanneganti T-D. Gasdermin D: the long-awaited executioner of pyroptosis. Cell Res. 2015;25:1183–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26482951 CrossRefPubMedPubMedCentralGoogle Scholar
  224. 224.
    Shi J, Gao W, Shao F. Pyroptosis: gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 2016;42(4):245–54. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0968000416301827 CrossRefPubMedGoogle Scholar
  225. 225.
    Muñoz-Planillo R, Kuffa P, Martínez-Colón G, Smith BL, Rajendiran TM, Núñez G. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 2013;38:1142–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23809161 CrossRefPubMedPubMedCentralGoogle Scholar
  226. 226.
    Yaron JR, Gangaraju S, Rao MY, Kong X, Zhang L, Su F, et al. K(+) regulates Ca(2+) to drive inflammasome signaling: dynamic visualization of ion flux in live cells. Cell Death Dis. 2015;6:e1954. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26512962 CrossRefPubMedPubMedCentralGoogle Scholar
  227. 227.
    Di Virgilio F, Vuerich M. Purinergic signaling in the immune system. Auton Neurosci. 2015;191:117–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25979766 CrossRefPubMedGoogle Scholar
  228. 228.
    Gallo PM, Gallucci S. The dendritic cell response to classic, emerging, and homeostatic danger signals. Implications for autoimmunity. Front Immunol. 2013;4:138. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23772226 CrossRefPubMedPubMedCentralGoogle Scholar
  229. 229.
    Carta S, Penco F, Lavieri R, Martini A, Dinarello CA, Gattorno M, et al. Cell stress increases ATP release in NLRP3 inflammasome-mediated autoinflammatory diseases, resulting in cytokine imbalance. Proc Natl Acad Sci U S A. 2015;112:2835–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25730877 CrossRefPubMedPubMedCentralGoogle Scholar
  230. 230.
    Latz E. The inflammasomes: mechanisms of activation and function. Curr Opin Immunol. 2010;22:28–33. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0952791509002271 CrossRefPubMedPubMedCentralGoogle Scholar
  231. 231.
    Yang M, Hearnden CHA, Oleszycka E, Lavelle EC. NLRP3 inflammasome activation and cytotoxicity induced by particulate adjuvants. Methods Mol Biol. 2013;1040:41–63. Available from: http://link.springer.com/10.1007/978-1-62703-523-1_5 CrossRefPubMedGoogle Scholar
  232. 232.
    Conos SA, Chen KW, De Nardo D, Hara H, Whitehead L, Núñez G, et al. Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proc Natl Acad Sci U S A. 2017;114:E961–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28096356 CrossRefPubMedPubMedCentralGoogle Scholar
  233. 233.
    Harijith A, Ebenezer DL, Natarajan V. Reactive oxygen species at the crossroads of inflammasome and inflammation. Front Physiol. 2014;5:352. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25324778 CrossRefPubMedPubMedCentralGoogle Scholar
  234. 234.
    Santos CXC, Tanaka LY, Wosniak J, Laurindo FRM. Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal. 2009;11:2409–27. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19388824 CrossRefPubMedGoogle Scholar
  235. 235.
    Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11:136–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20023662 CrossRefPubMedGoogle Scholar
  236. 236.
    Kim S, Joe Y, Jeong SO, Zheng M, Back SH, Park SW, et al. Endoplasmic reticulum stress is sufficient for the induction of IL-1β production via activation of the NF-κB and inflammasome pathways. Innate Immun. 2014;20:799–815. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24217221 CrossRefPubMedGoogle Scholar
  237. 237.
    Bronner DN, Abuaita BH, Chen X, Fitzgerald KA, Nuñez G, He Y, et al. Endoplasmic reticulum stress activates the inflammasome via NLRP3- and caspase-2-driven mitochondrial damage. Immunity. 2015;43:451–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26341399 CrossRefPubMedPubMedCentralGoogle Scholar
  238. 238.
    He Y, Zeng MY, Yang D, Motro B, Núñez G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature. 2016;530:354–7. Available from: http://www.nature.com/doifinder/10.1038/nature16959 CrossRefPubMedPubMedCentralGoogle Scholar
  239. 239.
    Schmid-Burgk JL, Chauhan D, Schmidt T, Ebert TS, Reinhardt J, Endl E, et al. A genome-wide CRISPR (clustered regularly interspaced short palindromic repeats) screen identifies NEK7 as an essential component of NLRP3 inflammasome activation. J Biol Chem. 2016;291:103–9. Available from: http://www.jbc.org/lookup/doi/10.1074/jbc.C115.700492 CrossRefPubMedGoogle Scholar
  240. 240.
    Shi H, Wang Y, Li X, Zhan X, Tang M, Fina M, et al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat Immunol. 2016;17:250–8. Available from: http://www.nature.com/doifinder/10.1038/ni.3333 CrossRefPubMedGoogle Scholar
  241. 241.
    Liston A, Masters SL. Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat Rev Immunol. 2017;17(3):208–14. Available from: http://www.nature.com/doifinder/10.1038/nri.2016.151 CrossRefPubMedGoogle Scholar
  242. 242.
    Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, et al. Non-canonical inflammasome activation targets caspase-11. Nature. 2011;479:117–21. Available from: http://www.nature.com/doifinder/10.1038/nature10558 CrossRefPubMedGoogle Scholar
  243. 243.
    Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature. 2014;514:187–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25119034 CrossRefPubMedGoogle Scholar
  244. 244.
    Yang D, He Y, Muñoz-Planillo R, Liu Q, Núñez G. Caspase-11 requires the Pannexin-1 channel and the Purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity. 2015;43:923–32. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1074761315004094 CrossRefPubMedPubMedCentralGoogle Scholar
  245. 245.
    Gaidt MM, Hornung V. Alternative inflammasome activation enables IL-1β release from living cells. Curr Opin Immunol. 2017;44:7–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27842238 CrossRefPubMedGoogle Scholar
  246. 246.
    Liao K-C, Mogridge J. Activation of the Nlrp1b inflammasome by reduction of cytosolic ATP. Infect Immun. 2013;81:570–9. Available from: http://iai.asm.org/cgi/doi/10.1128/IAI.01003-12 CrossRefPubMedPubMedCentralGoogle Scholar
  247. 247.
    Chavarría-Smith J, Mitchell PS, Ho AM, Daugherty MD, Vance RE. Functional and evolutionary analyses identify proteolysis as a general mechanism for NLRP1 inflammasome activation. PLoS Pathog. 2016;12:e1006052. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27926929 CrossRefPubMedPubMedCentralGoogle Scholar
  248. 248.
    Miao EA, Mao DP, Yudkovsky N, Bonneau R, Lorang CG, Warren SE, et al. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci U S A. 2010;107:3076–80. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.0913087107 CrossRefPubMedPubMedCentralGoogle Scholar
  249. 249.
    Vance RE. The NAIP/NLRC4 inflammasomes. Curr Opin Immunol. 2015;32:84–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25621709 CrossRefPubMedGoogle Scholar
  250. 250.
    Bürckstümmer T, Baumann C, Blüml S, Dixit E, Dürnberger G, Jahn H, et al. An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol. 2009;10:266–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19158679 CrossRefPubMedGoogle Scholar
  251. 251.
    Fernandes-Alnemri T, Yu J-W, Datta P, Wu J, Alnemri ES. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature. 2009;458:509–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19158676 CrossRefPubMedPubMedCentralGoogle Scholar
  252. 252.
    Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009;458:514–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19158675 CrossRefPubMedPubMedCentralGoogle Scholar
  253. 253.
    Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM, Hodgson S, et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science. 2009;323:1057–60. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1169841 CrossRefPubMedGoogle Scholar
  254. 254.
    Man SM, Karki R, Kanneganti T-D. AIM2 inflammasome in infection, cancer, and autoimmunity: role in DNA sensing, inflammation, and innate immunity. Eur J Immunol. 2016;46:269–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26626159 CrossRefPubMedGoogle Scholar
  255. 255.
    Luecke S, Paludan SR. Molecular requirements for sensing of intracellular microbial nucleic acids by the innate immune system. Cytokine. 2017;98:4–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27751656 CrossRefPubMedGoogle Scholar
  256. 256.
    Jakobs C, Perner S, Hornung V. AIM2 drives joint inflammation in a self-DNA triggered model of chronic polyarthritis. PLoS One. 2015;10:e0131702. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26114879 CrossRefPubMedPubMedCentralGoogle Scholar
  257. 257.
    Di Micco A, Frera G, Lugrin J, Jamilloux Y, Hsu E-T, Tardivel A, et al. AIM2 inflammasome is activated by pharmacological disruption of nuclear envelope integrity. Proc Natl Acad Sci U S A. 2016;113:E4671–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27462105 CrossRefPubMedPubMedCentralGoogle Scholar
  258. 258.
    Jin T, Perry A, Jiang J, Smith P, Curry JA, Unterholzner L, et al. Structures of the HIN domain:DNA complexes reveal ligand binding and activation mechanisms of the AIM2 inflammasome and IFI16 receptor. Immunity. 2012;36:561–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22483801 CrossRefPubMedPubMedCentralGoogle Scholar
  259. 259.
    Li H, Wang J, Wang J, Cao L-S, Wang Z-X, Wu J-W. Structural mechanism of DNA recognition by the p202 HINa domain: insights into the inhibition of Aim2-mediated inflammatory signalling. Acta Crystallogr Sect F, Struct Biol Commun. 2014;70:21–9. Available from: http://scripts.iucr.org/cgi-bin/paper?S2053230X1303135X CrossRefGoogle Scholar
  260. 260.
    Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK, Vos MR, et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell. 2014;156:1193–206. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0092867414002001 CrossRefPubMedPubMedCentralGoogle Scholar
  261. 261.
    Meunier E, Wallet P, Dreier RF, Costanzo S, Anton L, Rühl S, et al. Guanylate-binding proteins promote activation of the AIM2 inflammasome during infection with Francisella novicida. Nat Immunol. 2015;16:476–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25774716 CrossRefPubMedPubMedCentralGoogle Scholar
  262. 262.
    Janowski AM, Sutterwala FS. Atypical inflammasomes. Methods Mol Biol. 2016;1417:45–62. Available from: http://link.springer.com/10.1007/978-1-4939-3566-6_2 CrossRefPubMedGoogle Scholar
  263. 263.
    Levy M, Shapiro H, Thaiss CA, Elinav E. NLRP6: a multifaceted innate immune sensor. Trends Immunol. 2017;38(4):248–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28214100 CrossRefPubMedGoogle Scholar
  264. 264.
    Levy M, Thaiss CA, Zeevi D, Dohnalová L, Zilberman-Schapira G, Mahdi JA, et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell. 2015;163:1428–43. Available from: http://linkinghub.elsevier.com/retrieve/pii/S009286741501404X CrossRefPubMedPubMedCentralGoogle Scholar
  265. 265.
    Sun Y, Zhang M, Chen C-C, Gillilland M, Sun X, El-Zaatari M, et al. Stress-induced corticotropin-releasing hormone-mediated NLRP6 inflammasome inhibition and transmissible enteritis in mice. Gastroenterology. 2013;144:1478–87, 1487–8. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0016508513002874 CrossRefPubMedPubMedCentralGoogle Scholar
  266. 266.
    Williams KL, Lich JD, Duncan JA, Reed W, Rallabhandi P, Moore C, et al. The CATERPILLER protein monarch-1 is an antagonist of toll-like receptor-, tumor necrosis factor alpha-, and Mycobacterium tuberculosis-induced pro-inflammatory signals. J Biol Chem. 2005;280:39914–24. Available from: http://www.jbc.org/cgi/doi/10.1074/jbc.M502820200 CrossRefPubMedPubMedCentralGoogle Scholar
  267. 267.
    Allen IC, Wilson JE, Schneider M, Lich JD, Roberts RA, Arthur JC, et al. NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-κB signaling. Immunity. 2012;36:742–54. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1074761312001318 CrossRefPubMedPubMedCentralGoogle Scholar
  268. 268.
    Lich JD, Williams KL, Moore CB, Arthur JC, Davis BK, Taxman DJ, et al. Monarch-1 suppresses non-canonical NF-kappaB activation and p52-dependent chemokine expression in monocytes. J Immunol. 2007;178:1256–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17237370 CrossRefPubMedGoogle Scholar
  269. 269.
    Chelbi ST, Dang AT, Guarda G. Emerging major histocompatibility complex class I-related functions of NLRC5. Adv Immunol. 2017;133:89–119. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28215281 CrossRefPubMedGoogle Scholar
  270. 270.
    Benkő S, Kovács EG, Hezel F, Kufer TA. NLRC5 functions beyond MHC I regulation—what do we know so far? Front Immunol. 2017;8:150. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28261210 CrossRefPubMedPubMedCentralGoogle Scholar
  271. 271.
    Lander ES. The heroes of CRISPR. Cell. 2016;164:18–28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26771483 CrossRefPubMedGoogle Scholar
  272. 272.
    Diner BA, Lum KK, Cristea IM. The emerging role of nuclear viral DNA sensors. J Biol Chem. 2015;290:26412–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26354430 CrossRefPubMedPubMedCentralGoogle Scholar
  273. 273.
    Horan KA, Hansen K, Jakobsen MR, Holm CK, Søby S, Unterholzner L, et al. Proteasomal degradation of herpes simplex virus capsids in macrophages releases DNA to the cytosol for recognition by DNA sensors. J Immunol. 2013;190:2311–9. Available from: http://www.jimmunol.org/cgi/doi/10.4049/jimmunol.1202749 CrossRefPubMedPubMedCentralGoogle Scholar
  274. 274.
    Morrone SR, Wang T, Constantoulakis LM, Hooy RM, Delannoy MJ, Sohn J. Cooperative assembly of IFI16 filaments on dsDNA provides insights into host defense strategy. Proc Natl Acad Sci U S A. 2014;111:E62–71. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1313577111 CrossRefPubMedGoogle Scholar
  275. 275.
    Kerur N, Veettil MV, Sharma-Walia N, Bottero V, Sadagopan S, Otageri P, et al. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection. Cell Host Microbe. 2011;9:363–75. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1931312811001302 CrossRefPubMedPubMedCentralGoogle Scholar
  276. 276.
    Singh VV, Kerur N, Bottero V, Dutta S, Chakraborty S, Ansari MA, et al. Kaposi’s sarcoma-associated herpesvirus latency in endothelial and B cells activates gamma interferon-inducible protein 16-mediated inflammasomes. J Virol. 2013;87:4417–31. Available from: http://jvi.asm.org/cgi/doi/10.1128/JVI.03282-12 CrossRefPubMedPubMedCentralGoogle Scholar
  277. 277.
    Yu J-W, Wu J, Zhang Z, Datta P, Ibrahimi I, Taniguchi S, et al. Cryopyrin and pyrin activate caspase-1, but not NF-kappaB, via ASC oligomerization. Cell Death Differ. 2006;13:236–49. Available from: http://www.nature.com/doifinder/10.1038/sj.cdd.4401734 CrossRefPubMedGoogle Scholar
  278. 278.
    Xu H, Yang J, Gao W, Li L, Li P, Zhang L, et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature. 2014;513:237–41. Available from: http://www.nature.com/doifinder/10.1038/nature13449 CrossRefPubMedGoogle Scholar
  279. 279.
    Netea MG, van de Veerdonk FL, van der Meer JWM, Dinarello CA, Joosten LAB. Inflammasome-independent regulation of IL-1-family cytokines. Annu Rev Immunol. 2015;33:49–77. Available from: http://www.annualreviews.org/doi/10.1146/annurev-immunol-032414-112306 CrossRefPubMedGoogle Scholar
  280. 280.
    da Silva WC, Oshiro TM, de Sá DC, Franco DDGS, Festa Neto C, Pontillo A. Genotyping and differential expression analysis of inflammasome genes in sporadic malignant melanoma reveal novel contribution of CARD8, IL1B and IL18 in melanoma susceptibility and progression. Cancer Genet. 2016;209:474–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27810076 CrossRefPubMedGoogle Scholar
  281. 281.
    Cheng C-H, Lee Y-S, Chang C-J, Lin J-C, Lin T-Y. Genetic polymorphisms in inflammasome-dependent innate immunity among pediatric patients with severe renal parenchymal infections. PLoS One. 2015;10:e0140128. Available from: http://dx.plos.org/10.1371/journal.pone.0140128 CrossRefPubMedPubMedCentralGoogle Scholar
  282. 282.
    Thomson AW, Lotze MT. The cytokine handbook. New York: Academic Press; 2003. Available from: http://www.sciencedirect.com/science/book/9780126896633 Google Scholar
  283. 283.
    Yoshimoto T. Cytokine frontiers: regulation of immune responses in health and disease. Japan: Springer; 2014.  https://doi.org/10.1007/978-4-431-54442-5. ISBN: 9784431544425CrossRefGoogle Scholar
  284. 284.
    Dembic Z. Chapter 1 – Introduction—Common features about cytokines. In: Dembic Z, editor. The cytokines of the immune system. London: Academic; 2015. p. 1–16.  https://doi.org/10.1016/B978-0-12-419998-9.00001-8. ISBN:9780124199989.CrossRefGoogle Scholar
  285. 285.
    Berezin VA (Vladimir A, Walmod PS. Cell adhesion molecules: implications in neurological diseases. Springer; New York 2014. ISBN:1461480892CrossRefGoogle Scholar
  286. 286.
    Marks F, Fürstenberger G. Prostaglandins, leukotrienes, and other eicosanoids: from biogenesis to clinical application. Weinheim: Wiley-VCH; 1999. ISBN:3527613633CrossRefGoogle Scholar
  287. 287.
    Lee MCS, Miller EA, Goldberg J, Orci L, Schekman R. Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol. 2004;20:87–123. Available from: http://www.annualreviews.org/doi/10.1146/annurev.cellbio.20.010403.105307 CrossRefPubMedGoogle Scholar
  288. 288.
    Bhattacharya A, Prakash YS, Eissa NT. Secretory function of autophagy in innate immune cells. Cell Microbiol. 2014;16:1637–45. Available from: http://doi.wiley.com/10.1111/cmi.12365 CrossRefPubMedGoogle Scholar
  289. 289.
    Stow JL, Murray RZ. Intracellular trafficking and secretion of inflammatory cytokines. Cytokine Growth Factor Rev. 2013;24:227–39. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23647915 CrossRefPubMedGoogle Scholar
  290. 290.
    Murray RZ, Stow JL. Cytokine secretion in macrophages: SNAREs, Rabs, and membrane trafficking. Front Immunol. 2014;5:538. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25386181 CrossRefPubMedPubMedCentralGoogle Scholar
  291. 291.
    De Matteis MA, Luini A. Exiting the Golgi complex. Nat Rev Mol Cell Biol. 2008;9:273–84. Available from: http://www.nature.com/doifinder/10.1038/nrm2378 CrossRefPubMedGoogle Scholar
  292. 292.
    Alabi AA, Tsien RW. Perspectives on kiss-and-run: role in exocytosis, endocytosis, and neurotransmission. Annu Rev Physiol. 2013;75:393–422. Available from: http://www.annualreviews.org/doi/10.1146/annurev-physiol-020911-153305 CrossRefPubMedGoogle Scholar
  293. 293.
    Vardjan N, Jorgačevski J, Zorec R. Fusion pores, SNAREs, and exocytosis. Neuroscience. 2013;19:160–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23019088 CrossRefGoogle Scholar
  294. 294.
    Chiaruttini G, Piperno GM, Jouve M, De Nardi F, Larghi P, Peden AA, et al. The SNARE VAMP7 regulates exocytic trafficking of interleukin-12 in dendritic cells. Cell Rep. 2016;14:2624–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26972013 CrossRefPubMedPubMedCentralGoogle Scholar
  295. 295.
    Collins LE, DeCourcey J, Soledad di Luca M, Rochfort KD, Loscher CE. An emerging role for SNARE proteins in dendritic cell function. Front Immunol. 2015;6:133. Available from: http://journal.frontiersin.org/Article/10.3389/fimmu.2015.00133/abstract CrossRefPubMedPubMedCentralGoogle Scholar
  296. 296.
    Zhu H, Wang L, Ruan Y, Zhou L, Zhang D, Min Z, et al. An efficient delivery of DAMPs on the cell surface by the unconventional secretion pathway. Biochem Biophys Res Commun. 2011;404:790–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21168385 CrossRefPubMedGoogle Scholar
  297. 297.
    Daniels M, Brough D. Unconventional pathways of secretion contribute to inflammation. Int J Mol Sci. 2017;18:102. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28067797 CrossRefPubMedCentralGoogle Scholar
  298. 298.
    Malhotra V. Unconventional protein secretion: an evolving mechanism. EMBO J. 2013;32:1660–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23665917 CrossRefPubMedPubMedCentralGoogle Scholar
  299. 299.
    Robinson DG, Ding Y, Jiang L. Unconventional protein secretion in plants: a critical assessment. Protoplasma. 2016;253:31–43. Available from: http://link.springer.com/10.1007/s00709-015-0887-1 CrossRefPubMedGoogle Scholar
  300. 300.
    Pompa A, De Marchis F, Pallotta MT, Benitez-Alfonso Y, Jones A, Schipper K, et al. Unconventional transport routes of soluble and membrane proteins and their role in developmental biology. Int J Mol Sci. 2017;18:703. Available from: http://www.mdpi.com/1422-0067/18/4/703 CrossRefPubMedCentralGoogle Scholar
  301. 301.
    Nickel W, Rabouille C. Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol. 2009;10:148–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19122676 CrossRefPubMedGoogle Scholar
  302. 302.
    Richards AL, Jackson WT. Intracellular vesicle acidification promotes maturation of infectious poliovirus particles. PLoS Pathog. 2012;8:e1003046. Available from: http://dx.plos.org/10.1371/journal.ppat.1003046 CrossRefPubMedPubMedCentralGoogle Scholar
  303. 303.
    Martín-Sánchez F, Diamond C, Zeitler M, Gomez AI, Baroja-Mazo A, Bagnall J, et al. Inflammasome-dependent IL-1β release depends upon membrane permeabilisation. Cell Death Differ. 2016;23:1219–31. Available from: http://www.nature.com/doifinder/10.1038/cdd.2015.176 CrossRefPubMedPubMedCentralGoogle Scholar
  304. 304.
    Li HS, Watowich SS. Innate immune regulation by STAT-mediated transcriptional mechanisms. Immunol Rev. 2014;261:84–101. Available from: http://doi.wiley.com/10.1111/imr.12198 CrossRefPubMedPubMedCentralGoogle Scholar
  305. 305.
    Liao W, Lin J-X, Leonard WJ. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity. 2013;38:13–25. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1074761313000113 CrossRefPubMedPubMedCentralGoogle Scholar
  306. 306.
    Malek TR, Castro I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity. 2010;33:153–65. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1074761310002876 CrossRefPubMedPubMedCentralGoogle Scholar
  307. 307.
    Yu A, Zhu L, Altman NH, Malek TR. A low interleukin-2 receptor signaling threshold supports the development and homeostasis of T regulatory cells. Immunity. 2009;30:204–17. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1074761309000661 CrossRefPubMedPubMedCentralGoogle Scholar
  308. 308.
    Luzina IG, Keegan AD, Heller NM, Rook GAW, Shea-Donohue T, Atamas SP. Regulation of inflammation by interleukin-4: a review of “alternatives”. J Leukoc Biol. 2012;92:753–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22782966 CrossRefPubMedPubMedCentralGoogle Scholar
  309. 309.
    Van Dyken SJ, Locksley RM. Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annu Rev Immunol. 2013;31:317–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23298208 CrossRefPubMedPubMedCentralGoogle Scholar
  310. 310.
    Paul WE. History of interleukin-4. Cytokine. 2015;75:3–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25814340 CrossRefPubMedPubMedCentralGoogle Scholar
  311. 311.
    McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007;7:429–42. Available from: http://www.nature.com/doifinder/10.1038/nri2094 CrossRefPubMedGoogle Scholar
  312. 312.
    Rochman Y, Spolski R, Leonard WJ. New insights into the regulation of T cells by γc family cytokines. Nat Rev Immunol. 2009;9:480–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19543225 CrossRefPubMedPubMedCentralGoogle Scholar
  313. 313.
    Eto D, Lao C, DiToro D, Barnett B, Escobar TC, Kageyama R, et al. IL-21 and IL-6 are critical for different aspects of B cell immunity and redundantly induce optimal follicular helper CD4 T cell (Tfh) differentiation. PLoS One. 2011;6:e17739. Available from: http://dx.plos.org/10.1371/journal.pone.0017739 CrossRefPubMedPubMedCentralGoogle Scholar
  314. 314.
    Broughton SE, Dhagat U, Hercus TR, Nero TL, Grimbaldeston MA, Bonder CS, et al. The GM-CSF/IL-3/IL-5 cytokine receptor family: from ligand recognition to initiation of signaling. Immunol Rev. 2012;250:277–302. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23046136 CrossRefPubMedGoogle Scholar
  315. 315.
    Papatriantafyllou M. Cytokines: GM-CSF in focus. Nat Rev Immunol. 2011;11:370–1. Available from: http://www.nature.com/doifinder/10.1038/nri2996 CrossRefPubMedGoogle Scholar
  316. 316.
    Kelly EA, Esnault S, Johnson SH, Liu LY, Malter JS, Burnham ME, et al. Human eosinophil activin A synthesis and mRNA stabilization are induced by the combination of IL-3 plus TNF. Immunol Cell Biol. 2016;94:701–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27001469 CrossRefPubMedPubMedCentralGoogle Scholar
  317. 317.
    Lotz M. Interleukin-6: a comprehensive review. Cancer Treat Res. 1995;80:209–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8821579 CrossRefPubMedGoogle Scholar
  318. 318.
    Tanaka T, Narazaki M, Kishimoto T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb Perspect Biol. 2014;6:a016295. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25190079 CrossRefPubMedPubMedCentralGoogle Scholar
  319. 319.
    Morieri ML, Passaro A, Zuliani G. Interleukin-6 “trans-signaling” and ischemic vascular disease: the important role of soluble gp130. Mediat Inflamm. 2017;2017:1–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28250574 CrossRefGoogle Scholar
  320. 320.
    Trinchieri G, Pflanz S, Kastelein RA. The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity. 2003;19:641–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14614851 CrossRefPubMedGoogle Scholar
  321. 321.
    Vignali DAA, Kuchroo VK. IL-12 family cytokines: immunological playmakers. Nat Immunol. 2012;13:722–8. Available from: http://www.nature.com/doifinder/10.1038/ni.2366 CrossRefPubMedPubMedCentralGoogle Scholar
  322. 322.
    Renauld J-C. Class II cytokine receptors and their ligands: key antiviral and inflammatory modulators. Nat Rev Immunol. 2003;3:667–76. Available from: http://www.nature.com/doifinder/10.1038/nri1153 CrossRefPubMedGoogle Scholar
  323. 323.
    Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors. Immunol Rev. 2004;202:8–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15546383 CrossRefPubMedGoogle Scholar
  324. 324.
    Pestka S, Krause CD, Sarkar D, Walter MR, Shi Y, Fisher PB. Interleukin-10 and related cytokines and receptors. Annu Rev Immunol. 2004;22:929–79. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15032600 CrossRefPubMedGoogle Scholar
  325. 325.
    Shen X-D, Ke B, Ji H, Gao F, Freitas MCS, Chang WW, et al. Disruption of type-I IFN pathway ameliorates preservation damage in mouse orthotopic liver transplantation via HO-1 dependent mechanism. Am J Transplant. 2012;12:1730–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22429450 CrossRefPubMedPubMedCentralGoogle Scholar
  326. 326.
    Trinchieri G. Type I interferon: friend or foe? J Exp Med. 2010;207:2053–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20837696 CrossRefPubMedPubMedCentralGoogle Scholar
  327. 327.
    Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol. 2014;14:36–49. Available from: http://www.nature.com/doifinder/10.1038/nri3581 CrossRefPubMedPubMedCentralGoogle Scholar
  328. 328.
    McNab F, Mayer-Barber K, Sher A, Wack A, O’Garra A. Type I interferons in infectious disease. Nat Rev Immunol. 2015;15:87–103. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25614319 CrossRefPubMedGoogle Scholar
  329. 329.
    Hertzog PJ, Williams BRG. Fine tuning type I interferon responses. Cytokine Growth Factor Rev. 2013;24:217–25. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1359610113000300 CrossRefPubMedGoogle Scholar
  330. 330.
    Blaszczyk K, Nowicka H, Kostyrko K, Antonczyk A, Wesoly J, Bluyssen HAR. The unique role of STAT2 in constitutive and IFN-induced transcription and antiviral responses. Cytokine Growth Factor Rev. 2016;29:71–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27053489 CrossRefPubMedGoogle Scholar
  331. 331.
    Chen K, Liu J, Cao X. Regulation of type I interferon signaling in immunity and inflammation: a comprehensive review. J Autoimmun. 2017;83:1–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28330758 CrossRefPubMedGoogle Scholar
  332. 332.
    Fenimore J, Young HA. Regulation of IFN-γ expression. Adv Exp Med Biol. 2016;941:1–19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27734406 CrossRefPubMedGoogle Scholar
  333. 333.
    Ushio S, Namba M, Okura T, Hattori K, Nukada Y, Akita K, et al. Cloning of the cDNA for human IFN-gamma-inducing factor, expression in Escherichia coli, and studies on the biologic activities of the protein. J Immunol. 1996;156:4274–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8666798 PubMedGoogle Scholar
  334. 334.
    Murphy K, Weaver C. Janeway’s IMMUNOBIOLOGY. 9th ed. New York: Garland Science, Taylor and Francis Group; 2016. Available from: http://www.garlandscience.com/product/isbn/9780815345053 CrossRefGoogle Scholar
  335. 335.
    Ahmed CM, Johnson HM. The role of a non-canonical JAK-STAT pathway in IFN therapy of poxvirus infection and multiple sclerosis. JAKSTAT. 2013;2:e26227. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24416655 PubMedPubMedCentralGoogle Scholar
  336. 336.
    Kearney S, Delgado C, Lenz LL. Differential effects of type I and II interferons on myeloid cells and resistance to intracellular bacterial infections. Immunol Res. 2013;55:187–200. Available from: http://link.springer.com/10.1007/s12026-012-8362-y CrossRefPubMedPubMedCentralGoogle Scholar
  337. 337.
    Johnson HM, Ahmed CM. Noncanonical IFN signaling: mechanistic linkage of genetic and epigenetic events. Mediat Inflamm. 2016;2016:1–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28077919 CrossRefGoogle Scholar
  338. 338.
    Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah NK, et al. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol. 2003;4:69–77. Available from: http://www.nature.com/doifinder/10.1038/ni875 CrossRefPubMedGoogle Scholar
  339. 339.
    Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S, Whitmore TE, et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol. 2003;4:63–8. Available from: http://www.nature.com/doifinder/10.1038/ni873 CrossRefPubMedGoogle Scholar
  340. 340.
    Zhou Z, Hamming OJ, Ank N, Paludan SR, Nielsen AL, Hartmann R. Type III interferon (IFN) induces a type I IFN-like response in a restricted subset of cells through signaling pathways involving both the Jak-STAT pathway and the mitogen-activated protein kinases. J Virol. 2007;81:7749–58. Available from: http://jvi.asm.org/cgi/doi/10.1128/JVI.02438-06 CrossRefPubMedPubMedCentralGoogle Scholar
  341. 341.
    Prokunina-Olsson L, Muchmore B, Tang W, Pfeiffer RM, Park H, Dickensheets H, et al. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genet. 2013;45:164–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23291588 CrossRefPubMedPubMedCentralGoogle Scholar
  342. 342.
    de Weerd NA, Nguyen T. The interferons and their receptors—distribution and regulation. Immunol Cell Biol. 2012;90:483–91. Available from: http://www.nature.com/doifinder/10.1038/icb.2012.9 CrossRefPubMedGoogle Scholar
  343. 343.
    Lazear HM, Nice TJ, Diamond MS. Interferon-λ: immune functions at barrier surfaces and beyond. Immunity. 2015;43:15–28. Available from: http://linkinghub.elsevier.com/retrieve/pii/S107476131500268X CrossRefPubMedPubMedCentralGoogle Scholar
  344. 344.
    Hoffmann H-H, Schneider WM, Rice CM. Interferons and viruses: an evolutionary arms race of molecular interactions. Trends Immunol. 2015;36:124–38. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1471490615000150 CrossRefPubMedPubMedCentralGoogle Scholar
  345. 345.
    Odendall C, Kagan JC. The unique regulation and functions of type III interferons in antiviral immunity. Curr Opin Virol. 2015;12:47–52. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1879625715000279 CrossRefPubMedPubMedCentralGoogle Scholar
  346. 346.
    Mosser DM, Zhang X. Interleukin-10: new perspectives on an old cytokine. Immunol Rev. 2008;226:205–18. Available from: http://doi.wiley.com/10.1111/j.1600-065X.2008.00706.x CrossRefPubMedPubMedCentralGoogle Scholar
  347. 347.
    Couper KN, Blount DG, Riley EM. IL-10: the master regulator of immunity to infection. J Immunol. 2008;180:5771–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18424693 CrossRefPubMedGoogle Scholar
  348. 348.
    Zhai Y, Busuttil RW, Kupiec-Weglinski JW. Liver ischemia and reperfusion injury: new insights into mechanisms of innate-adaptive immune-mediated tissue inflammation. Am J Transplant. 2011;11:1563–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21668640 CrossRefPubMedPubMedCentralGoogle Scholar
  349. 349.
    Wan X, Huang WJ, Chen W, Xie H-G, Wei P, Chen X, et al. IL-10 deficiency increases renal ischemia-reperfusion injury. Nephron Exp Nephrol. 2014;128:37–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25376659 CrossRefPubMedGoogle Scholar
  350. 350.
    Rojas JM, Avia M, Martín V, Sevilla N. IL-10: a multifunctional cytokine in viral infections. J Immunol Res. 2017;2017:1–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28316998 CrossRefGoogle Scholar
  351. 351.
    Fouda AY, Pillai B, Dhandapani KM, Ergul A, Fagan SC. Role of interleukin-10 in the neuroprotective effect of the Angiotensin Type 2 Receptor agonist, compound 21, after ischemia/reperfusion injury. Eur J Pharmacol. 2017;799:128–34. Available from: http://linkinghub.elsevier.com/retrieve/pii/S001429991730081X CrossRefPubMedPubMedCentralGoogle Scholar
  352. 352.
    Mingomataj EÇ, Bakiri AH. Regulator versus effector paradigm: interleukin-10 as indicator of the switching response. Clin Rev Allergy Immunol. 2016;50:97–113. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26450621 CrossRefPubMedGoogle Scholar
  353. 353.
    Villalta SA, Rosenthal W, Martinez L, Kaur A, Sparwasser T, Tidball JG, et al. Regulatory T cells suppress muscle inflammation and injury in muscular dystrophy. Sci Transl Med. 2014;6:258ra142. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25320234 CrossRefPubMedPubMedCentralGoogle Scholar
  354. 354.
    Raker VK, Domogalla MP, Steinbrink K. Tolerogenic dendritic cells for regulatory T Cell induction in man. Front Immunol. 2015;6:569. Available from: http://journal.frontiersin.org/Article/10.3389/fimmu.2015.00569/abstract CrossRefPubMedPubMedCentralGoogle Scholar
  355. 355.
    Wortel C, Heidt S. Regulatory B cells: phenotype, function and role in transplantation. Transpl Immunol. 2017;41:1–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28257995 CrossRefPubMedGoogle Scholar
  356. 356.
    Donnelly RP, Dickensheets H, Finbloom DS. The interleukin-10 signal transduction pathway and regulation of gene expression in mononuclear phagocytes. J Interf Cytokine Res. 1999;19:563–73. Available from: http://www.liebertonline.com/doi/abs/10.1089/107999099313695 CrossRefGoogle Scholar
  357. 357.
    Commins S, Steinke JW, Borish L. The extended IL-10 superfamily: IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28, and IL-29. J Allergy Clin Immunol. 2008;121:1108–11. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0091674908004107 CrossRefPubMedGoogle Scholar
  358. 358.
    Dinarello C, Arend W, Sims J, Smith D, Blumberg H, O’Neill L, et al. IL-1 family nomenclature. Nat Immunol. 2010;11:973. Available from: http://www.nature.com/doifinder/10.1038/ni1110-973 CrossRefPubMedPubMedCentralGoogle Scholar
  359. 359.
    Garlanda C, Dinarello CA, Mantovani A. The interleukin-1 family: back to the future. Immunity. 2013;39:1003–18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24332029 CrossRefPubMedPubMedCentralGoogle Scholar
  360. 360.
    Garlanda C, Riva F, Bonavita E, Mantovani A. Negative regulatory receptors of the IL-1 family. Semin Immunol. 2013;25:408–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24239046 CrossRefPubMedGoogle Scholar
  361. 361.
    Martin SJ. Cell death and inflammation: the case for IL-1 family cytokines as the canonical DAMPs of the immune system. FEBS J. 2016;283:2599–615. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27273805 CrossRefPubMedGoogle Scholar
  362. 362.
    Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27:519–50. Available from: http://www.annualreviews.org/doi/10.1146/annurev.immunol.021908.132612 CrossRefPubMedGoogle Scholar
  363. 363.
    Borthwick LA. The IL-1 cytokine family and its role in inflammation and fibrosis in the lung. Semin Immunopathol. 2016;38:517–34. Available from: http://link.springer.com/10.1007/s00281-016-0559-z CrossRefPubMedPubMedCentralGoogle Scholar
  364. 364.
    Cohen I, Rider P, Carmi Y, Braiman A, Dotan S, White MR, et al. Differential release of chromatin-bound IL-1alpha discriminates between necrotic and apoptotic cell death by the ability to induce sterile inflammation. Proc Natl Acad Sci U S A. 2010;107:2574–9. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.0915018107 CrossRefPubMedPubMedCentralGoogle Scholar
  365. 365.
    Land WG, Agostinis P, Gasser S, Garg AD, Linkermann A. Transplantation and damage-associated molecular patterns (DAMPs). Am J Transplant. 2016;16:3338–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27421829 CrossRefPubMedGoogle Scholar
  366. 366.
    Kesavardhana S, Kanneganti T-D. Mechanisms governing inflammasome activation, assembly and pyroptosis induction. Int Immunol. 2017;29:201–10. Available from: https://academic.oup.com/intimm/article-lookup/doi/10.1093/intimm/dxx018 CrossRefPubMedPubMedCentralGoogle Scholar
  367. 367.
    Qiu S, Liu J, Xing F. “Hints” in the killer protein gasdermin D: unveiling the secrets of gasdermins driving cell death. Cell Death Differ. 2017;24:588–96. Available from: http://www.nature.com/doifinder/10.1038/cdd.2017.24 CrossRefPubMedPubMedCentralGoogle Scholar
  368. 368.
    Gutierrez KD, Davis MA, Daniels BP, Olsen TM, Ralli-Jain P, Tait SWG, et al. MLKL activation triggers NLRP3-mediated processing and release of IL-1β independently of gasdermin-D. J Immunol. 2017;198:2156–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28130493 CrossRefPubMedPubMedCentralGoogle Scholar
  369. 369.
    Dower SK, Kronheim SR, Hopp TP, Cantrell M, Deeley M, Gillis S, et al. The cell surface receptors for interleukin-1 alpha and interleukin-1 beta are identical. Nature. 1986;324:266–8. Available from: http://www.nature.com/doifinder/10.1038/324266a0 CrossRefPubMedGoogle Scholar
  370. 370.
    Wawrocki S, Druszczynska M, Kowalewicz-Kulbat M, Rudnicka W. Interleukin 18 (IL-18) as a target for immune intervention. Acta Biochim Pol. 2016;63:59–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26885772 CrossRefPubMedGoogle Scholar
  371. 371.
    Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H. Interleukin-18 regulates both TH1 and TH2 responses. Annu Rev Immunol. 2001;19:423–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11244043 CrossRefPubMedGoogle Scholar
  372. 372.
    Carta S, Lavieri R, Rubartelli A. Different members of the IL-1 family come out in different ways: DAMPs vs. cytokines? Front Immunol. 2013;4:123. Available from: http://journal.frontiersin.org/article/10.3389/fimmu.2013.00123/abstract CrossRefPubMedPubMedCentralGoogle Scholar
  373. 373.
    Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23:479–90. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1074761305003110 CrossRefPubMedGoogle Scholar
  374. 374.
    Moussion C, Ortega N, Girard J-P. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel “alarmin”? PLoS One. 2008;3:e3331. Available from: http://dx.plos.org/10.1371/journal.pone.0003331 CrossRefPubMedPubMedCentralGoogle Scholar
  375. 375.
    Liew FY, Pitman NI, McInnes IB. Disease-associated functions of IL-33: the new kid in the IL-1 family. Nat Rev Immunol. 2010;10:103–10. Available from: http://www.nature.com/doifinder/10.1038/nri2692 CrossRefPubMedGoogle Scholar
  376. 376.
    Cayrol C, Girard J-P. IL-33: an alarmin cytokine with crucial roles in innate immunity, inflammation and allergy. Curr Opin Immunol. 2014;31:31–7. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0952791514001101 CrossRefPubMedGoogle Scholar
  377. 377.
    Xu H, Turnquist HR, Hoffman R, Billiar TR. Role of the IL-33-ST2 axis in sepsis. Mil Med Res. 2017;4:3. Available from: http://mmrjournal.biomedcentral.com/articles/10.1186/s40779-017-0115-8 CrossRefPubMedPubMedCentralGoogle Scholar
  378. 378.
    Hahn M, Frey S, Hueber AJ. The novel interleukin-1 cytokine family members in inflammatory diseases. Curr Opin Rheumatol. 2017;29:208–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27926540 CrossRefPubMedGoogle Scholar
  379. 379.
    Kumar S, McDonnell PC, Lehr R, Tierney L, Tzimas MN, Griswold DE, et al. Identification and initial characterization of four novel members of the interleukin-1 family. J Biol Chem. 2000;275:10308–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10744718 CrossRefPubMedGoogle Scholar
  380. 380.
    Gao W, Kumar S, Lotze MT, Hanning C, Robbins PD, Gambotto A. Innate immunity mediated by the cytokine IL-1 homologue 4 (IL-1H4/IL-1F7) induces IL-12-dependent adaptive and profound antitumor immunity. J Immunol. 2003;170:107–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12496389 CrossRefPubMedGoogle Scholar
  381. 381.
    Rudloff I, Godsell J, Nold-Petry CA, Harris J, Hoi A, Morand EF, et al. Brief report: Interleukin-38 exerts antiinflammatory functions and is associated with disease activity in systemic lupus erythematosus. Arthritis Rheumatol (Hoboken NJ). 2015;67:3219–25. Available from: http://doi.wiley.com/10.1002/art.39328 CrossRefGoogle Scholar
  382. 382.
    Pang IK, Ichinohe T, Iwasaki A. IL-1R signaling in dendritic cells replaces pattern-recognition receptors in promoting CD8+ T cell responses to influenza A virus. Nat Immunol. 2013;14:246–53. Available from: http://www.nature.com/doifinder/10.1038/ni.2514 CrossRefPubMedPubMedCentralGoogle Scholar
  383. 383.
    Aggarwal BB, Gupta SC, Kim JH. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood. 2012;119:651–65. Available from: http://www.bloodjournal.org/cgi/doi/10.1182/blood-2011-04-325225 CrossRefPubMedPubMedCentralGoogle Scholar
  384. 384.
    Sedger LM, McDermott MF. TNF and TNF-receptors: from mediators of cell death and inflammation to therapeutic giants - past, present and future. Cytokine Growth Factor Rev. 2014;25:453–72. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1359610114000781 CrossRefPubMedGoogle Scholar
  385. 385.
    Brenner D, Blaser H, Mak TW. Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol. 2015;15:362–74. Available from: http://www.nature.com/doifinder/10.1038/nri3834 CrossRefPubMedGoogle Scholar
  386. 386.
    Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol. 2016;12:49–62. Available from: http://www.nature.com/doifinder/10.1038/nrrheum.2015.169 CrossRefPubMedGoogle Scholar
  387. 387.
    Blaser H, Dostert C, Mak TW, Brenner D. TNF and ROS crosstalk in inflammation. Trends Cell Biol. 2016;26:249–61. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0962892415002494 CrossRefPubMedGoogle Scholar
  388. 388.
    Adrain C, Zettl M, Christova Y, Taylor N, Freeman M. Tumor necrosis factor signaling requires iRhom2 to promote trafficking and activation of TACE. Science. 2012;335:225–8. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1214400 CrossRefPubMedPubMedCentralGoogle Scholar
  389. 389.
    McIlwain DR, Lang PA, Maretzky T, Hamada K, Ohishi K, Maney SK, et al. iRhom2 regulation of TACE controls TNF-mediated protection against Listeria and responses to LPS. Science. 2012;335:229–32. Available from: http://www.sciencemag.org/cgi/doi/10.1126/science.1214448 CrossRefPubMedPubMedCentralGoogle Scholar
  390. 390.
    Cua DJ, Tato CM. Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol. 2010;10:479–89. Available from: http://www.nature.com/doifinder/10.1038/nri2800 CrossRefPubMedGoogle Scholar
  391. 391.
    Shabgah AG, Fattahi E, Shahneh FZ. Interleukin-17 in human inflammatory diseases. Adv Dermatol Allergol. 2014;4:256–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25254011 CrossRefGoogle Scholar
  392. 392.
    Sharma J, Balakrishnan L, Datta KK, Sahasrabuddhe NA, Khan AA, Sahu A, et al. A knowledgebase resource for interleukin-17 family mediated signaling. J Cell Commun Signal. 2015;9:291–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26077014 CrossRefPubMedPubMedCentralGoogle Scholar
  393. 393.
    Song X, He X, Li X, Qian Y. The roles and functional mechanisms of interleukin-17 family cytokines in mucosal immunity. Cell Mol Immunol. 2016;13:418–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27018218 CrossRefPubMedPubMedCentralGoogle Scholar
  394. 394.
    Miossec P. Update on interleukin-17: a role in the pathogenesis of inflammatory arthritis and implication for clinical practice. RMD Open. 2017;3:e000284. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28243466 CrossRefPubMedPubMedCentralGoogle Scholar
  395. 395.
    Li L, Huang L, Vergis AL, Ye H, Bajwa A, Narayan V, et al. IL-17 produced by neutrophils regulates IFN-gamma-mediated neutrophil migration in mouse kidney ischemia-reperfusion injury. J Clin Invest. 2010;120:331–42. Available from: http://www.jci.org/articles/view/38702 CrossRefPubMedGoogle Scholar
  396. 396.
    Feng M, Li G, Qian X, Fan Y, Huang X, Zhang F, et al. IL-17A-producing NK cells were implicated in liver injury induced by ischemia and reperfusion. Int Immunopharmacol. 2012;13:135–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22465963 CrossRefPubMedGoogle Scholar
  397. 397.
    Zhu H, Li J, Wang S, Liu K, Wang L, Huang L. Hmgb1-TLR4-IL-23-IL-17A axis promote ischemia-reperfusion injury in a cardiac transplantation model. Transp J. 2013;95:1448–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23677049 CrossRefGoogle Scholar
  398. 398.
    Tsai H-C, Velichko S, Hung L-Y, Wu R. IL-17A and Th17 cells in lung inflammation: an update on the role of Th17 cell differentiation and IL-17R signaling in host defense against infection. Clin Dev Immunol. 2013;2013:1–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23956759 CrossRefGoogle Scholar
  399. 399.
    Onishi RM, Gaffen SL. Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology. 2010;129:311–21. Available from: http://doi.wiley.com/10.1111/j.1365-2567.2009.03240.x CrossRefPubMedPubMedCentralGoogle Scholar
  400. 400.
    Land WG. Chronic allograft dysfunction: a model disorder of innate immunity. Biom J. 2013;36:209–28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24225188 Google Scholar
  401. 401.
    Li MO, Wan YY, Sanjabi S, A-KL R, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 2006;24:99–146. Available from: http://www.annualreviews.org/doi/10.1146/annurev.immunol.24.021605.090737 CrossRefPubMedGoogle Scholar
  402. 402.
    Hinck AP, Mueller TD, Springer TA. Structural biology and evolution of the TGF-β family. Cold Spring Harb Perspect Biol. 2016;8:a022103. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27638177 CrossRefPubMedPubMedCentralGoogle Scholar
  403. 403.
    Hata A, Chen Y-G. TGF-β signaling from receptors to Smads. Cold Spring Harb Perspect Biol. 2016;8:a022061. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27449815 CrossRefPubMedPubMedCentralGoogle Scholar
  404. 404.
    Moses HL, Roberts AB, Derynck R. The discovery and early days of TGF-β: a historical perspective. Cold Spring Harb Perspect Biol. 2016;8:a021865. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27328871 CrossRefPubMedPubMedCentralGoogle Scholar
  405. 405.
    Kelly A, Houston SA, Sherwood E, Casulli J, Travis MA. Regulation of innate and adaptive immunity by TGFβ. Adv Immunol. 2017;134:137–233. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0065277617300019 CrossRefPubMedGoogle Scholar
  406. 406.
    Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol. 2016;8:a021873. Available from: http://cshperspectives.cshlp.org/lookup/doi/10.1101/cshperspect.a021873 CrossRefPubMedPubMedCentralGoogle Scholar
  407. 407.
    Chang C. Agonists and antagonists of TGF-β family ligands. Cold Spring Harb Perspect Biol. 2016;8:a021923. Available from: http://cshperspectives.cshlp.org/lookup/doi/10.1101/cshperspect.a021923 CrossRefPubMedPubMedCentralGoogle Scholar
  408. 408.
    DiPietro LA, Nissen NN, Gamelli RL, Koch AE, Pyle JM, Polverini PJ. Thrombospondin 1 synthesis and function in wound repair. Am J Pathol. 1996;148:1851–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8669471 PubMedPubMedCentralGoogle Scholar
  409. 409.
    Li Y, Qi X, Tong X, Wang S. Thrombospondin 1 activates the macrophage Toll-like receptor 4 pathway. Cell Mol Immunol. 2013;10:506–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23954950 CrossRefPubMedPubMedCentralGoogle Scholar
  410. 410.
    Cheng M, Liu H, Zhang D, Liu Y, Wang C, Liu F, et al. HMGB1 enhances the AGE-induced expression of CTGF and TGF-β via RAGE-dependent signaling in renal tubular epithelial cells. Am J Nephrol. 2015;41:257–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25924590 CrossRefPubMedGoogle Scholar
  411. 411.
    Pittet J-F, Koh H, Fang X, Iles K, Christiaans S, Anjun N, et al. HMGB1 accelerates alveolar epithelial repair via an IL-1β- and αvβ6 integrin-dependent activation of TGF-β1. PLoS One. 2013;8:e63907. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23696858 CrossRefPubMedPubMedCentralGoogle Scholar
  412. 412.
    Markovics JA, Araya J, Cambier S, Somanath S, Gline S, Jablons D, et al. Interleukin-1beta induces increased transcriptional activation of the transforming growth factor-beta-activating integrin subunit beta8 through altering chromatin architecture. J Biol Chem. 2011;286:36864–74. Available from: http://www.jbc.org/cgi/doi/10.1074/jbc.M111.276790 CrossRefPubMedPubMedCentralGoogle Scholar
  413. 413.
    Yan X, Chen Y-G. Smad7: not only a regulator, but also a cross-talk mediator of TGF-β signalling. Biochem J. 2011;434:1–10. Available from: http://biochemj.org/lookup/doi/10.1042/BJ20101827 CrossRefPubMedGoogle Scholar
  414. 414.
    Penn JW, Grobbelaar AO, Rolfe KJ. The role of the TGF-β family in wound healing, burns and scarring: a review. Int J Burns Trauma. 2012;2:18–28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22928164 PubMedPubMedCentralGoogle Scholar
  415. 415.
    Finnson KW, McLean S, Di Guglielmo GM, Philip A. Dynamics of transforming growth factor beta signaling in wound healing and scarring. Adv Wound Care. 2013;2:195–214. Available from: http://online.liebertpub.com/doi/abs/10.1089/wound.2013.0429 CrossRefGoogle Scholar
  416. 416.
    Aoki CA, Borchers AT, Li M, Flavell RA, Bowlus CL, Ansari AA, et al. Transforming growth factor β (TGF-β) and autoimmunity. Autoimmun Rev. 2005;4:450–9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S156899720500042X CrossRefPubMedGoogle Scholar
  417. 417.
    Meng X-M, Nikolic-Paterson DJ, Lan HY. TGF-β: the master regulator of fibrosis. Nat Rev Nephrol. 2016;12:325–38. Available from: http://www.nature.com/doifinder/10.1038/nrneph.2016.48 CrossRefPubMedGoogle Scholar
  418. 418.
    Seoane J, Gomis RR. TGF-β family signaling in tumor suppression and cancer progression. Cold Spring Harb Perspect Biol. 2017;2017:a022277. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28246180 CrossRefGoogle Scholar
  419. 419.
    Lammie A, Drobnjak M, Gerald W, Saad A, Cote R, Cordon-Cardo C. Expression of c-kit and kit ligand proteins in normal human tissues. J Histochem Cytochem. 1994;42:1417–25. Available from: http://journals.sagepub.com/doi/10.1177/42.11.7523489 CrossRefPubMedGoogle Scholar
  420. 420.
    Reber L, Da Silva CA, Frossard N. Stem cell factor and its receptor c-Kit as targets for inflammatory diseases. Eur J Pharmacol. 2006;533:327–40. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0014299905014007 CrossRefPubMedGoogle Scholar
  421. 421.
    Carpenter G, Liao H-J. Receptor tyrosine kinases in the nucleus. Cold Spring Harb Perspect Biol. 2013;5:a008979. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24086039 CrossRefPubMedPubMedCentralGoogle Scholar
  422. 422.
    Liang J, Wu Y-L, Chen B-J, Zhang W, Tanaka Y, Sugiyama H. The C-Kit receptor-mediated signal transduction and tumor-related diseases. Int J Biol Sci. 2013;9:435–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23678293 CrossRefPubMedPubMedCentralGoogle Scholar
  423. 423.
    Zlotnik A, Yoshie O, Nomiyama H. The chemokine and chemokine receptor superfamilies and their molecular evolution. Genome Biol. 2006;7:243. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17201934 CrossRefPubMedPubMedCentralGoogle Scholar
  424. 424.
    Graves DT, Jiang Y. Chemokines, a family of chemotactic cytokines. Crit Rev Oral Biol Med. 1995;6:109–18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7548618 CrossRefPubMedGoogle Scholar
  425. 425.
    Kufareva I, Salanga CL, Handel TM. Chemokine and chemokine receptor structure and interactions: implications for therapeutic strategies. Immunol Cell Biol. 2015;93:372–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25708536 CrossRefPubMedPubMedCentralGoogle Scholar
  426. 426.
    Zlotnik A, Yoshie O. The chemokine superfamily revisited. Immunity. 2012;36:705–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22633458 CrossRefPubMedPubMedCentralGoogle Scholar
  427. 427.
    Sokol CL, Luster AD. The chemokine system in innate immunity. Cold Spring Harb Perspect Biol. 2015;7:a016303. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25635046 CrossRefPubMedPubMedCentralGoogle Scholar
  428. 428.
    Tecchio C, Cassatella MA. Neutrophil-derived chemokines on the road to immunity. Semin Immunol. 2016;28:119–28. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1044532316300173 CrossRefPubMedGoogle Scholar
  429. 429.
    Bachelerie F, Ben-Baruch A, Burkhardt AM, Combadiere C, Farber JM, Graham GJ, et al. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol Rev. 2014;66:1–79. Available from: http://pharmrev.aspetjournals.org/cgi/doi/10.1124/pr.113.007724 CrossRefPubMedPubMedCentralGoogle Scholar
  430. 430.
    Ganju RK, Brubaker SA, Meyer J, Dutt P, Yang Y, Qin S, et al. The alpha-chemokine, stromal cell-derived factor-1alpha, binds to the transmembrane G-protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways. J Biol Chem. 1998;273:23169–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9722546 CrossRefPubMedGoogle Scholar
  431. 431.
    Bryant VL, Slade CA. Chemokines, their receptors and human disease: the good, the bad and the itchy. Immunol Cell Biol. 2015;93:364–71. Available from: http://www.nature.com/doifinder/10.1038/icb.2015.23 CrossRefPubMedGoogle Scholar
  432. 432.
    Caronni N, Savino B, Recordati C, Villa A, Locati M, Bonecchi R. Cancer and chemokines. Methods Mol Biol. 2016;1393:87–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27033218 CrossRefPubMedGoogle Scholar
  433. 433.
    Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. Type I interferons in anticancer immunity. Nat Rev Immunol. 2015;15:405–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26027717 CrossRefPubMedGoogle Scholar
  434. 434.
    Langer HF, Chavakis T. Leukocyte - endothelial interactions in inflammation. J Cell Mol Med. 2009;13:1211–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19538472 CrossRefPubMedPubMedCentralGoogle Scholar
  435. 435.
    Leow-Dyke S, Allen C, Denes A, Nilsson O, Maysami S, Bowie AG, et al. Neuronal toll-like receptor 4 signaling induces brain endothelial activation and neutrophil transmigration in vitro. J Neuroinflammation. 2012;9:698. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23034047 CrossRefGoogle Scholar
  436. 436.
    Etzioni A, Selanikio JD. Adhesion molecules—their role in health and disease. Pediatr Res. 1996;39:191–8. Available from: http://www.nature.com/doifinder/10.1203/00006450-199604001-01156 CrossRefPubMedGoogle Scholar
  437. 437.
    Patel SJ, Jindal R, King KR, Tilles AW, Yarmush ML. The inflammatory response to double stranded DNA in endothelial cells is mediated by NFκB and TNFα. PLoS One. 2011;6:e19910. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21611132 CrossRefPubMedPubMedCentralGoogle Scholar
  438. 438.
    Kourtzelis I, Mitroulis I, von Renesse J, Hajishengallis G, Chavakis T. From leukocyte recruitment to resolution of inflammation: the cardinal role of integrins. J Leukoc Biol. 2017;jlb.3MR0117-024R. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28292945
  439. 439.
    Sun S, Sursal T, Adibnia Y, Zhao C, Zheng Y, Li H, et al. Mitochondrial DAMPs increase endothelial permeability through neutrophil dependent and independent pathways. PLoS One. 2013;8:e59989. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23527291 CrossRefPubMedPubMedCentralGoogle Scholar
  440. 440.
    Dennis EA, Norris PC. Eicosanoid storm in infection and inflammation. Nat Rev Immunol. 2015;15:511–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26139350 CrossRefPubMedPubMedCentralGoogle Scholar
  441. 441.
    Metchnikoff E. Über eine Sprosspilzerkrankungder Daphniden. Beitrag zur Lehre der Phagocyten gegen Krankheitserreger. Virchows Arch für Pathol Anat und Physiol. 1884;96:177–93.CrossRefGoogle Scholar
  442. 442.
    Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol. 1999;17:593–623. Available from: http://www.annualreviews.org/doi/10.1146/annurev.immunol.17.1.593 CrossRefPubMedGoogle Scholar
  443. 443.
    Underhill DM, Ozinsky A. Phagocytosis of microbes: complexity in action. Annu Rev Immunol. 2002;20:825–52. Available from: http://www.annualreviews.org/doi/10.1146/annurev.immunol.20.103001.114744 CrossRefPubMedGoogle Scholar
  444. 444.
    Greenberg S, Grinstein S. Phagocytosis and innate immunity. Curr Opin Immunol. 2002;14:136–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11790544 CrossRefPubMedGoogle Scholar
  445. 445.
    Aderem A. Phagocytosis and the inflammatory response. J Infect Dis. 2003;187:S340–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12792849 CrossRefPubMedGoogle Scholar
  446. 446.
    Freeman SA, Grinstein S. Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunol Rev. 2014;262:193–215. Available from: http://doi.wiley.com/10.1111/imr.12212 CrossRefPubMedGoogle Scholar
  447. 447.
    Flannagan RS, Jaumouillé V, Grinstein S. The cell biology of phagocytosis. Annu Rev Pathol Mech Dis. 2012;7:61–98. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21910624 CrossRefGoogle Scholar
  448. 448.
    Gordon S. Phagocytosis: an immunobiologic process. Immunity. 2016;44:463–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26982354 CrossRefPubMedGoogle Scholar
  449. 449.
    Green DR, Oguin TH, Martinez J. The clearance of dying cells: table for two. Cell Death Differ. 2016;23:1–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26990661 CrossRefGoogle Scholar
  450. 450.
    Sorkin A, von Zastrow M. Endocytosis and signalling: intertwining molecular networks. Nat Rev Mol Cell Biol. 2009;10:609–22. Available from: http://www.nature.com/doifinder/10.1038/nrm2748 CrossRefPubMedPubMedCentralGoogle Scholar
  451. 451.
    Grant BD, Donaldson JG. Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol. 2009;10:597–608. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19696797 CrossRefPubMedPubMedCentralGoogle Scholar
  452. 452.
    McMahon HT, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 2011;12:517–33. Available from: http://www.nature.com/doifinder/10.1038/nrm3151 CrossRefPubMedGoogle Scholar
  453. 453.
    Goh LK, Sorkin A. Endocytosis of receptor tyrosine kinases. Cold Spring Harb Perspect Biol. 2013;5:a017459. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23637288 CrossRefPubMedPubMedCentralGoogle Scholar
  454. 454.
    Di Fiore PP, von Zastrow M. Endocytosis, signaling, and beyond. Cold Spring Harb Perspect Biol. 2014;6:a016865. Available from: http://cshperspectives.cshlp.org/lookup/doi/10.1101/cshperspect.a016865 CrossRefPubMedPubMedCentralGoogle Scholar
  455. 455.
    Kirchhausen T, Owen D, Harrison SC. Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harb Perspect Biol. 2014;6:a016725. Available from: http://cshperspectives.cshlp.org/lookup/doi/10.1101/cshperspect.a016725 CrossRefPubMedPubMedCentralGoogle Scholar
  456. 456.
    Zhang X, Kim K-M. Multifactorial regulation of G protein-coupled receptor endocytosis. Biomol Ther (Seoul). 2017;25:26–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28035080 CrossRefGoogle Scholar
  457. 457.
    Kerr MC, Teasdale RD. Defining macropinocytosis. Traffic. 2009;10:364–71. Available from: http://doi.wiley.com/10.1111/j.1600-0854.2009.00878.x CrossRefPubMedGoogle Scholar
  458. 458.
    Ha KD, Bidlingmaier SM, Liu B. Macropinocytosis exploitation by cancers and cancer therapeutics. Front Physiol. 2016;7:381. Available from: http://journal.frontiersin.org/Article/10.3389/fphys.2016.00381/abstract CrossRefPubMedPubMedCentralGoogle Scholar
  459. 459.
    Lim JP, Gleeson PA. Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol. 2011;89:836–43. Available from: http://www.nature.com/doifinder/10.1038/icb.2011.20 CrossRefPubMedGoogle Scholar
  460. 460.
    Bloomfield G, Kay RR. Uses and abuses of macropinocytosis. J Cell Sci. 2016;129:2697–705. Available from: http://jcs.biologists.org/lookup/doi/10.1242/jcs.176149 CrossRefPubMedGoogle Scholar
  461. 461.
    Rosales C, Uribe-Querol E. Phagocytosis: a fundamental process in immunity. Biomed Res Int. 2017;2017:1–18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28691037 CrossRefGoogle Scholar
  462. 462.
    Wilson GJ, Marakalala MJ, Hoving JC, van Laarhoven A, Drummond RA, Kerscher B, et al. The C-type lectin receptor CLECSF8/CLEC4D is a key component of anti-mycobacterial immunity. Cell Host Microbe. 2015;17:252–9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1931312815000244 CrossRefPubMedPubMedCentralGoogle Scholar
  463. 463.
    Stamler JS, Lamas S, Fang FC. Nitrosylation: the prototypic redox-based signaling mechanism. Cell. 2001;106:675–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11572774 CrossRefPubMedGoogle Scholar
  464. 464.
    Ley K, Pramod AB, Croft M, Ravichandran KS, Ting JP. How mouse macrophages sense what is going on. Front Immunol. 2016;7:204. Available from: http://journal.frontiersin.org/Article/10.3389/fimmu.2016.00204/abstract CrossRefPubMedPubMedCentralGoogle Scholar
  465. 465.
    Niedergang F, Di Bartolo V, Alcover A. Comparative anatomy of phagocytic and immunological synapses. Front Immunol. 2016;7:18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26858721 CrossRefPubMedPubMedCentralGoogle Scholar
  466. 466.
    Levin R, Grinstein S, Canton J. The life cycle of phagosomes: formation, maturation, and resolution. Immunol Rev. 2016;273:156–79. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27558334 CrossRefPubMedGoogle Scholar
  467. 467.
    Elliott MR, Koster KM, Murphy PS. Efferocytosis signaling in the regulation of macrophage inflammatory responses. J Immunol. 2017;198:1387–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28167649 CrossRefPubMedPubMedCentralGoogle Scholar
  468. 468.
    Greenlee-Wacker MC. Clearance of apoptotic neutrophils and resolution of inflammation. Immunol Rev. 2016;273:357–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27558346 CrossRefPubMedPubMedCentralGoogle Scholar
  469. 469.
    Han CZ, Ravichandran KS. Metabolic connections during apoptotic cell engulfment. Cell. 2011;147:1442–5. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0092867411015054 CrossRefPubMedPubMedCentralGoogle Scholar
  470. 470.
    A-González N, Castrillo A. Liver X receptors as regulators of macrophage inflammatory and metabolic pathways. Biochim Biophys Acta Mol basis Dis. 2011;1812:982–94. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0925443910002930 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of StrasbourgMolecular ImmunoRheumatology, Laboratory of Excellence TransplantexStrasbourgFrance

Personalised recommendations