Advertisement

Regulated Cell Death

  • Walter Gottlieb Land
Chapter

Abstract

In this chapter, the various subroutines of regulated cell death are neatly described by highlighting apoptosis and subforms of regulated necrosis such as necroptosis, ferroptosis, pyroptosis, and NETosis. Typically, all forms of regulated necrosis are defined by finite rupture of the plasma cell membrane. Apoptosis is characterized by an enzymatic machinery that consists of caspases which cause the morphologic features of this type of cell death. Mechanistically, apoptosis can be instigated by two major cellular signalling pathways: an intrinsic pathway that is initiated inside cells by mitochondrial release of pro-apoptotic factors or an extrinsic pathway that is initiated at the cell surface by various death receptors. In necroptosis, the biochemical processes are distinct from those found in apoptosis; in particular, there is no caspase activation. As such, necroptosis is a kinase-mediated cell death that relies on “receptor-interacting protein kinase 3” which mediates phosphorylation of the pseudokinase “mixed lineage kinase domain-like protein.” While ferroptosis is an iron-dependent, oxidative form of regulated necrosis that is biochemically characterized by accumulation of ROS from iron metabolism, oxidase activity, and lipid peroxidation products, pyroptosis is defined as a form of cell death (predominantly of phagocytes) that develops during inflammasome activation and is executed by caspase-mediated cleavage of the pore-forming protein gasdermin D. Finally, NETosis refers to a regulated death of neutrophils that is characterized by the release of chromatin-derived weblike structures released into the extracellular space. The chapter ends up with a discussion on the characteristic feature of regulated necrosis: the passive release of large amounts of constitutive DAMPs as a consequence of final plasma membrane rupture as well as the active secretion of inducible DAMPs earlier during the dying process. Notably, per cell death subroutine, the active secretion of inducible DAMPs varies, thereby determining different immunogenicity of dying cells.

References

  1. 1.
    Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995;146:3–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7856735 PubMedPubMedCentralGoogle Scholar
  2. 2.
    Virchow R. Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre 1. Berlin: Auflage; 1858. Available from: http://www.deutschestextarchiv.de/book/show/virchow_cellularpathologie_1858 Google Scholar
  3. 3.
    Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, et al. Essential versus accessory aspects of cell death: recommendations of the NCCD 2015. Cell Death Differ. 2015;22:58–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25236395 CrossRefGoogle Scholar
  4. 4.
    Land WG, Agostinis P, Gasser S, Garg AD, Linkermann A. Transplantation and damage associated molecular patterns (DAMPs). Am J Transplant. 2016;16:3338–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27421829 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri ES. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun. 2017;8:14128. Available from: http://www.nature.com/doifinder/10.1038/ncomms14128 PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Linkermann A, Green DR. Necroptosis. N Engl J Med. 2014;370:455–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24476434 PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Grootjans S, Vanden Berghe T, Vandenabeele P. Initiation and execution mechanisms of necroptosis: an overview. Cell Death Differ. 2017;24:1184–95. Available from: http://www.nature.com/doifinder/10.1038/cdd.2017.65 PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Cao JY, Dixon SJ. Mechanisms of ferroptosis. Cell Mol Life Sci. 2016;73:2195–209. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27048822 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Man SM, Karki R, Kanneganti T-D. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev. 2017;277:61–75. Available from: http://doi.wiley.com/10.1111/imr.12534 PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Galluzzi L, Kepp O, Kroemer G. Mitochondrial regulation of cell death: a phylogenetically conserved control. Microb Cell (Graz, Austria). 2016;3:101–8. Available from: http://microbialcell.com/researcharticles/mitochondrial-regulation-of-cell-death-a-phylogenetically-conserved-control/ CrossRefGoogle Scholar
  11. 11.
    Izzo V, Bravo-San Pedro JM, Sica V, Kroemer G, Galluzzi L. Mitochondrial permeability transition: new findings and persisting uncertainties. Trends Cell Biol. 2016;26:655–67. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0962892416300204 PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Delgado-Rizo V, Martínez-Guzmán MA, Iñiguez-Gutierrez L, García-Orozco A, Alvarado-Navarro A, Fafutis-Morris M. Neutrophil extracellular traps and its implications in inflammation: an overview. Front Immunol. 2017;8:81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28220120 PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Danial NN, Korsmeyer SJ. Cell death: critical control points. Cell. 2004;116:205–19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14744432 CrossRefGoogle Scholar
  14. 14.
    Flemming W. Über die Bildung von Richtungsfiguren in Säugetrhiereiern beim Untergang Graff scher Follikel. Arch Anat Entw Gesch. 1885;1885:221–44.Google Scholar
  15. 15.
    Gräper L. Eine neue Anschauung über physiologische Zellausschaltung. Arch Zellforsch. 1914;12:372–94.Google Scholar
  16. 16.
    Glucksmann A. Cell deaths in normal vertebrate ontogeny. Biol Rev Camb Philos Soc. 1951;26:59–86. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24540363 PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Kerr JF. Shrinkage necrosis: a distinct mode of cellular death. J Pathol. 1971;105:13–20. Available from: http://doi.wiley.com/10.1002/path.1711050103 PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972;26:239–57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/4561027 PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Renehan AG, Booth C, Potten CS. What is apoptosis, and why is it important? BMJ. 2001;322:1536–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11420279 PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Riedl SJ, Salvesen GS. The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol. 2007;8:405–13. Available from: http://www.nature.com/doifinder/10.1038/nrm2153 CrossRefGoogle Scholar
  21. 21.
    Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008;9:231–41. Available from: http://www.nature.com/doifinder/10.1038/nrm2312 CrossRefGoogle Scholar
  22. 22.
    Green DR. Means to an end : apoptosis and other cell death mechanisms by Chicago Journals. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 2010. ISBN:9780879698874Google Scholar
  23. 23.
    Martin SJ, Henry CM, Cullen SP. A perspective on mammalian caspases as positive and negative regulators of inflammation. Mol Cell. 2012;46:387–97. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1097276512003486 PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Ashkenazi A, Salvesen G. Regulated cell death: signaling and mechanisms. Annu Rev Cell Dev Biol. 2014;30:337–56. Available from: http://www.annualreviews.org/doi/10.1146/annurev-cellbio-100913-013226 PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Martin SJ, Green DR. Protease activation during apoptosis: death by a thousand cuts? Cell. 1995;82:349–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7634323 PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281:1309–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9721092 CrossRefGoogle Scholar
  27. 27.
    Deveraux QL, Reed JC. IAP family proteins—suppressors of apoptosis. Genes Dev. 1999;13:239–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9990849 CrossRefGoogle Scholar
  28. 28.
    Brenner D, Blaser H, Mak TW. Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol. 2015;15:362–74. Available from: http://www.nature.com/doifinder/10.1038/nri3834 PubMedCrossRefGoogle Scholar
  29. 29.
    Blaser H, Dostert C, Mak TW, Brenner D. TNF and ROS crosstalk in inflammation. Trends Cell Biol. 2016;26:249–61. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0962892415002494 PubMedCrossRefGoogle Scholar
  30. 30.
    Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol. 2016;12:49–62. Available from: http://www.nature.com/doifinder/10.1038/nrrheum.2015.169 PubMedCrossRefGoogle Scholar
  31. 31.
    Peter ME, Krammer PH. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ. 2003;10:26–35. Available from: http://www.nature.com/doifinder/10.1038/sj.cdd.4401186 PubMedCrossRefGoogle Scholar
  32. 32.
    Wilson NS, Dixit V, Ashkenazi A. Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat Immunol. 2009;10:348–55. Available from: http://www.nature.com/doifinder/10.1038/ni.1714 PubMedCrossRefGoogle Scholar
  33. 33.
    Linkermann A, Chen G, Dong G, Kunzendorf U, Krautwald S, Dong Z. Regulated cell death in AKI. J Am Soc Nephrol. 2014;25:2689–701. Available from: http://www.jasn.org/cgi/doi/10.1681/ASN.2014030262 PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Khan KH, Blanco-Codesido M, Molife LR. Cancer therapeutics: targeting the apoptotic pathway. Crit Rev Oncol Hematol. 2014;90:200–19. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1040842813002679 PubMedCrossRefGoogle Scholar
  35. 35.
    Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87:99–163. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17237344 CrossRefGoogle Scholar
  36. 36.
    Hardwick JM, Soane L. Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect Biol. 2013;5:a008722. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23378584 PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Ichim G, Tait SWG. A fate worse than death: apoptosis as an oncogenic process. Nat Rev Cancer. 2016;16:539–48. Available from: http://www.nature.com/doifinder/10.1038/nrc.2016.58 PubMedCrossRefGoogle Scholar
  38. 38.
    Lee E-W, Seo J, Jeong M, Lee S, Song J. The roles of FADD in extrinsic apoptosis and necroptosis. BMB Rep. 2012;45:496–508. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23010170 PubMedCrossRefGoogle Scholar
  39. 39.
    Oztürk S, Schleich K, Lavrik IN. Cellular FLICE-like inhibitory proteins (c-FLIPs): fine-tuners of life and death decisions. Exp Cell Res. 2012;318:1324–31. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0014482712000407 PubMedCrossRefGoogle Scholar
  40. 40.
    Garg AD, Krysko DV, Verfaillie T, Kaczmarek A, Ferreira GB, Marysael T, et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J. 2012;31:1062–79. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22252128 PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Galluzzi L, Kroemer G. Secondary necrosis: accidental no more. Trends Cancer. 2017;3:1–2. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28718422 PubMedCrossRefGoogle Scholar
  42. 42.
    Linkermann A. Personal communication.Google Scholar
  43. 43.
    Linkermann A, Hackl MJ, Kunzendorf U, Walczak H, Krautwald S, Jevnikar AM. Necroptosis in immunity and ischemia-reperfusion injury. Am J Transplant. 2013;13:2797–804. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24103029 PubMedCrossRefGoogle Scholar
  44. 44.
    Ladoire S, Hannani D, Vetizou M, Locher C, Aymeric L, Apetoh L, et al. Cell-death-associated molecular patterns as determinants of cancer immunogenicity. Antioxid Redox Signal. 2014;20:1098–116. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23394620 PubMedCrossRefGoogle Scholar
  45. 45.
    He S, Wang L, Miao L, Wang T, Du F, Zhao L, et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 2009;137:1100–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19524512 PubMedCrossRefGoogle Scholar
  46. 46.
    Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009;137:1112–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19524513 PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Zhang D-W, Shao J, Lin J, Zhang N, Lu B-J, Lin S-C, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science. 2009;325:332–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19498109 PubMedCrossRefGoogle Scholar
  48. 48.
    Sun L, Wang H, Wang Z, He S, Chen S, Liao D, et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 2012;148:213–27. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22265413 CrossRefGoogle Scholar
  49. 49.
    Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, Luo J, et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci. 2012;109:5322–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22421439 PubMedCrossRefGoogle Scholar
  50. 50.
    Linkermann A. Nonapoptotic cell death in acute kidney injury and transplantation. Kidney Int. 2016;89:46–57. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26759047 PubMedCrossRefGoogle Scholar
  51. 51.
    Harris PA, King BW, Bandyopadhyay D, Berger SB, Campobasso N, Capriotti CA, et al. DNA-encoded library screening identifies benzo[b][1,4]oxazepin-4-ones as highly potent and monoselective receptor interacting protein 1 kinase inhibitors. J Med Chem. 2016;59:2163–78. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26854747 PubMedCrossRefGoogle Scholar
  52. 52.
    Linkermann A, Stockwell BR, Krautwald S, Anders H-J. Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nat Rev Immunol. 2014;14:759–67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25324125 PubMedCrossRefGoogle Scholar
  53. 53.
    Mulay SR, Linkermann A, Anders H-J. Necroinflammation in kidney disease. J Am Soc Nephrol. 2016;27:27–39. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26334031 PubMedCrossRefGoogle Scholar
  54. 54.
    Sarhan M, Land WG, Tonnus W, Hugo CP, Linkermann A. Origin and consequences of necroinflammation. Physiol Rev. 2018;98(2):727–80. https://doi.org/10.1152/physrev.00041.2016 CrossRefGoogle Scholar
  55. 55.
    Yatim N, Cullen S, Albert ML. Dying cells actively regulate adaptive immune responses. Nat Rev Immunol. 2017;17:262–75. Available from: http://www.nature.com/doifinder/10.1038/nri.2017.9 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Bertrand MJM, Vandenabeele P. The ripoptosome: death decision in the cytosol. Mol Cell. 2011;43:323–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21816342 PubMedCrossRefGoogle Scholar
  57. 57.
    Kers J, Leemans JC, Linkermann A. An overview of pathways of regulated necrosis in acute kidney injury. Semin Nephrol. 2016;36:139–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27339380 PubMedCrossRefGoogle Scholar
  58. 58.
    Oberst A, Bender C, Green DR. Living with death: the evolution of the mitochondrial pathway of apoptosis in animals. Cell Death Differ. 2008;15:1139–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18451868 PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Ofengeim D, Yuan J. Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol. 2013;14:727–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24129419 PubMedCrossRefGoogle Scholar
  60. 60.
    Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 2014;15:135–47. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24452471 CrossRefGoogle Scholar
  61. 61.
    Weinlich R, Dillon CP, Green DR. Ripped to death. Trends Cell Biol. 2011;21:630–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21978761 PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Wong WW-L, Gentle IE, Nachbur U, Anderton H, Vaux DL, Silke J, et al. RIPK1 is not essential for TNFR1-induced activation of NF-kappaB. Cell Death Differ. 2010;17:482–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19927158 PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Dondelinger Y, Jouan-Lanhouet S, Divert T, Theatre E, Bertin J, Gough PJ, et al. NF-κB-independent role of IKKα/IKKβ in preventing RIPK1 kinase-dependent apoptotic and necroptotic cell death during TNF signaling. Mol Cell. 2015;60:63–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26344099 PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Krammer PH, Arnold R, Lavrik IN. Life and death in peripheral T cells. Nat Rev Immunol. 2007;7:532–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17589543 PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Alvarez-Diaz S, Dillon CP, Lalaoui N, Tanzer MC, Rodriguez DA, Lin A, et al. The pseudokinase MLKL and the kinase RIPK3 have distinct roles in autoimmune disease caused by loss of death-receptor-induced apoptosis. Immunity. 2016;45(3):513–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27523270 PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Najjar M, Saleh D, Zelic M, Nogusa S, Shah S, Tai A, et al. RIPK1 and RIPK3 kinases promote cell-death-independent inflammation by toll-like receptor 4. Immunity. 2016;45:46–59. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27396959 PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Newton K, Dugger DL, Wickliffe KE, Kapoor N, de Almagro MC, Vucic D, et al. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science. 2014;343:1357–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24557836 PubMedCrossRefGoogle Scholar
  68. 68.
    Kaiser WJ, Upton JW, Mocarski ES. Receptor-interacting protein homotypic interaction motif-dependent control of NF-kappa B activation via the DNA-dependent activator of IFN regulatory factors. J Immunol. 2008;181:6427–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18941233 PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Kaiser WJ, Upton JW, Mocarski ES. Viral modulation of programmed necrosis. Curr Opin Virol. 2013;3:296–306. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23773332 PubMedCrossRefGoogle Scholar
  70. 70.
    Dillon CP, Weinlich R, Rodriguez DA, Cripps JG, Quarato G, Gurung P, et al. RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell. 2014;157:1189–202. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24813850 PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Rickard JA, O’Donnell JA, Evans JM, Lalaoui N, Poh AR, Rogers T, et al. RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis. Cell. 2014;157:1175–88. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24813849 PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Newton K, Dugger DL, Maltzman A, Greve JM, Hedehus M, Martin-McNulty B, et al. RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ. 2016;23:1565–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27177019 PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Kaiser WJ, Daley-Bauer LP, Thapa RJ, Mandal P, Berger SB, Huang C, et al. RIP1 suppresses innate immune necrotic as well as apoptotic cell death during mammalian parturition. Proc Natl Acad Sci U S A. 2014;111:7753–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24821786 PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Li D, Xu T, Cao Y, Wang H, Li L, Chen S, et al. A cytosolic heat shock protein 90 and cochaperone CDC37 complex is required for RIP3 activation during necroptosis. Proc Natl Acad Sci U S A. 2015;112:5017–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25852146 PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Li D, Li C, Li L, Chen S, Wang L, Li Q, et al. Natural product kongensin A is a non-canonical HSP90 inhibitor that blocks RIP3-dependent necroptosis. Cell Chem Biol. 2016;23:257–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27028885 PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Upton JW, Kaiser WJ, Mocarski ES. Virus inhibition of RIP3-dependent necrosis. Cell Host Microbe. 2010;7:302–13. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1931312810001034 PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Upton JW, Kaiser WJ, Mocarski ES. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe. 2012;11:290–7. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1931312812000583 PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Kuriakose T, Man SM, Subbarao Malireddi RK, Karki R, Kesavardhana S, Place DE, et al. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci Immunol. 2016;1:aag2045. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27917412 PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Upton JW, Kaiser WJ. DAI another way: necroptotic control of viral infection. Cell Host Microbe. 2017;21:290–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28279333 PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Thapa RJ, Ingram JP, Ragan KB, Nogusa S, Boyd DF, Benitez AA, et al. DAI senses influenza A virus genomic RNA and activates RIPK3-dependent cell death. Cell Host Microbe. 2016;20:674–81. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1931312816303924 PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Upton JW, Shubina M, Balachandran S. RIPK3-driven cell death during virus infections. Immunol Rev. 2017;277:90–101. Available from: http://doi.wiley.com/10.1111/imr.12539 PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, et al. Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem. 2013;288:31268–79. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24019532 PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Murphy JM, Czabotar PE, Hildebrand JM, Lucet IS, Zhang J-G, Alvarez-Diaz S, et al. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism. Immunity. 2013;39:443–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24012422 PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Murphy JM, Lucet IS, Hildebrand JM, Tanzer MC, Young SN, Sharma P, et al. Insights into the evolution of divergent nucleotide-binding mechanisms among pseudokinases revealed by crystal structures of human and mouse MLKL. Biochem J. 2014;457:369–77. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24219132 PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Rodriguez DA, Weinlich R, Brown S, Guy C, Fitzgerald P, Dillon CP, et al. Characterization of RIPK3-mediated phosphorylation of the activation loop of MLKL during necroptosis. Cell Death Differ. 2016;23:76–88. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26024392 PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Dondelinger Y, Declercq W, Montessuit S, Roelandt R, Goncalves A, Bruggeman I, et al. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Rep. 2014;7:971–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24813885 CrossRefGoogle Scholar
  87. 87.
    Wang H, Sun L, Su L, Rizo J, Liu L, Wang L-F, et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell. 2014;54:133–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24703947 CrossRefGoogle Scholar
  88. 88.
    Conos SA, Chen KW, De Nardo D, Hara H, Whitehead L, Núñez G, et al. Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner. Proc Natl Acad Sci. 2017;114:E961–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28096356 PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Gong Y-N, Guy C, Olauson H, Becker JU, Yang M, Fitzgerald P, et al. ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences. Cell. 2017;169:286–300.e16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28388412 PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Seifert L, Werba G, Tiwari S, Giao Ly NN, Alothman S, Alqunaibit D, et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature. 2016;532:245–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27049944 PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Arshad MI, Piquet-Pellorce C, Filliol A, L’Helgoualc’h A, Lucas-Clerc C, Jouan-Lanhouet S, et al. The chemical inhibitors of cellular death, PJ34 and necrostatin-1, down-regulate IL-33 expression in liver. J Mol Med. 2015;93:867–78. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25747661 PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Tonnus W, Gembardt F, Hugo C, Linkermann A. Die later with ESCRT! Oncotarget. 2017;8:41790–1. Available from: http://www.oncotarget.com/fulltext/17903 PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Garg AD, Agostinis P. Cell death and immunity in cancer: from danger signals to mimicry of pathogen defense responses. Immunol Rev. 2017;280:126–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29027218 PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Kearney CJ, Martin SJ. An inflammatory perspective on necroptosis. Mol Cell. 2017;65:965–73. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1097276517301612 PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Nogusa S, Thapa RJ, Dillon CP, Liedmann S, Oguin TH, Ingram JP, et al. RIPK3 activates parallel pathways of MLKL-driven necroptosis and FADD-mediated apoptosis to protect against influenza A virus. Cell Host Microbe. 2016;20:13–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27321907 PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Dixon SJ. Ferroptosis: bug or feature? Immunol Rev. 2017;277:150–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28462529 PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005;1:112–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16408008 CrossRefGoogle Scholar
  98. 98.
    Degterev A, Hitomi J, Germscheid M, Ch’en IL, Korkina O, Teng X, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol. 2008;4:313–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18408713 PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Degterev A, Maki JL, Yuan J. Activity and specificity of necrostatin-1, small-molecule inhibitor of RIP1 kinase. Cell Death Differ. 2013;20:366. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23197295 PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16:1180–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25402683 PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Kopalli SR, Kang T-B, Koppula S. Necroptosis inhibitors as therapeutic targets in inflammation mediated disorders – a review of the current literature and patents. Expert Opin Ther Pat. 2016;26:1239–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27568917 PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Niki E, Yoshida Y, Saito Y, Noguchi N. Lipid peroxidation: mechanisms, inhibition, and biological effects. Biochem Biophys Res Commun. 2005;338:668–76. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006291X05017766 PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Bochkov VN, Oskolkova OV, Birukov KG, Levonen A-L, Binder CJ, Stöckl J. Generation and biological activities of oxidized phospholipids. Antioxid Redox Signal. 2010;12:1009–59. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19686040 PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Yin H, Xu L, Porter NA. Free radical lipid peroxidation: mechanisms and analysis. Chem Rev. 2011;111:5944–72. Available from: http://pubs.acs.org/doi/abs/10.1021/cr200084z PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med Cell Longev. 2014;2014:360438. Available from: http://www.hindawi.com/journals/omcl/2014/360438/ CrossRefGoogle Scholar
  106. 106.
    Bochkov V, Gesslbauer B, Mauerhofer C, Philippova M, Erne P, Oskolkova OV. Pleiotropic effects of oxidized phospholipids. Free Radic Biol Med. 2017;111:6–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28027924 PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Thomas CP, O’Donnell VB. Oxidized phospholipid signaling in immune cells. Curr Opin Pharmacol. 2012;12:471–7. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1471489212000367 PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    O’Donnell VB, Murphy RC. New families of bioactive oxidized phospholipids generated by immune cells: identification and signaling actions. Blood. 2012;120:1985–92. Available from: http://www.bloodjournal.org/cgi/doi/10.1182/blood-2012-04-402826 PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Nicholls SJ, Hazen SL. Myeloperoxidase, modified lipoproteins, and atherogenesis: Fig. 1. J Lipid Res. 2009;50:S346–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19091698 PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Mauerhofer C, Philippova M, Oskolkova OV, Bochkov VN. Hormetic and anti-inflammatory properties of oxidized phospholipids. Mol Asp Med. 2016;49:78–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26948981 CrossRefGoogle Scholar
  111. 111.
    Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991;11:81–128. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1937131 PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Salomon RG. Structural identification and cardiovascular activities of oxidized phospholipids. Circ Res. 2012;111:930–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22982874 PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23:369–79. Available from: http://www.nature.com/doifinder/10.1038/cdd.2015.158 PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci U S A. 2016;113:E4966–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27506793 PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Tonnus W, Linkermann A. “Death is my Heir”—ferroptosis connects cancer pharmacogenomics and ischemia-reperfusion injury. Cell Chem Biol. 2016;23:202–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26971867 PubMedCrossRefGoogle Scholar
  116. 116.
    Latunde-Dada GO. Ferroptosis: role of lipid peroxidation, iron and ferritinophagy. Biochim Biophys Acta. 2017;1861:1893–900. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28552631 CrossRefGoogle Scholar
  117. 117.
    Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 2016;26:165–76. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26653790 PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Leaf DE, Rajapurkar M, Lele SS, Mukhopadhyay B, Rawn JD, Frendl G, et al. Increased plasma catalytic iron in patients may mediate acute kidney injury and death following cardiac surgery. Kidney Int. 2015;87:1046–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25565307 PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Kaushal GP, Shah SV. Challenges and advances in the treatment of AKI. J Am Soc Nephrol. 2014;25:877–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24480828 PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Berberat PO, Katori M, Kaczmarek E, Anselmo D, Lassman C, Ke B, et al. Heavy chain ferritin acts as an antiapoptotic gene that protects livers from ischemia reperfusion injury. FASEB J. 2003;17:1724–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12958189 PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Nath KA, Grande JP, Croatt AJ, Likely S, Hebbel RP, Enright H. Intracellular targets in heme protein-induced renal injury. Kidney Int. 1998;53:100–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9453005 PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22632970 PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Shaw DM, Thomas DR, Briscoe MH, Watkins SE, Crimmins R, Harris B, et al. A comparison of the antidepressant action of citalopram and amitriptyline. Br J Psychiatry. 1986;149:515–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3545354 PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Brütsch SH, Wang CC, Li L, Stender H, Neziroglu N, Richter C, et al. Expression of inactive glutathione peroxidase 4 leads to embryonic lethality, and inactivation of the Alox15 gene does not rescue such knock-in mice. Antioxid Redox Signal. 2015;22:281–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25313597 PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Conrad M. Transgenic mouse models for the vital selenoenzymes cytosolic thioredoxin reductase, mitochondrial thioredoxin reductase and glutathione peroxidase 4. Biochim Biophys Acta. 2009;1790:1575–85. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19433132 PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Gringhuis SI, Kaptein TM, Wevers BA, Theelen B, van der Vlist M, Boekhout T, et al. Dectin-1 is an extracellular pathogen sensor for the induction and processing of IL-1β via a noncanonical caspase-8 inflammasome. Nat Immunol. 2012;13:246–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22267217 PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Jin Z, Li Y, Pitti R, Lawrence D, Pham VC, Lill JR, et al. Cullin3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell. 2009;137:721–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19427028 PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Yoo S-E, Chen L, Na R, Liu Y, Rios C, Van Remmen H, et al. Gpx4 ablation in adult mice results in a lethal phenotype accompanied by neuronal loss in brain. Free Radic Biol Med. 2012;52:1820–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22401858 PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Shimada K, Hayano M, Pagano NC, Stockwell BR. Cell-line selectivity improves the predictive power of pharmacogenomic analyses and helps identify NADPH as biomarker for ferroptosis sensitivity. Cell Chem Biol. 2016;23:225–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26853626 PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 2015;59:298–308. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1097276515004505 PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Linkermann A, Skouta R, Himmerkus N, Mulay SR, Dewitz C, De Zen F, et al. Synchronized renal tubular cell death involves ferroptosis. Proc Natl Acad Sci U S A. 2014;111:16836–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25385600 PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Fan Z, Wirth A-K, Chen D, Wruck CJ, Rauh M, Buchfelder M, et al. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogene. 2017;6:e371. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28805788 CrossRefGoogle Scholar
  133. 133.
    Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156:317–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24439385 PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Shimada K, Skouta R, Kaplan A, Yang WS, Hayano M, Dixon SJ, et al. Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol. 2016;12:497–503. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27159577 PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Dixon SJ, Winter GE, Musavi LS, Lee ED, Snijder B, Rebsamen M, et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death. ACS Chem Biol. 2015;10:1604–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25965523 PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Conrad M, Angeli JPF, Vandenabeele P, Stockwell BR. Regulated necrosis: disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 2016;15:348–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26775689 PubMedCrossRefGoogle Scholar
  137. 137.
    Martin-Sanchez D, Ruiz-Andres O, Poveda J, Carrasco S, Cannata-Ortiz P, Sanchez-Niño MD, et al. Ferroptosis, but not necroptosis, is important in nephrotoxic folic acid-induced AKI. J Am Soc Nephrol. 2017;28(1):218–29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27352622 PubMedCrossRefGoogle Scholar
  138. 138.
    Skouta R, Dixon SJ, Wang J, Dunn DE, Orman M, Shimada K, et al. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc. 2014;136:4551–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24592866 PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    de Vasconcelos NM, Van Opdenbosch N, Lamkanfi M. Inflammasomes as polyvalent cell death platforms. Cell Mol Life Sci. 2016;73:2335–47. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27048821 PubMedCrossRefGoogle Scholar
  140. 140.
    Vande Walle L, Lamkanfi M. Pyroptosis. Curr Biol. 2016;26:R568–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27404251 PubMedCrossRefGoogle Scholar
  141. 141.
    Kovacs SB, Miao EA. Gasdermins: effectors of pyroptosis. Trends Cell Biol. 2017;27(9):673–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28619472 PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Aglietti RA, Dueber EC. Recent insights into the molecular mechanisms underlying pyroptosis and gasdermin family functions. Trends Immunol. 2017;38:261–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28196749 PubMedCrossRefPubMedCentralGoogle Scholar
  143. 143.
    Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 2016;535:111–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27281216 PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535:153–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27383986 PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Aglietti RA, Estevez A, Gupta A, Ramirez MG, Liu PS, Kayagaki N, et al. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc Natl Acad Sci U S A. 2016;113:7858–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27339137 PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Sborgi L, Rühl S, Mulvihill E, Pipercevic J, Heilig R, Stahlberg H, et al. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J. 2016;35:1766–78. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27418190 PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526:660–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26375003 PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K, Warming S, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526:666–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26375259 PubMedCrossRefGoogle Scholar
  149. 149.
    Dick MS, Sborgi L, Rühl S, Hiller S, Broz P. ASC filament formation serves as a signal amplification mechanism for inflammasomes. Nat Commun. 2016;7:11929. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27329339 PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Kesavardhana S, Kanneganti T-D. Mechanisms governing inflammasome activation, assembly and pyroptosis induction. Int Immunol. 2017;29:201–10. Available from: https://www.academic.oup.com/intimm/article-lookup/doi/10.1093/intimm/dxx018 PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Qiu S, Liu J, Xing F. “Hints” in the killer protein gasdermin D: unveiling the secrets of gasdermins driving cell death. Cell Death Differ. 2017;24:588–96. Available from: http://www.nature.com/doifinder/10.1038/cdd.2017.24 PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Jorgensen I, Miao EA. Pyroptotic cell death defends against intracellular pathogens. Immunol Rev. 2015;265:130–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25879289 PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Andrabi SA, Dawson TM, Dawson VL. Mitochondrial and nuclear cross talk in cell death: parthanatos. Ann N Y Acad Sci. 2008;1147:233–41. Available from: http://doi.wiley.com/10.1196/annals.1427.014 PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    David KK, Andrabi SA, Dawson TM, Dawson VL. Parthanatos, a messenger of death. Front Biosci. 2009;14:1116–28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19273119 CrossRefGoogle Scholar
  155. 155.
    Bonora M, Wieckowsk MR, Chinopoulos C, Kepp O, Kroemer G, Galluzzi L, et al. Molecular mechanisms of cell death: central implication of ATP synthase in mitochondrial permeability transition. Oncogene. 2015;34:1608. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25790189 PubMedCrossRefGoogle Scholar
  156. 156.
    Chinopoulos C. Mitochondrial permeability transition pore: back to the drawing board. Neurochem Int. 2017.; Available from: http://www.ncbi.nlm.nih.gov/pubmed/28647376
  157. 157.
    Wang Y, Kim NS, Haince J-F, Kang HC, David KK, Andrabi SA, et al. Poly(ADP-ribose) (PAR) binding to apoptosis-inducing factor is critical for PAR polymerase-1-dependent cell death (parthanatos). Sci Signal. 2011;4:ra20. Available from: http://stke.sciencemag.org/cgi/doi/10.1126/scisignal.2000902 PubMedPubMedCentralGoogle Scholar
  158. 158.
    Fatokun AA, Dawson VL, Dawson TM. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol. 2014;171:2000–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24684389 PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Webster KA. Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species. Futur Cardiol. 2012;8:863–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23176689 CrossRefGoogle Scholar
  160. 160.
    Fan J, Dawson TM, Dawson VL. Cell death mechanisms of neurodegeneration. Adv Neurobiol. 2017;15:403–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28674991 PubMedCrossRefGoogle Scholar
  161. 161.
    Remijsen Q, Kuijpers TW, Wirawan E, Lippens S, Vandenabeele P, Vanden Berghe T. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ. 2011;18:581–8. Available from: http://www.nature.com/doifinder/10.1038/cdd.2011.1 PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    McDonald B, Urrutia R, Yipp BG, Jenne CN, Kubes P. Intravascular neutrophil extracellular traps capture bacteria from the bloodstream during sepsis. Cell Host Microbe. 2012;12:324–33. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1931312812002430 PubMedCrossRefGoogle Scholar
  163. 163.
    Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23:279–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28267716 PubMedCrossRefGoogle Scholar
  164. 164.
    Kazzaz NM, Sule G, Knight JS. Intercellular interactions as regulators of NETosis. Front Immunol. 2016;7:453. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27895638 PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Selders GS, Fetz AE, Radic MZ, Bowlin GL. An overview of the role of neutrophils in innate immunity, inflammation and host-biomaterial integration. Regen Biomater. 2017;4:55–68. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28149530 PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Corsiero E, Pratesi F, Prediletto E, Bombardieri M, Migliorini P. NETosis as source of autoantigens in rheumatoid arthritis. Front Immunol. 2016;7:485. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27895639 PubMedPubMedCentralGoogle Scholar
  167. 167.
    Grayson PC, Kaplan MJ. At the bench: neutrophil extracellular traps (NETs) highlight novel aspects of innate immune system involvement in autoimmune diseases. J Leukoc Biol. 2016;99:253–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26432901 PubMedCrossRefGoogle Scholar
  168. 168.
    Yang H, Biermann MH, Brauner JM, Liu Y, Zhao Y, Herrmann M. New insights into neutrophil extracellular traps: mechanisms of formation and role in inflammation. Front Immunol. 2016;7:302. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27570525 PubMedPubMedCentralGoogle Scholar
  169. 169.
    O’Brien XM, Biron BM, Reichner JS. Consequences of extracellular trap formation in sepsis. Curr Opin Hematol. 2017;24:66–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27820735 PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Huang H, Tohme S, Al-Khafaji AB, Tai S, Loughran P, Chen L, et al. Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology. 2015;62:600–14. Available from: http://doi.wiley.com/10.1002/hep.27841 PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Schorn C, Janko C, Krenn V, Zhao Y, Munoz LE, Schett G, et al. Bonding the foe – NETting neutrophils immobilize the pro-inflammatory monosodium urate crystals. Front Immunol. 2012;3:376. Available from: http://journal.frontiersin.org/article/10.3389/fimmu.2012.00376/abstract PubMedPubMedCentralGoogle Scholar
  172. 172.
    Wan T, Zhao Y, Fan F, Hu R, Jin X. Dexamethasone inhibits S. aureus-induced neutrophil extracellular pathogen-killing mechanism, possibly through toll-like receptor regulation. Front Immunol. 2017;8:60. Available from: http://www.journal.frontiersin.org/article/10.3389/fimmu.2017.00060/full PubMedPubMedCentralGoogle Scholar
  173. 173.
    Yipp BG, Kubes P. NETosis: how vital is it? Blood. 2013;122:2784–94. Available from: http://www.bloodjournal.org/cgi/doi/10.1182/blood-2013-04-457671 PubMedCrossRefGoogle Scholar
  174. 174.
    Yousefi S, Mihalache C, Kozlowski E, Schmid I, Simon HU. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death Differ. 2009;16:1438–44. Available from: http://www.nature.com/doifinder/10.1038/cdd.2009.96 PubMedCrossRefGoogle Scholar
  175. 175.
    Metzler KD, Goosmann C, Lubojemska A, Zychlinsky A, Papayannopoulos V. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep. 2014;8:883–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25066128 PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Pilsczek FH, Salina D, Poon KKH, Fahey C, Yipp BG, Sibley CD, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol. 2010;185:7413–25. Available from: http://www.jimmunol.org/cgi/doi/10.4049/jimmunol.1000675 PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Yipp BG, Petri B, Salina D, Jenne CN, Scott BNV, Zbytnuik LD, et al. Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med. 2012;18:1386–93. Available from: http://www.nature.com/doifinder/10.1038/nm.2847 PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS, Smith CK, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med. 2016;22:146–53. Available from: http://www.nature.com/doifinder/10.1038/nm.4027 PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107:15880–5. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1005743107 PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Stark K, Philippi V, Stockhausen S, Busse J, Antonelli A, Miller M, et al. Disulfide HMGB1 derived from platelets coordinates venous thrombosis in mice. Blood. 2016;128:2435–49. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27574188 PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Manfredi AA, Rovere-Querini P, D’Angelo A, Maugeri N. Low molecular weight heparins prevent the induction of autophagy of activated neutrophils and the formation of neutrophil extracellular traps. Pharmacol Res. 2017;123:146–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28161237 PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of StrasbourgMolecular ImmunoRheumatology, Laboratory of Excellence TransplantexStrasbourgFrance

Personalised recommendations