Advertisement

Prologue: About DAMPs, PAMPs, and MAMPs

  • Walter Gottlieb Land
Chapter

Abstract

This chapter represents an assessable report about some critical aspect associated with the description of various classes of DAMPs, an abbreviation used for damage-associated molecular patterns or danger-associated molecular patterns. Given the huge complex and diverse nature of an ever-growing list of DAMPs, a new classification has been elaborated that is described in its basic form. Basically, this new classification consists of widely whole categories of DAMPs, each divided into several classes. These classes are sorted into further subclasses. The major distinctive features chosen refer to their origin, their mode of emission, and the nature of damage-induced modifications (predominantly post-translational modifications). Following this kind of classification, four DAMPs categories are defined, termed as (1) endogenous constitutively expressed native DAMPs; (2) endogenous constitutively expressed, injury-modified DAMPs; (3) endogenous inducible DAMPs produced by previously DAMP-activated stressed or dying cells; and (4) exogenous DAMPs. These categories are subdivided into 11 classes of DAMPs, which are further sorted into (altogether) 37 subclasses, predominantly according to their biochemical nature and different functions. In addition, the term DAMPs is delineated against the other terms PAMPs and MAMPs, which commonly used in the international literature to describe pathogen-associated molecular patterns and microbe-associated molecular patterns.

References

  1. 1.
    Land W. Allograft injury mediated by reactive oxygen species: from conserved proteins of drosophila to acute and chronic rejection of human transplants. Part III: interaction of (oxidative) stress-induced heat shock proteins with toll-like receptor-bearing cells. Transplant Rev. 2003;17:67–86. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0955470X0380006X CrossRefGoogle Scholar
  2. 2.
    Schaefer L. Complexity of danger: the diverse nature of damage-associated molecular patterns. J Biol Chem. 2014;289:35237–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25391648 PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Land WG. Emerging role of innate immunity in organ transplantation part II: potential of damage-associated molecular patterns to generate immunostimulatory dendritic cells. Transplant Rev (Orlando). 2012;26:73–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22074784 CrossRefGoogle Scholar
  4. 4.
    Magna M, Pisetsky DS. The alarmin properties of DNA and DNA-associated nuclear proteins. Clin Ther. 2016;38:1029–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27021604 PubMedCrossRefGoogle Scholar
  5. 5.
    Shi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature. 2003;425:516–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14520412 CrossRefGoogle Scholar
  6. 6.
    Hu Q, Wood CR, Cimen S, Venkatachalam AB, Alwayn IPJ. Mitochondrial damage-associated molecular patterns (MTDs) are released during hepatic ischemia reperfusion and induce inflammatory responses. PLoS One. 2015;10:e0140105. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26451593 PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Timmermans K, Kox M, Scheffer GJ, Pickkers P. Danger in the intesive care unit: DAMPs in critically ill patients. Shock. 2016;45:108–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26513703 PubMedCrossRefGoogle Scholar
  8. 8.
    Land WG. Innate alloimmunity part 2: innate immunity and allograft rejection. Lengerich, Baskent University, Ankara: Pabst Science Publishers; 2011. Available from: ISBN 978-3-89967-738-6.Google Scholar
  9. 9.
    Tang D, Kang R, Zeh HJ, Lotze MT. High-mobility group box 1, oxidative stress, and disease. Antioxid Redox Signal. 2011;14:1315–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20969478 PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Tsung A, Tohme S, Billiar TR. High-mobility group box-1 in sterile inflammation. J Intern Med. 2014;276:425–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24935761 PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Vénéreau E, Ceriotti C, Bianchi ME. DAMPs from cell death to new life. Front Immunol. 2015;6:422. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26347745 PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Asea A. Heat shock proteins and toll-like receptors. Handb Exp Pharmacol. 2008;183:111–27. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18071657 CrossRefGoogle Scholar
  13. 13.
    Land WG. Role of heat shock protein 70 in innate alloimmunity. Front Immunol. 2011;2:89. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22566878 PubMedPubMedCentralGoogle Scholar
  14. 14.
    Miyake Y, Yamasaki S. Sensing necrotic cells. Adv Exp Med Biol. 2012;738:144–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22399378 PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Schiopu A, Cotoi OS. S100A8 and S100A9: DAMPs at the crossroads between innate immunity, traditional risk factors, and cardiovascular disease. Mediators Inflamm. 2013;2013:828354. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24453429 PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Pruenster M, Vogl T, Roth J, Sperandio M. S100A8/A9: from basic science to clinical application. Pharmacol Ther. 2016;167:120–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27492899 PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Jounai N, Kobiyama K, Takeshita F, Ishii KJ. Recognition of damage-associated molecular patterns related to nucleic acids during inflammation and vaccination. Front Cell Infect Microbiol. 2012;2:168. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23316484 PubMedGoogle Scholar
  18. 18.
    Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464:104–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20203610 PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Wenceslau CF, McCarthy CG, Szasz T, Spitler K, Goulopoulou S, Webb RC, et al. Mitochondrial damage-associated molecular patterns and vascular function. Eur Heart J. 2014;35:1172–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24569027 PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Pardo M, Budick-Harmelin N, Tirosh B, Tirosh O. Antioxidant defense in hepatic ischemia-reperfusion injury is regulated by damage-associated molecular pattern signal molecules. Free Radic Biol Med. 2008;45:1073–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18675899 PubMedCrossRefGoogle Scholar
  21. 21.
    Iyer SS, Pulskens WP, Sadler JJ, Butter LM, Teske GJ, Ulland TK, et al. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc Natl Acad Sci U S A. 2009;106:20388–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19918053 PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature. 2009;461:282–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19741708 PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Ghiringhelli F, Apetoh L, Tesniere A, Aymeric L, Ma Y, Ortiz C, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med. 2009;15:1170–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19767732 CrossRefGoogle Scholar
  24. 24.
    Garg AD, Krysko DV, Verfaillie T, Kaczmarek A, Ferreira GB, Marysael T, et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J. 2012;31:1062–79. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22252128 PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Garg AD, Dudek AM, Ferreira GB, Verfaillie T, Vandenabeele P, Krysko DV, et al. ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy. 2013;9:1292–307. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23800749 PubMedCrossRefGoogle Scholar
  26. 26.
    Idzko M, Ferrari D, Eltzschig HK. Nucleotide signalling during inflammation. Nature. 2014;509:310–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24828189 PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Elliott EI, Sutterwala FS. Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev. 2015;265:35–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25879282 PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Yaron JR, Gangaraju S, Rao MY, Kong X, Zhang L, Su F, et al. K(+) regulates Ca(2+) to drive inflammasome signaling: dynamic visualization of ion flux in live cells. Cell Death Dis. 2015;e1954:6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26512962 Google Scholar
  29. 29.
    Di Virgilio F, Vuerich M. Purinergic signaling in the immune system. Auton Neurosci. 2015;191:117–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25979766 PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Babelova A, Moreth K, Tsalastra-Greul W, Zeng-Brouwers J, Eickelberg O, Young MF, et al. Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J Biol Chem. 2009;284:24035–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19605353 PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Schaefer L. Extracellular matrix molecules: endogenous danger signals as new drug targets in kidney diseases. Curr Opin Pharmacol. 2010;10:185–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20045380 PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Moreth K, Frey H, Hubo M, Zeng-Brouwers J, Nastase M-V, Hsieh LT-H, et al. Biglycan-triggered TLR-2- and TLR-4-signaling exacerbates the pathophysiology of ischemic acute kidney injury. Matrix Biol. 2014;35:143–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24480070 PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Gardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell. 2005;123:321–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16239148 PubMedCrossRefGoogle Scholar
  34. 34.
    Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini J-L, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007;13:54–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17187072 CrossRefGoogle Scholar
  35. 35.
    Kang JS, Dervan PB. A sequence-specific DNA binding small molecule triggers the release of immunogenic signals and phagocytosis in a model of B-cell lymphoma. Q Rev Biophys. 2015;48:453–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26537405 PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Raghavan M, Wijeyesakere SJ, Peters LR, Del Cid N. Calreticulin in the immune system: ins and outs. Trends Immunol. 2013;34:13–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22959412 PubMedCrossRefGoogle Scholar
  37. 37.
    Xia J, Xu F, Qu Y, Song D, Shen H, Liu X. Atorvastatin post-conditioning attenuates myocardial ischemia reperfusion injury via inhibiting endoplasmic reticulum stress-related apoptosis. Shock. 2014;42:365–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25004060 PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Li Y, Zeng X, He L, Yuan H. Dendritic cell activation and maturation induced by recombinant calreticulin fragment 39-272. Int J Clin Exp Med. 2015;8:7288–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26221268 PubMedPubMedCentralGoogle Scholar
  39. 39.
    Bergler T, Hoffmann U, Bergler E, Jung B, Banas MC, Reinhold SW, et al. Toll-like receptor 4 in experimental kidney transplantation: early mediator of endogenous danger signals. Nephron Exp Nephrol. 2012;121:e59–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23171961 PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Julier Z, Martino MM, de Titta A, Jeanbart L, Hubbell JA. The TLR4 agonist fibronectin extra domain A is cryptic, exposed by elastase-2; use in a fibrin matrix cancer vaccine. Sci Rep. 2015;5:8569. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25708982 PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Korbelik M, Sun J, Cecic I. Photodynamic therapy-induced cell surface expression and release of heat shock proteins: relevance for tumor response. Cancer Res. 2005;65:1018–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15705903 PubMedPubMedCentralGoogle Scholar
  42. 42.
    Garg AD, Nowis D, Golab J, Agostinis P. Photodynamic therapy: illuminating the road from cell death towards anti-tumour immunity. Apoptosis. 2010;15:1050–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20221698 PubMedCrossRefGoogle Scholar
  43. 43.
    Suzuki S, Kulkarni AB. Extracellular heat shock protein HSP90beta secreted by MG63 osteosarcoma cells inhibits activation of latent TGF-beta1. Biochem Biophys Res Commun. 2010;398:525–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20599762 PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Cirone M, Di Renzo L, Lotti LV, Conte V, Trivedi P, Santarelli R, et al. Primary effusion lymphoma cell death induced by bortezomib and AG 490 activates dendritic cells through CD91. PLoS One. 2012;7:e31732. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22412839 PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Zunino B, Rubio-Patiño C, Villa E, Meynet O, Proics E, Cornille A, et al. Hyperthermic intraperitoneal chemotherapy leads to an anticancer immune response via exposure of cell surface heat shock protein 90. Oncogene. 2016;35:261–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25867070 PubMedCrossRefGoogle Scholar
  46. 46.
    Wu M, Wang H, Shi J, Sun J, Duan Z, Li Y, et al. Gene expression profiles identify both MyD88-independent and MyD88-dependent pathways involved in the maturation of dendritic cells mediated by heparan sulphate: a novel adjuvant. Hum Vaccin Immunother. 2014;10:3711–21. Available from: http://www.tandfonline.com/doi/full/10.4161/21645515.2014.980682 PubMedCrossRefGoogle Scholar
  47. 47.
    Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418:191–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12110890 CrossRefGoogle Scholar
  48. 48.
    Semino C, Angelini G, Poggi A, Rubartelli A. NK/iDC interaction results in IL-18 secretion by DCs at the synaptic cleft followed by NK cell activation and release of the DC maturation factor HMGB1. Blood. 2005;106:609–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15802534 CrossRefGoogle Scholar
  49. 49.
    Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13(9):1050. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17704786 PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Thorburn J, Horita H, Redzic J, Hansen K, Frankel AE, Thorburn A. Autophagy regulates selective HMGB1 release in tumor cells that are destined to die. Cell Death Differ. 2009;16:175–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18846108 PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Zhang J, Wang H, Xiao Q, Liang H, Li Z, Jiang C, et al. Hyaluronic acid fragments evoke Kupffer cells via TLR4 signaling pathway. Sci China C Life Sci. 2009;52:147–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19277526 PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Jiang D, Liang J, Noble PW. Hyaluronan as an immune regulator in human diseases. Physiol Rev. 2011;91:221–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21248167 PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Yamasaki K, Muto J, Taylor KR, Cogen AL, Audish D, Bertin J, et al. NLRP3/cryopyrin is necessary for interleukin-1beta (IL-1beta) release in response to hyaluronan, an endogenous trigger of inflammation in response to injury. J Biol Chem. 2009;284:12762–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19258328 PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Todd JL, Wang X, Sugimoto S, Kennedy VE, Zhang HL, Pavlisko EN, et al. Hyaluronan contributes to bronchiolitis obliterans syndrome and stimulates lung allograft rejection through activation of innate immunity. Am J Respir Crit Care Med. 2014;189:556–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24471427 PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Jung YJ, Lee AS, Nguyen-Thanh T, Kang KP, Lee S, Jang KY, et al. Hyaluronan-induced VEGF-C promotes fibrosis-induced lymphangiogenesis via Toll-like receptor 4-dependent signal pathway. Biochem Biophys Res Commun. 2015;466:339–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26362177 PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Colombaro V, Jadot I, Declèves A-E, Voisin V, Giordano L, Habsch I, et al. Lack of hyaluronidases exacerbates renal post-ischemic injury, inflammation, and fibrosis. Kidney Int. 2015;88:61–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25715119 PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Watson NFS, Spendlove I, Madjd Z, McGilvray R, Green AR, Ellis IO, et al. Expression of the stress-related MHC class I chain-related protein MICA is an indicator of good prognosis in colorectal cancer patients. Int J Cancer. 2006;118:1445–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16184547 PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    He Y, Li Y, Li S, Long D. Effect of hypoxia/reoxygenation (H/R) on expression of MICA and MICB in human hepatocytes. Sichuan Da Xue Xue Bao Yi Xue Ban. 2005;36:157–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15807254 PubMedPubMedCentralGoogle Scholar
  59. 59.
    Borchers MT, Harris NL, Wesselkamper SC, Vitucci M, Cosman D. NKG2D ligands are expressed on stressed human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2006;291:L222–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16473864 PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Feng L, Cheng F, Ye Z, Li S, He Y, Yao X, et al. The effect of renal ischemia-reperfusion injury on expression of RAE-1 and H60 in mice kidney. Transplant Proc. 2006;38:2195–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16980040 PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Raulet DH, Gasser S, Gowen BG, Deng W, Jung H. Regulation of ligands for the NKG2D activating receptor. Annu Rev Immunol. 2013;31:413–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23298206 PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Marcus A, Gowen BG, Thompson TW, Iannello A, Ardolino M, Deng W, et al. Recognition of tumors by the innate immune system and natural killer cells. Adv Immunol. 2014;122:91–128. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24507156 PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Suárez-Álvarez B, Fernández-Sánchez A, López-Vázquez A, Coto E, Ortega F, López-Larrea C. NKG2D and its ligands: active factors in the outcome of solid organ transplantation? Kidney Int Suppl. 2011;1:52–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25018903 CrossRefGoogle Scholar
  64. 64.
    Fionda C, Soriani A, Zingoni A, Santoni A, Cippitelli M. NKG2D and DNAM-1 ligands: molecular targets for NK cell-mediated immunotherapeutic intervention in multiple myeloma. Biomed Res Int. 2015;2015:178698. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26161387 PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Carapito R, Bahram S. Genetics, genomics, and evolutionary biology of NKG2D ligands. Immunol Rev. 2015;267:88–116. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26284473 PubMedCrossRefGoogle Scholar
  66. 66.
    Lanier LL. NKG2D receptor and its ligands in host defense. Cancer Immunol Res. 2015;3:575–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26041808 PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Glantzounis GK, Tsimoyiannis EC, Kappas AM, Galaris DA. Uric acid and oxidative stress. Curr Pharm Des. 2005;11:4145–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16375736 CrossRefGoogle Scholar
  68. 68.
    Lauber K, Ernst A, Orth M, Herrmann M, Belka C. Dying cell clearance and its impact on the outcome of tumor radiotherapy. Front Oncol. 2012;2:116. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22973558 PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Kingsbury SR, Conaghan PG, McDermott MF. The role of the NLRP3 inflammasome in gout. J Inflamm Res. 2011;4:39–49. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22096368 PubMedPubMedCentralGoogle Scholar
  70. 70.
    Rabadi MM, Kuo M-C, Ghaly T, Rabadi SM, Weber M, Goligorsky MS, et al. Interaction between uric acid and HMGB1 translocation and release from endothelial cells. Am J Physiol Renal Physiol. 2012;302:F730–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22189943 PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Zheng S-C, Zhu X-X, Xue Y, Zhang L-H, Zou H-J, Qiu J-H, et al. Role of the NLRP3 inflammasome in the transient release of IL-1β induced by monosodium urate crystals in human fibroblast-like synoviocytes. J Inflamm (Lond). 2015;12:30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25897296 CrossRefGoogle Scholar
  72. 72.
    Zhang M, Alicot EM, Chiu I, Li J, Verna N, Vorup-Jensen T, et al. Identification of the target self-antigens in reperfusion injury. J Exp Med. 2006;203:141–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16390934 PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Lee H, Green DJ, Lai L, Hou YJ, Jensenius JC, Liu D, et al. Early complement factors in the local tissue immunocomplex generated during intestinal ischemia/reperfusion injury. Mol Immunol. 2010;47:972–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20004473 PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Zhang M, Carroll MC. Natural IgM-mediated innate autoimmunity: a new target for early intervention of ischemia-reperfusion injury. Expert Opin Biol Ther. 2007;7:1575–82. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17916049 PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Collins LV, Hajizadeh S, Holme E, Jonsson I-M, Tarkowski A. Endogenously oxidized mitochondrial DNA induces in vivo and in vitro inflammatory responses. J Leukoc Biol. 2004;75:995–1000. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14982943 PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Karikó K, Ni H, Capodici J, Lamphier M, Weissman D. mRNA is an endogenous ligand for Toll-like receptor 3. J Biol Chem. 2004;279:12542–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14729660 PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Lamphier MS, Sirois CM, Verma A, Golenbock DT, Latz E. TLR9 and the recognition of self and non-self nucleic acids. Ann N Y Acad Sci. 2006;1082:31–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17145922 PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Bamboat ZM, Balachandran VP, Ocuin LM, Obaid H, Plitas G, DeMatteo RP. Toll-like receptor 9 inhibition confers protection from liver ischemia-reperfusion injury. Hepatology. 2010;51:621–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19902481 PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Krysko DV, Agostinis P, Krysko O, Garg AD, Bachert C, Lambrecht BN, et al. Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol. 2011;32:157–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21334975 PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Galluzzi L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol. 2012;13:780–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23175281 PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Brencicova E, Diebold SS. Nucleic acids and endosomal pattern recognition: how to tell friend from foe? Front Cell Infect Microbiol. 2013;3:37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23908972 PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Nakahira K, Hisata S, Choi AMK. The roles of mitochondrial damage-associated molecular patterns in diseases. Antioxid Redox Signal. 2015;23:1329–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26067258 PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Wu J, Chen ZJ. Innate immune sensing and signaling of cytosolic nucleic acids. Annu Rev Immunol. 2014;32:461–88. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24655297 PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Sharma S, Fitzgerald KA, Cancro MP, Marshak-Rothstein A. Nucleic acid-sensing receptors: rheostats of autoimmunity and autoinflammation. J Immunol. 2015;195:3507–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26432899 PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Xiao TS. The nucleic acid-sensing inflammasomes. Immunol Rev. 2015;265:103–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25879287PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Woo S-R, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MYK, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity. 2014;41:830–42. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25517615 PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Ma F, Li B, Liu S, Iyer SS, Yu Y, Wu A, et al. Positive feedback regulation of type I IFN production by the IFN-inducible DNA sensor cGAS. J Immunol. 2015;194:1545–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25609843 PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    He S, Mao X, Sun H, Shirakawa T, Zhang H, Wang X. Potential therapeutic targets in the process of nucleic acid recognition: opportunities and challenges. Trends Pharmacol Sci. 2015;36:51–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25479797 PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Lan YY, Londoño D, Bouley R, Rooney MS, Hacohen N. Dnase2a deficiency uncovers lysosomal clearance of damaged nuclear DNA via autophagy. Cell Rep. 2014;9:180–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25284779 PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Tsuruya K, Furuichi M, Tominaga Y, Shinozaki M, Tokumoto M, Yoshimitsu T, et al. Accumulation of 8-oxoguanine in the cellular DNA and the alteration of the OGG1 expression during ischemia-reperfusion injury in the rat kidney. DNA Repair (Amst). 2003;2:211–29. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12531391 CrossRefGoogle Scholar
  91. 91.
    Moghaddam AE, Gartlan KH, Kong L, Sattentau QJ. Reactive carbonyls are a major Th2-inducing damage-associated molecular pattern generated by oxidative stress. J Immunol. 2011;187:1626–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21742965 PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Miller YI, Choi S-H, Wiesner P, Fang L, Harkewicz R, Hartvigsen K, et al. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity. Circ Res. 2011;108:235–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21252151 PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Weismann D, Binder CJ. The innate immune response to products of phospholipid peroxidation. Biochim Biophys Acta. 2012;1818:2465–75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22305963 PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Vandenberk L, Garg AD, Verschuere T, Koks C, Belmans J, Beullens M, et al. Irradiation of necrotic cancer cells, employed for pulsing dendritic cells (DCs), potentiates DC vaccine-induced antitumor immunity against high-grade glioma. Oncoimmunology. 2016;5:e1083669. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27057467 PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Tsiantoulas D, Perkmann T, Afonyushkin T, Mangold A, Prohaska TA, Papac-Milicevic N, et al. Circulating microparticles carry oxidation-specific epitopes and are recognized by natural IgM antibodies. J Lipid Res. 2015;56:440–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25525116 PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Matt U, Sharif O, Martins R, Knapp S. Accumulating evidence for a role of oxidized phospholipids in infectious diseases. Cell Mol Life Sci. 2015;72:1059–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25410378 PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Binder CJ, Papac-Milicevic N, Witztum JL. Innate sensing of oxidation-specific epitopes in health and disease. Nat Rev Immunol. 2016;16:485–97. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27346802 PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Yang Z, Tao T, Raftery MJ, Youssef P, Di Girolamo N, Geczy CL. Proinflammatory properties of the human S100 protein S100A12. J Leukoc Biol. 2001;69:986–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11404386 PubMedPubMedCentralGoogle Scholar
  99. 99.
    Pelinka LE, Harada N, Szalay L, Jafarmadar M, Redl H, Bahrami S. Release of S100B differs during ischemia and reperfusion of the liver, the gut, and the kidney in rats. Shock. 2004;21:72–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14676687 PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Donato R. RAGE: a single receptor for several ligands and different cellular responses: the case of certain S100 proteins. Curr Mol Med. 2007;7:711–24. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18331229 PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Foell D, Wittkowski H, Vogl T, Roth J. S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J Leukoc Biol. 2007;81:28–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16943388 PubMedCrossRefGoogle Scholar
  102. 102.
    Rohde D, Schön C, Boerries M, Didrihsone I, Ritterhoff J, Kubatzky KF, et al. S100A1 is released from ischemic cardiomyocytes and signals myocardial damage via Toll-like receptor 4. EMBO Mol Med. 2014;6:778–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24833748 PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Goh FG, Piccinini AM, Krausgruber T, Udalova IA, Midwood KS. Transcriptional regulation of the endogenous danger signal tenascin-C: a novel autocrine loop in inflammation. J Immunol. 2010;184:2655–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20107185 PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Piccinini AM, Midwood KS. Endogenous control of immunity against infection: tenascin-C regulates TLR4-mediated inflammation via microRNA-155. Cell Rep. 2012;2:914–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23084751 PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Giblin SP, Midwood KS. Tenascin-C: form versus function. Cell Adhes Migr. 2015;9:48–82.CrossRefGoogle Scholar
  106. 106.
    Huergo-Zapico L, Acebes-Huerta A, López-Soto A, Villa-Álvarez M, Gonzalez-Rodriguez AP, Gonzalez S. Molecular bases for the regulation of NKG2D ligands in cancer. Front Immunol. 2014;5:106. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24711808 PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    López-Soto A, Huergo-Zapico L, Acebes-Huerta A, Villa-Alvarez M, Gonzalez S. NKG2D signaling in cancer immunosurveillance. Int J Cancer. 2015;136:1741–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24615398 PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Chen GE, Wu H, Ma J, Chadban SJ, Sharland A. Toll-like receptor 4 engagement contributes to expression of NKG2D ligands by renal tubular epithelial cells. Nephrol Dial Transplant. 2011;26:3873–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21555390 PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Huang H, Evankovich J, Yan W, Nace G, Zhang L, Ross M, et al. Endogenous histones function as alarmins in sterile inflammatory liver injury through Toll-like receptor 9 in mice. Hepatology. 2011;54:999–1008. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21721026 PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Kawai C, Kotani H, Miyao M, Ishida T, Jemail L, Abiru H, et al. Circulating extracellular histones are clinically relevant mediators of multiple organ injury. Am J Pathol. 2016;186:829–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26878212 PubMedCrossRefGoogle Scholar
  111. 111.
    Seong S-Y, Matzinger P. Hydrophobicity: an ancient damage-associated molecular pattern that initiates innate immune responses. Nat Rev Immunol. 2004;4:469–78. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15173835 PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81:1–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17032697 CrossRefGoogle Scholar
  113. 113.
    Gallo PM, Gallucci S. The dendritic cell response to classic, emerging, and homeostatic danger signals. Implications for autoimmunity. Front Immunol. 2013;4:138. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23772226 PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Garg AD, Galluzzi L, Apetoh L, Baert T, Birge RB, Bravo-San Pedro JM, et al. Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol. 2015;6:588. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26635802 PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Chan JK, Roth J, Oppenheim JJ, Tracey KJ, Vogl T, Feldmann M, et al. Alarmins: awaiting a clinical response. J Clin Invest. 2012;122:2711–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22850880 PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Martin SJ. Cell death and inflammation: the case for IL-1 family cytokines as the canonical DAMPs of the immune system. FEBS J. 2016;283:2599–615. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27273805 PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Yatim N, Cullen S, Albert ML. Dying cells actively regulate adaptive immune responses. Nat Rev Immunol. 2017;17:262–75. Available from: http://www.nature.com/doifinder/10.1038/nri.2017.9 PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Cao X. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat Rev Immunol. 2016;16:35–50. Available from: http://www.nature.com/doifinder/10.1038/nri.2015.8 PubMedCrossRefGoogle Scholar
  119. 119.
    Kavita U, Mizel SB. Differential sensitivity of interleukin-1 alpha and -beta precursor proteins to cleavage by calpain, a calcium-dependent protease. J Biol Chem. 1995;270:27758–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7499244 PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Zheng Y, Humphry M, Maguire JJ, Bennett MR, Clarke MCH. Intracellular interleukin-1 receptor 2 binding prevents cleavage and activity of interleukin-1α, controlling necrosis-induced sterile inflammation. Immunity. 2013;38:285–95. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1074761313000484 PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Lu B, Wang H, Andersson U, Tracey KJ. Regulation of HMGB1 release by inflammasomes. Protein Cell. 2013;4:163–7. Available from: http://link.springer.com/10.1007/s13238-012-2118-2 PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Rendon-Mitchell B, Ochani M, Li J, Han J, Wang H, Yang H, et al. IFN-gamma induces high mobility group box 1 protein release partly through a TNF-dependent mechanism. J Immunol. 2003;170(7):3890. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12646658 PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Rubartelli A, Lotze MT. Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol. 2007;28:429–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17845865 PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Land WG, Agostinis P, Gasser S, Garg AD, Linkermann A. Transplantation and damage-associated molecular patterns (DAMPs). Am J Transplant. 2016;16:3338–61. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27421829 PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Liu X, Wang C. The emerging roles of the STING adaptor protein in immunity and diseases. Immunology. 2016;147:285–91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26643733 PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Schaefer L. Personal communication.Google Scholar
  127. 127.
    Apte SS, Parks WC. Metalloproteinases: a parade of functions in matrix biology and an outlook for the future. Matrix Biol. 2015;44–46:1–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25916966 PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Jin H, Zhou S. The functions of heparanase in human diseases. Mini Rev Med Chem. 2017;17:541–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27804885 PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Lee MCS, Miller EA, Goldberg J, Orci L, Schekman R. Bi-directional protein transport between the ER and Golgi. Annu Rev Cell Dev Biol. 2004;20:87–123. Available from: http://www.annualreviews.org/doi/10.1146/annurev.cellbio.20.010403.105307 PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Bhattacharya A, Prakash YS, Eissa NT. Secretory function of autophagy in innate immune cells. Cell Microbiol. 2014;16:1637–45. Available from: http://doi.wiley.com/10.1111/cmi.12365 PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Stow JL, Murray RZ. Intracellular trafficking and secretion of inflammatory cytokines. Cytokine Growth Factor Rev. 2013;24:227–39. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23647915 PubMedCrossRefGoogle Scholar
  132. 132.
    Murray RZ, Stow JL. Cytokine secretion in macrophages: SNAREs, rabs, and membrane trafficking. Front Immunol. 2014;5:538. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25386181 PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    De Matteis MA, Luini A. Exiting the Golgi complex. Nat Rev Mol Cell Biol. 2008;9:273–84. Available from: http://www.nature.com/doifinder/10.1038/nrm2378 PubMedCrossRefGoogle Scholar
  134. 134.
    Alabi AA, Tsien RW. Perspectives on kiss-and-run: role in exocytosis, endocytosis, and neurotransmission. Annu Rev Physiol. 2013;75:393–422. Available from: http://www.annualreviews.org/doi/10.1146/annurev-physiol-020911-153305 PubMedCrossRefGoogle Scholar
  135. 135.
    Vardjan N, Jorgačevski J, Zorec R. Fusion pores, SNAREs, and exocytosis. Neuroscience. 2013;19:160–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23019088 CrossRefGoogle Scholar
  136. 136.
    Chiaruttini G, Piperno GM, Jouve M, De Nardi F, Larghi P, Peden AA, et al. The SNARE VAMP7 regulates exocytic trafficking of interleukin-12 in dendritic cells. Cell Rep. 2016;14:2624–36. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26972013 PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Collins LE, DeCourcey J, Soledad di Luca M, Rochfort KD, Loscher CE. An emerging role for SNARE proteins in dendritic cell function. Front Immunol. 2015;6:133. Available from: http://journal.frontiersin.org/Article/10.3389/fimmu.2015.00133/abstract PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Zhu H, Wang L, Ruan Y, Zhou L, Zhang D, Min Z, et al. An efficient delivery of DAMPs on the cell surface by the unconventional secretion pathway. Biochem Biophys Res Commun. 2011;404:790–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21168385 PubMedCrossRefGoogle Scholar
  139. 139.
    Daniels M, Brough D. Unconventional pathways of secretion contribute to inflammation. Int J Mol Sci. 2017;18:102. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28067797 CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Malhotra V. Unconventional protein secretion: an evolving mechanism. EMBO J. 2013;32:1660–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23665917 PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Robinson DG, Ding Y, Jiang L. Unconventional protein secretion in plants: a critical assessment. Protoplasma. 2016;253:31–43. Available from: http://link.springer.com/10.1007/s00709-015-0887-1 PubMedCrossRefGoogle Scholar
  142. 142.
    Pompa A, De Marchis F, Pallotta MT, Benitez-Alfonso Y, Jones A, Schipper K, et al. Unconventional transport routes of soluble and membrane proteins and their role in developmental biology. Int J Mol Sci. 2017;18:703. Available from: http://www.mdpi.com/1422-0067/18/4/703 CrossRefGoogle Scholar
  143. 143.
    Nickel W, Rabouille C. Mechanisms of regulated unconventional protein secretion. Nat Rev Mol Cell Biol. 2009;10:148–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19122676 PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Richards AL, Jackson WT. Intracellular vesicle acidification promotes maturation of infectious poliovirus particles. PLoS Pathog. 2012;e1003046:8. Available from: http://dx.plos.org/10.1371/journal.ppat.1003046 Google Scholar
  145. 145.
    Garg AD, Agostinis P. ER stress, autophagy and immunogenic cell death in photodynamic therapy-induced anti-cancer immune responses. Photochem Photobiol Sci. 2014;13:474–87. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24493131 PubMedCrossRefGoogle Scholar
  146. 146.
    Martin S, Dudek-Peric AM, Garg AD, Roose H, Demirsoy S, Van Eygen S, et al. An autophagy-driven pathway of ATP secretion supports the aggressive phenotype of BRAF V600E inhibitor-resistant metastatic melanoma cells. Autophagy. 2017;13:1512–27. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28722539 PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Dupont N, Jiang S, Pilli M, Ornatowski W, Bhattacharya D, Deretic V. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J. 2011;30:4701–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22068051 PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Martín-Sánchez F, Diamond C, Zeitler M, Gomez AI, Baroja-Mazo A, Bagnall J, et al. Inflammasome-dependent IL-1β release depends upon membrane permeabilisation. Cell Death Differ. 2016;23:1219–31. Available from: http://www.nature.com/doifinder/10.1038/cdd.2015.176 PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Antoine DJ, Jenkins RE, Dear JW, Williams DP, McGill MR, Sharpe MR, et al. Molecular forms of HMGB1 and keratin-18 as mechanistic biomarkers for mode of cell death and prognosis during clinical acetaminophen hepatotoxicity. J Hepatol. 2012;56:1070–9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0168827812000591 PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Chakraborty P, Bjork P, Källberg E, Olsson A, Riva M, Mörgelin M, et al. Vesicular location and transport of S100A8 and S100A9 proteins in monocytoid cells. PLoS One. 2015;10:e0145217. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26661255 PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Baer M, Dillner A, Schwartz RC, Sedon C, Nedospasov S, Johnson PF. Tumor necrosis factor alpha transcription in macrophages is attenuated by an autocrine factor that preferentially induces NF-kappaB p50. Mol Cell Biol. 1998;18:5678–89. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9742085 PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Sistigu A, Yamazaki T, Vacchelli E, Chaba K, Enot DP, Adam J, et al. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nat Med. 2014;20:1301–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25344738 PubMedCrossRefGoogle Scholar
  153. 153.
    Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. Type I interferons in anticancer immunity. Nat Rev Immunol. 2015;15:405–14. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26027717 PubMedCrossRefGoogle Scholar
  154. 154.
    Ayna G, Krysko DV, Kaczmarek A, Petrovski G, Vandenabeele P, Fésüs L. ATP release from dying autophagic cells and their phagocytosis are crucial for inflammasome activation in macrophages. PLoS One. 2012;7:e40069. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22768222 PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Hou W, Zhang Q, Yan Z, Chen R, Zeh Iii HJ, Kang R, et al. Strange attractors: DAMPs and autophagy link tumor cell death and immunity. Cell Death Dis. 2013;4:e966. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24336086 PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Wang Y, Martins I, Ma Y, Kepp O, Galluzzi L, Kroemer G. Autophagy-dependent ATP release from dying cells via lysosomal exocytosis. Autophagy. 2013;9:1624–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23989612 PubMedCrossRefGoogle Scholar
  157. 157.
    Zhang Q, Kang R, Zeh HJ, Lotze MT, Tang D. DAMPs and autophagy: cellular adaptation to injury and unscheduled cell death. Autophagy. 2013;9:451–8. Available from: http://www.tandfonline.com/doi/abs/10.4161/auto.23691 PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    van Vliet AR, Agostinis P. When under pressure, get closer: PERKing up membrane contact sites during ER stress. Biochem Soc Trans. 2016;44:499–504. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27068961 PubMedCrossRefGoogle Scholar
  159. 159.
    Carapito R. personal Communication.Google Scholar
  160. 160.
    Roers A, Hiller B, Hornung V. Recognition of endogenous nucleic acids by the innate immune system. Immunity. 2016;44:739–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27096317 PubMedCrossRefGoogle Scholar
  161. 161.
    Mavragani I, Nikitaki Z, Souli M, Aziz A, Nowsheen S, Aziz K, et al. Complex DNA damage: a route to radiation-induced genomic instability and carcinogenesis. Cancers (Basel). 2017;9:91. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28718816 CrossRefGoogle Scholar
  162. 162.
    Liston A, Masters SL. Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat Rev Immunol. 2017;17(3):208–14. Available from: http://www.nature.com/doifinder/10.1038/nri.2016.151 CrossRefGoogle Scholar
  163. 163.
    Medzhitov R, Janeway CA. Innate immune recognition and control of adaptive immune responses. Semin Immunol. 1998;10:351–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9799709 PubMedCrossRefGoogle Scholar
  164. 164.
    Hasday JD, Bascom R, Costa JJ, Fitzgerald T, Dubin W. Bacterial endotoxin is an active component of cigarette smoke. Chest. 1999;115:829–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10084499 PubMedCrossRefGoogle Scholar
  165. 165.
    Nahum A, Hoyt J, Schmitz L, Moody J, Shapiro R, Marini JJ. Effect of mechanical ventilation strategy on dissemination of intratracheally instilled Escherichia coli in dogs. Crit Care Med. 1997;25:1733–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9377891 PubMedCrossRefGoogle Scholar
  166. 166.
    Marshall JC. Lipopolysaccharide: an endotoxin or an exogenous hormone? Clin Infect Dis. 2005;41:S470–80. Available from: https://academic.oup.com/cid/article-lookup/doi/10.1086/432000 PubMedCrossRefGoogle Scholar
  167. 167.
    Lee CC, Avalos AM, Ploegh HL. Accessory molecules for Toll-like receptors and their function. Nat Rev Immunol. 2012;12:168–79. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22301850 PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Tan Y, Kagan JC. Microbe-inducible trafficking pathways that control Toll-like receptor signaling. Traffic. 2017;18:6–17. Available from: http://doi.wiley.com/10.1111/tra.12454 PubMedCrossRefGoogle Scholar
  169. 169.
    Kieser KJ, Kagan JC. Multi-receptor detection of individual bacterial products by the innate immune system. Nat Rev Immunol. 2017;17:376–90. Available from: http://www.nature.com/doifinder/10.1038/nri.2017.25 PubMedCrossRefGoogle Scholar
  170. 170.
    Burton AR, Fazalbhoy A, Macefield VG. Sympathetic responses to noxious stimulation of muscle and skin. Front Neurol. 2016;7:109. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27445972 PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Yalcin I, Megat S, Barthas F, Waltisperger E, Kremer M, Salvat E, et al. The sciatic nerve cuffing model of neuropathic pain in mice. J Vis Exp. 2014;89:PMID:25078668. Available from: http://www.jove.com/video/51608/the-sciatic-nerve-cuffing-model-of-neuropathic-pain-in-mice Google Scholar
  172. 172.
    Nakayama T. An inflammatory response is essential for the development of adaptive immunity-immunogenicity and immunotoxicity. Vaccine. 2016;34:5815–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27745952 PubMedCrossRefGoogle Scholar
  173. 173.
    Raghavan B, Martin SF, Esser PR, Goebeler M, Schmidt M. Metal allergens nickel and cobalt facilitate TLR4 homodimerization independently of MD2. EMBO Rep. 2012;13:1109–15. Available from: http://embor.embopress.org/cgi/doi/10.1038/embor.2012.155 PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Rachmawati D, Bontkes HJ, Verstege MI, Muris J, von Blomberg BME, Scheper RJ, et al. Transition metal sensing by Toll-like receptor-4: next to nickel, cobalt and palladium are potent human dendritic cell stimulators. Contact Dermatitis. 2013;68:331–8. Available from: http://doi.wiley.com/10.1111/cod.12042 PubMedCrossRefGoogle Scholar
  175. 175.
    Collins SE, Mossman KL. Danger, diversity and priming in innate antiviral immunity. Cytokine Growth Factor Rev. 2014;25:525–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25081316 PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Tsai S-Y, Segovia JA, Chang T-H, Morris IR, Berton MT, Tessier PA, et al. DAMP molecule S100A9 acts as a molecular pattern to enhance inflammation during influenza A virus infection: role of DDX21-TRIF-TLR4-MyD88 pathway. PLoS Pathog. 2014;10:e1003848. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24391503 PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Samy RP, Lim LHK. DAMPs and influenza virus infection in ageing. Ageing Res Rev. 2015;24:83–97. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26200296 PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Hare DN, Collins SE, Mukherjee S, Loo Y-M, Gale M, Janssen LJ, et al. Membrane perturbation-associated Ca2+ signaling and incoming genome sensing are required for the host response to low-level enveloped virus particle entry. J Virol. 2016;90:3018–27. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26719279 CrossRefGoogle Scholar
  179. 179.
    Kakihana Y, Ito T, Nakahara M, Yamaguchi K, Yasuda T. Sepsis-induced myocardial dysfunction: pathophysiology and management. J Intensive Care. 2016;4:22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27011791 PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Kamada N, Seo S-U, Chen GY, Núñez G. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013;13:321–35. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23618829 PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Omenetti S, Pizarro TT. The Treg/Th17 axis: a dynamic balance regulated by the gut microbiome. Front Immunol. 2015;6:639. Available from: http://journal.frontiersin.org/Article/10.3389/fimmu.2015.00639/abstract PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Tanoue T, Atarashi K, Honda K. Development and maintenance of intestinal regulatory T cells. Nat Rev Immunol. 2016;16:295–309. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27087661 PubMedCrossRefGoogle Scholar
  183. 183.
    Janeway CA. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54(Pt 1):1–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2700931 PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Land WG. Injury-induced allograft rejection: a rendezvous with evolution. Clin Transpl. 2013;2013:199–214.Google Scholar
  185. 185.
    Bosch TCG, Augustin R, Anton-Erxleben F, Fraune S, Hemmrich G, Zill H, et al. Uncovering the evolutionary history of innate immunity: the simple metazoan Hydra uses epithelial cells for host defence. Dev Comp Immunol. 2009;33:559–69. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0145305X08002322 PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Bosch TCG. Cnidarian-microbe interactions and the origin of innate immunity in metazoans. Annu Rev Microbiol. 2013;67:499–518. Available from: http://www.annualreviews.org/doi/10.1146/annurev-micro-092412-155626 PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Franzenburg S, Fraune S, Künzel S, Baines JF, Domazet-Loso T, Bosch TCG. MyD88-deficient Hydra reveal an ancient function of TLR signaling in sensing bacterial colonizers. Proc Natl Acad Sci U S A. 2012;109:19374–9. Available from: http://www.pnas.org/cgi/doi/10.1073/pnas.1213110109 PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Bosco-Drayon V, Poidevin M, Boneca IG, Narbonne-Reveau K, Royet J, Charroux B. Peptidoglycan sensing by the receptor PGRP-LE in the Drosophila gut induces immune responses to infectious bacteria and tolerance to microbiota. Cell Host Microbe. 2012;12:153–65. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1931312812002284 PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Buchon N, Broderick NA, Lemaitre B. Gut homeostasis in a microbial world: insights from Drosophila melanogaster. Nat Rev Microbiol. 2013;11:615–26. Available from: http://www.nature.com/doifinder/10.1038/nrmicro3074 CrossRefGoogle Scholar
  190. 190.
    Buchon N, Silverman N, Cherry S. Immunity in Drosophila melanogaster—from microbial recognition to whole-organism physiology. Nat Rev Immunol. 2014;14:796–810. Available from: http://www.nature.com/doifinder/10.1038/nri3763 PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Guerrero CA, Acosta O. Inflammatory and oxidative stress in rotavirus infection. World J Virol. 2016;5:38. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27175349 PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Thapa RJ, Ingram JP, Ragan KB, Nogusa S, Boyd DF, Benitez AA, et al. DAI senses influenza A virus genomic RNA and activates RIPK3-dependent cell death. Cell Host Microbe. 2016;20:674–81. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1931312816303924 PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Man SM, Karki R, Kanneganti T-D. AIM2 inflammasome in infection, cancer, and autoimmunity: role in DNA sensing, inflammation, and innate immunity. Eur J Immunol. 2016;46:269–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26626159 PubMedCrossRefGoogle Scholar
  194. 194.
    Garg AD, Agostinis P. Cell death and immunity in cancer: from danger signals to mimicry of pathogen defense responses. Immunol Rev. 2017;280:126–48. Available from: http://doi.wiley.com/10.1111/imr.12574 PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Yang D, de la Rosa G, Tewary P, Oppenheim JJ. Alarmins link neutrophils and dendritic cells. Trends Immunol. 2009;30:531–7. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1471490609001422 PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22:240–73. Available from: http://cmr.asm.org/cgi/doi/10.1128/CMR.00046-08 PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev. 2012;249:158–75. Available from: http://doi.wiley.com/10.1111/j.1600-065X.2012.01146.x PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Thaiss CA, Levy M, Itav S, Elinav E. Integration of innate immune signaling. Trends Immunol. 2016;37:84–101. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1471490615003002 PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Janeway C. Immunogenicity signals 1,2,3 ... and 0. Immunol Today. 1989;10:283–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2590379 PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of StrasbourgMolecular ImmunoRheumatology, Laboratory of Excellence TransplantexStrasbourgFrance

Personalised recommendations