Advertisement

Exogenous DAMPs, Category IV (Cat. IV DAMPs)

  • Walter Gottlieb Land
Chapter

Abstract

In this chapter, evidence from the international literature is collected in support of a crucial role of exogenous DAMPs played in the “world of DAMPs.” The various exogenous compounds and molecules of this Category IV of DAMPs derive from different origins and possess different bioactive functions. The first subchapter is dedicated to the Class IVA DAMPs which are defined as being indirectly sensed by the NLRP3 inflammasome. The three subclasses (IVA-1–3 DAMPs) described refer to aluminum salt, asbestos fibers, and silica particles. Diseases mediated by these DAMPs include asbestosis and silicosis of the lung. The second subchapter deals with Class IVB DAMPs defined as exogenous molecules being sensed by nociceptors. Nociception is the process of transmission of painful signals by nociceptors, and modern notions hold that this process reflects a new branch of the innate immune defense system. Subclasses of these exogenous DAMPs include non-reactive compounds such as menthol and nicotine, reactive electrophilic compounds such as allicin in garlic, and vanilloids such as capsaicin, the pungent ingredient of the hot chilli pepper. Finally, the Class IVC of DAMPs referring to specific allergens is addressed by describing briefly the subclasses of metal allergens such as nickel, cobalt, and palladium. The chapter ends with a few remarks on the role of exogenous DAMPs in treatment options, on the one side, and certain disorders such as chronic respiratory and allergic diseases, on the other hand.

References

  1. 1.
    Hem SL, HogenEsch H. Relationship between physical and chemical properties of aluminum-containing adjuvants and immunopotentiation. Expert Rev Vaccines. 2007;6:685–98. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17931150 CrossRefGoogle Scholar
  2. 2.
    Mossman BT, Churg A. Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med. 1998;157:1666–80. Available from: http://www.atsjournals.org/doi/abs/10.1164/ajrccm.157.5.9707141 CrossRefGoogle Scholar
  3. 3.
    Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 2008;9:847–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18604214 CrossRefGoogle Scholar
  4. 4.
    Li H, Nookala S, Re F. Aluminum hydroxide adjuvants activate caspase-1 and induce IL-1beta and IL-18 release. J Immunol. 2007;178:5271–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17404311 CrossRefGoogle Scholar
  5. 5.
    Tritto E, Mosca F, De Gregorio E. Mechanism of action of licensed vaccine adjuvants. Vaccine. 2009;27:3331–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19200813 CrossRefGoogle Scholar
  6. 6.
    He P, Zou Y, Hu Z. Advances in aluminum hydroxide-based adjuvant research and its mechanism. Hum Vaccin Immunother. 2015;11:477–88. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25692535 CrossRefGoogle Scholar
  7. 7.
    Powell BS, Andrianov AK, Fusco PC. Polyionic vaccine adjuvants: another look at aluminum salts and polyelectrolytes. Clin Exp Vaccine Res. 2015;4:23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25648619 CrossRefGoogle Scholar
  8. 8.
    Martinon F, Pétrilli V, Mayor A, Tardivel A, Tschopp J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440:237–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16407889 CrossRefGoogle Scholar
  9. 9.
    Latz E. The inflammasomes: mechanisms of activation and function. Curr Opin Immunol. 2010;22:28–33. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0952791509002271 CrossRefGoogle Scholar
  10. 10.
    Yang M, Hearnden CHA, Oleszycka E, Lavelle EC. NLRP3 inflammasome activation and cytotoxicity induced by particulate adjuvants. Methods Mol Biol. 2013;1040:41–63. Available from: http://link.springer.com/10.1007/978-1-62703-523-1_5 CrossRefGoogle Scholar
  11. 11.
    Bainton DF, Takemura R, Stenberg PE, Werb Z. Rapid fragmentation and reorganization of Golgi membranes during frustrated phagocytosis of immobile immune complexes by macrophages. Am J Pathol. 1989;134:15–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2913823 PubMedPubMedCentralGoogle Scholar
  12. 12.
    Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science (80). 2008;320:674–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18403674 CrossRefGoogle Scholar
  13. 13.
    Hillegass JM, Miller JM, MacPherson MB, Westbom CM, Sayan M, Thompson JK, et al. Asbestos and erionite prime and activate the NLRP3 inflammasome that stimulates autocrine cytokine release in human mesothelial cells. Part Fibre Toxicol. 2013;10:39. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23937860 CrossRefGoogle Scholar
  14. 14.
    Sayan M, Mossman BT. The NLRP3 inflammasome in pathogenic particle and fibre-associated lung inflammation and diseases. Part Fibre Toxicol. 2015;13:51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27650313 CrossRefGoogle Scholar
  15. 15.
    Peeters PM, Perkins TN, Wouters EFM, Mossman BT, Reynaert NL. Silica induces NLRP3 inflammasome activation in human lung epithelial cells. Part Fibre Toxicol. 2013;10:3. Available from: http://particleandfibretoxicology.biomedcentral.com/articles/10.1186/1743-8977-10-3 CrossRefGoogle Scholar
  16. 16.
    Gothi D, Gahlot T, Sah R, Saxena M, Ojha U, Verma A, et al. Asbestos-induced lung disease in small-scale clutch manufacturing workers. Indian J Occup Environ Med. 2016;20:95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28194083 CrossRefGoogle Scholar
  17. 17.
    Hoy RF, Baird T, Hammerschlag G, Hart D, Johnson AR, King P, et al. Artificial stone-associated silicosis: a rapidly emerging occupational lung disease. Occup Environ Med. 2018;75(1):3–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28882991 CrossRefGoogle Scholar
  18. 18.
    Dai Y. TRPs and pain. Semin Immunopathol. 2016;38:277–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26374740 CrossRefGoogle Scholar
  19. 19.
    Viana F. TRPA1 channels: molecular sentinels of cellular stress and tissue damage. J Physiol. 2016;594:4151–69. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27079970 CrossRefGoogle Scholar
  20. 20.
    Zygmunt PM, Högestätt ED. TRPA1. Handb Exp Pharmacol. 2014;222:583–630. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24756722 CrossRefGoogle Scholar
  21. 21.
    Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–84. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20404851 CrossRefGoogle Scholar
  22. 22.
    Fitzgerald M. The development of nociceptive circuits. Nat Rev Neurosci. 2005;6:507–20. Available from: http://www.nature.com/doifinder/10.1038/nrn1701 CrossRefGoogle Scholar
  23. 23.
    Dubin AE, Patapoutian A. Nociceptors: the sensors of the pain pathway. J Clin Invest. 2010;120:3760–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21041958 CrossRefGoogle Scholar
  24. 24.
    Kato J, Svensson CI. Role of extracellular damage-associated molecular pattern molecules (DAMPs) as mediators of persistent pain. Prog Mol Biol Transl Sci. 2015;131:251–79. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25744676 CrossRefGoogle Scholar
  25. 25.
    Palazzo E, Marabese I, Luongo L, Guida F, de Novellis V, Maione S. Nociception modulation by supraspinal group III metabotropic glutamate receptors. J Neurochem. 2017;141(4):507–19. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27363363 CrossRefGoogle Scholar
  26. 26.
    Geppetti P, Veldhuis NA, Lieu T, Bunnett NW. G protein-coupled receptors: dynamic machines for signaling pain and itch. Neuron. 2015;88:635–49. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26590341 CrossRefGoogle Scholar
  27. 27.
    Mickle AD, Shepherd AJ, Mohapatra DP. Sensory TRP channels: the key transducers of nociception and pain. Prog Mol Biol Transl Sci. 2015;131:73–118. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25744671 CrossRefGoogle Scholar
  28. 28.
    Parenti A, De Logu F, Geppetti P, Benemei S. What is the evidence for the role of TRP channels in inflammatory and immune cells? Br J Pharmacol. 2016;173:953–69. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26603538 CrossRefGoogle Scholar
  29. 29.
    Nilius B, Appendino G, Owsianik G. The transient receptor potential channel TRPA1: from gene to pathophysiology. Pflügers Arch Eur J Physiol. 2012;464:425–58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23001121 CrossRefGoogle Scholar
  30. 30.
    Frias B, Merighi A. Capsaicin, nociception and pain. Molecules. 2016;21:797. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27322240 CrossRefGoogle Scholar
  31. 31.
    Patwardhan AM, Akopian AN, Ruparel NB, Diogenes A, Weintraub ST, Uhlson C, et al. Heat generates oxidized linoleic acid metabolites that activate TRPV1 and produce pain in rodents. J Clin Invest. 2010;120:1617–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20424317 CrossRefGoogle Scholar
  32. 32.
    Sisignano M, Bennett DLH, Geisslinger G, Scholich K. TRP-channels as key integrators of lipid pathways in nociceptive neurons. Prog Lipid Res. 2014;53:93–107. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24287369 CrossRefGoogle Scholar
  33. 33.
    Moran MM. TRP channels as potential drug targets. Annu Rev Pharmacol Toxicol. 2018;58:annurev-pharmtox-010617-052832. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28945977 CrossRefGoogle Scholar
  34. 34.
    Burton AR, Fazalbhoy A, Macefield VG. Sympathetic responses to noxious stimulation of muscle and skin. Front Neurol. 2016;7:109. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27445972 CrossRefGoogle Scholar
  35. 35.
    Yalcin I, Megat S, Barthas F, Waltisperger E, Kremer M, Salvat E, et al. The sciatic nerve cuffing model of neuropathic pain in mice. J Vis Exp. 2014;89:PMID:25078668. Available from: http://www.jove.com/video/51608/the-sciatic-nerve-cuffing-model-of-neuropathic-pain-in-mice Google Scholar
  36. 36.
    Baral P, Mills K, Pinho-Ribeiro FA, Chiu IM. Pain and itch: beneficial or harmful to antimicrobial defense? Cell Host Microbe. 2016;19:755–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27281567 CrossRefGoogle Scholar
  37. 37.
    Bautista DM, Pellegrino M, Tsunozaki M. TRPA1: a gatekeeper for inflammation. Annu Rev Physiol. 2013;75:181–200. Available from: http://www.annualreviews.org/doi/10.1146/annurev-physiol-030212-183811 CrossRefGoogle Scholar
  38. 38.
    Moparthi L, Kichko TI, Eberhardt M, Högestätt ED, Kjellbom P, Johanson U, et al. Human TRPA1 is a heat sensor displaying intrinsic U-shaped thermosensitivity. Sci Rep. 2016;6:28763. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27349477 CrossRefGoogle Scholar
  39. 39.
    Chen J, Hackos DH. TRPA1 as a drug target—promise and challenges. Naunyn Schmiedebergs Arch Pharmacol. 2015;388:451–63. Available from: http://link.springer.com/10.1007/s00210-015-1088-3 CrossRefGoogle Scholar
  40. 40.
    Vriens J, Nilius B, Voets T. Peripheral thermosensation in mammals. Nat Rev Neurosci. 2014;15:573–89. Available from: http://www.nature.com/doifinder/10.1038/nrn3784 CrossRefGoogle Scholar
  41. 41.
    Smith CJ, Kenney WL, Alexander LM. Regional relation between skin blood flow and sweating to passive heating and local administration of acetylcholine in young, healthy humans. Am J Physiol Regul Integr Comp Physiol. 2013;304:R566–73. Available from: http://ajpregu.physiology.org/cgi/doi/10.1152/ajpregu.00514.2012 CrossRefGoogle Scholar
  42. 42.
    Aubdool AA, Graepel R, Kodji X, Alawi KM, Bodkin JV, Srivastava S, et al. TRPA1 is essential for the vascular response to environmental cold exposure. Nat Commun. 2014;5:5732. Available from: http://www.nature.com/doifinder/10.1038/ncomms6732 CrossRefGoogle Scholar
  43. 43.
    Lolignier S, Gkika D, Andersson D, Leipold E, Vetter I, Viana F, et al. New insight in cold pain: role of ion channels, modulation, and clinical perspectives. J Neurosci. 2016;36:11435–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27911746 CrossRefGoogle Scholar
  44. 44.
    Yin K, Zimmermann K, Vetter I, Lewis RJ. Therapeutic opportunities for targeting cold pain pathways. Biochem Pharmacol. 2015;93:125–40. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0006295214005826 CrossRefGoogle Scholar
  45. 45.
    Palkar R, Lippoldt EK, McKemy DD. The molecular and cellular basis of thermosensation in mammals. Curr Opin Neurobiol. 2015;34:14–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25622298 CrossRefGoogle Scholar
  46. 46.
    Alvarenga EM, Souza LKM, Araújo TSL, Nogueira KM, Sousa FBM, Araújo AR, et al. Carvacrol reduces irinotecan-induced intestinal mucositis through inhibition of inflammation and oxidative damage via TRPA1 receptor activation. Chem Biol Interact. 2016;260:129–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27838229 CrossRefGoogle Scholar
  47. 47.
    Hansen EØ, Arendt-Nielsen L, Boudreau SA. A comparison of oral sensory effects of three TRPA1 agonists in young adult smokers and non-smokers. Front Physiol. 2017;8:663. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28936178 CrossRefGoogle Scholar
  48. 48.
    Rosbrook K, Green BG. Sensory effects of menthol and nicotine in an E-cigarette. Nicotine Tob Res. 2016;18:1588–95. Available from: https://academic.oup.com/ntr/article-lookup/doi/10.1093/ntr/ntw019 CrossRefGoogle Scholar
  49. 49.
    Namer B, Seifert F, Handwerker HO, Maihöfner C. TRPA1 and TRPM8 activation in humans: effects of cinnamaldehyde and menthol. Neuroreport. 2005;16:955–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15931068 CrossRefGoogle Scholar
  50. 50.
    Suntres ZE, Coccimiglio J, Alipour M. The bioactivity and toxicological actions of carvacrol. Crit Rev Food Sci Nutr. 2015;55:304–18. Available from: http://www.tandfonline.com/doi/abs/10.1080/10408398.2011.653458 CrossRefGoogle Scholar
  51. 51.
    Blair NT, Philipson BI, Richards PM, Doerner JF, Segura A, Silver WL, et al. Naturally produced defensive alkenal compounds activate TRPA1. Chem Senses. 2016;41:281–92. Available from: https://academic.oup.com/chemse/article-lookup/doi/10.1093/chemse/bjv071 CrossRefGoogle Scholar
  52. 52.
    Bessac BF, Jordt S-E. Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiology (Bethesda). 2008;23:360–70. Available from: http://physiologyonline.physiology.org/cgi/doi/10.1152/physiol.00026.2008 Google Scholar
  53. 53.
    Yuan H, Sun L, Chen M, Wang J. The comparison of the contents of sugar, amadori, and heyns compounds in fresh and black garlic. J Food Sci. 2016;81:C1662–8. Available from: http://doi.wiley.com/10.1111/1750-3841.13365 CrossRefGoogle Scholar
  54. 54.
    Bradley C. New black magic: black garlic. Available from: http://www.heraldtimesonline.com/stories/2009/02/25/recipe.qp-1681035.sto
  55. 55.
    Kimura S, Tung Y-C, Pan M-H, Su N-W, Lai Y-J, Cheng K-C. Black garlic: a critical review of its production, bioactivity, and application. J Food Drug Anal. 2017;25:62–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28911544 CrossRefGoogle Scholar
  56. 56.
    Ryu JH, Kang D. Physicochemical properties, biological activity, health benefits, and general limitations of aged black garlic: a review. Molecules. 2017;22:919. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28587168 CrossRefGoogle Scholar
  57. 57.
    Samad A, Sura L, Benedikt J, Ettrich R, Minofar B, Teisinger J, et al. The C-terminal basic residues contribute to the chemical- and voltage-dependent activation of TRPA1. Biochem J. 2011;433:197–204. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20946100 CrossRefGoogle Scholar
  58. 58.
    Abdel-Daim MM, Kilany OE, Khalifa HA, Ahmed AAM. Allicin ameliorates doxorubicin-induced cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. Cancer Chemother Pharmacol. 2017;80:745–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28785995 CrossRefGoogle Scholar
  59. 59.
    Zhang M, Pan H, Xu Y, Wang X, Qiu Z, Jiang L. Allicin decreases lipopolysaccharide-induced oxidative stress and inflammation in human umbilical vein endothelial cells through suppression of mitochondrial dysfunction and activation of Nrf2. Cell Physiol Biochem. 2017;41:2255–67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28456799 CrossRefGoogle Scholar
  60. 60.
    Peyrot des Gachons C, Uchida K, Bryant B, Shima A, Sperry JB, Dankulich-Nagrudny L, et al. Unusual pungency from extra-virgin olive oil is attributable to restricted spatial expression of the receptor of oleocanthal. J Neurosci. 2011;31:999–1009. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21248124 CrossRefGoogle Scholar
  61. 61.
    Parkinson L, Cicerale S. The health benefiting mechanisms of virgin olive oil phenolic compounds. Molecules. 2016;21:1734. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27999296 CrossRefGoogle Scholar
  62. 62.
    Wagner AE, Boesch-Saadatmandi C, Dose J, Schultheiss G, Rimbach G. Anti-inflammatory potential of allyl-isothiocyanate - role of Nrf2, NF-κB and microRNA-155. J Cell Mol Med. 2012;16:836–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21692985 CrossRefGoogle Scholar
  63. 63.
    Chang A, Bhimji SS. Capsaicin StatPearls. 2017. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29083760 Google Scholar
  64. 64.
    De AK. Capsicum: the genus Capsicum. London: CRC Press; 2003.Google Scholar
  65. 65.
    Varghese S, Kubatka P, Rodrigo L, Gazdikova K, Caprnda M, Fedotova J, et al. Chili pepper as a body weight-loss food. Int J Food Sci Nutr. 2017;68:392–401. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27899046 CrossRefGoogle Scholar
  66. 66.
    Cavaliere C, Masieri S, Cavaliere F. Therapeutic applications of capsaicin in upper airways. Curr Drug Targets. 2017;18:PMID:29149827. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29149827 Google Scholar
  67. 67.
    Randhawa PK, Jaggi AS. A review on potential involvement of TRPV 1 channels in ischemia–reperfusion injury. J Cardiovasc Pharmacol Ther. 2018;23(1):38–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28466657 CrossRefGoogle Scholar
  68. 68.
    Pickering G, Martin E, Tiberghien F, Delorme C, Mick G. Localized neuropathic pain: an expert consensus on local treatments. Drug Des Devel Ther. 2017;11:2709–18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29066862 CrossRefGoogle Scholar
  69. 69.
    Monie TP, Bryant CE. Allergens and activation of the toll-like receptor response. Methods Mol Biol. 2016;1390:341–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26803639 CrossRefGoogle Scholar
  70. 70.
    Smith PK, Masilamani M, Li X-M, Sampson HA. The false alarm hypothesis: food allergy is associated with high dietary advanced glycation end-products and proglycating dietary sugars that mimic alarmins. J Allergy Clin Immunol. 2016;139(2):429–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27544741 CrossRefGoogle Scholar
  71. 71.
    Vinhas R, Cortes L, Cardoso I, Mendes VM, Manadas B, Todo-Bom A, et al. Pollen proteases compromise the airway epithelial barrier through degradation of transmembrane adhesion proteins and lung bioactive peptides. Allergy. 2011;66:1088–98. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21480927 CrossRefGoogle Scholar
  72. 72.
    Bessot JC, Pauli G. Mite allergens: an overview. Eur Ann Allergy Clin Immunol. 2011;43:141–56. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22145250 PubMedGoogle Scholar
  73. 73.
    Herre J, Gronlund H, Brooks H, Hopkins L, Waggoner L, Murton B, et al. Allergens as immunomodulatory proteins: the cat dander protein Fel d 1 enhances TLR activation by lipid ligands. J Immunol. 2013;191:1529–35. Available from: http://www.jimmunol.org/cgi/doi/10.4049/jimmunol.1300284 CrossRefGoogle Scholar
  74. 74.
    Raghavan B, Martin SF, Esser PR, Goebeler M, Schmidt M. Metal allergens nickel and cobalt facilitate TLR4 homodimerization independently of MD2. EMBO Rep. 2012;13:1109–15. Available from: http://embor.embopress.org/cgi/doi/10.1038/embor.2012.155 CrossRefGoogle Scholar
  75. 75.
    Rachmawati D, Bontkes HJ, Verstege MI, Muris J, von Blomberg BME, Scheper RJ, et al. Transition metal sensing by Toll-like receptor-4: next to nickel, cobalt and palladium are potent human dendritic cell stimulators. Contact Dermatitis. 2013;68:331–8. Available from: http://doi.wiley.com/10.1111/cod.12042 CrossRefGoogle Scholar
  76. 76.
    Schmidt M, Goebeler M. Immunology of metal allergies. J Dtsch Dermatol Ges. 2015;13:653–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26053629 PubMedGoogle Scholar
  77. 77.
    Saito M, Arakaki R, Yamada A, Tsunematsu T, Kudo Y, Ishimaru N. Molecular mechanisms of nickel allergy. Int J Mol Sci. 2016;17:202. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26848658 CrossRefGoogle Scholar
  78. 78.
    Schmidt M, Raghavan B, Müller V, Vogl T, Fejer G, Tchaptchet S, et al. Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel. Nat Immunol. 2010;11:814–9. Available from: http://www.nature.com/doifinder/10.1038/ni.1919 CrossRefGoogle Scholar
  79. 79.
    Fowler JF. Cobalt. Dermatitis. 2016;27:3–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26756508 CrossRefGoogle Scholar
  80. 80.
    Caicedo MS, Samelko L, McAllister K, Jacobs JJ, Hallab NJ. Increasing both CoCrMo-alloy particle size and surface irregularity induces increased macrophage inflammasome activation in vitro potentially through lysosomal destabilization mechanisms. J Orthop Res. 2013;31:1633–42. Available from: http://doi.wiley.com/10.1002/jor.22411 CrossRefGoogle Scholar
  81. 81.
    Samelko L, Landgraeber S, McAllister K, Jacobs J, Hallab NJ. Cobalt alloy implant debris induces inflammation and bone loss primarily through danger signaling. Not TLR4 activation: implications for DAMP-ening implant related inflammation. Ryffel B, editor. PLoS One. 2016;e0160141:11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27467577 Google Scholar
  82. 82.
    Muris J, Goossens A, Gonçalo M, Bircher AJ, Giménez-Arnau A, Foti C, et al. Sensitization to palladium in Europe. Contact Dermatitis. 2015;72:11–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25348727 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of StrasbourgMolecular ImmunoRheumatology, Laboratory of Excellence TransplantexStrasbourgFrance

Personalised recommendations