Advertisement

The Witwatersrand Basin and Its Gold Deposits

Chapter
Part of the Regional Geology Reviews book series (RGR)

Abstract

The Mesoarchaean Witwatersrand Basin represents the largest known gold anomaly and has produced more gold than any other ore province in the world. Deposition of the predominantly siliciclastic basin fill began shortly after 2985 Ma in a shallow marine environment, maybe along a passive margin to an old continent to the north(west), and under generally cool climatic conditions (West Rand Group). Tectonic inversion following the extrusion of 2914 Ma andesitic lava led to a shift towards continental sedimentation. Following a basin-wide hiatus at around 2900 Ma, the largely arenitic Central Rand Group was deposited into a retroarc foreland basin that regressed as it was filled between <2902 and >2780 Ma in response to crustal accretion along the western and northern margins of the basin. This stage was accompanied by the largest known concentration of gold in Earth’s history, initially by microbial fixation on emerging colonies of probably cyanobacteria in near-coastal environments, subsequently by mechanical reworking of the gold-rich microbial mats to form conglomerate-hosted placer deposits. The source of the huge amount of gold in the Witwatersrand is thought to be the entire greenstone-dominated Archaean cratonic surface, which was subjected to intensive chemical weathering permitting large-scale leaching of gold by contemporaneous surface waters. Syn-depositional tectonism that extended from the hinterland into the foreland basin led to repeated further physical reworking of gold-rich sediments to form more placer deposits higher up in the stratigraphy, even above the Witwatersrand Supergroup. The Witwatersrand Basin fill was subjected to a series of alteration events, ranging from burial and regional low-grade metamorphism to heating in the course of the emplacement of the 2054 Ma Bushveld Igneous Complex and catastrophic shattering during the 2023 Ma Vredefort impact, which enabled renewed fluid flow long after primary rock porosity had been obliterated. This caused some short-range mobilisation of ore components, including gold, but without changing the overall sedimentological and stratigraphic control on ore grade.

Keywords

Witwatersrand Gold Mesoarchaean Kaapvaal Craton 

Notes

Acknowledgements

Numerous mining companies and their mine geologists are thanked for providing access to underground workings and samples over a > 25 years research period. W.E.L. Minter is thanked for passing on to me valuable collections of rock samples from old mines that are not accessible anymore. Parts of the thoughts expressed in this paper are based on research funded by the South African National Research Foundation (NRF) and the Deutsche Forschungsgemeinschaft (DFG grant FR2183/3).

References

  1. Agangi A, Hofmann A, Rollion-Bard C, Marin-Carbonne J, Cavalazzi B, Large R, Meffre S (2015) Gold accumulation in the Archaean Witwatersrand Basin, South Africa—Evidence from concentrically laminated pyrite. Earth-Sci Rev 140:27–53CrossRefGoogle Scholar
  2. Armstrong RA, Compston W, Retief EA, William LS, Welke HJ (1991) Zircon ion microprobe studies bearing on the age and evolution of the Witwatersrand triad. Precambr Res 53:243–266CrossRefGoogle Scholar
  3. Barnicoat AC, Henderson IHC, Knipe RJ, Yardley BWD, Napier RW, Fox NPC, Kenyon AK, Muntingh DJ, Strydom D, Winkler KS, Lawrence SR, Cornford C (1997) Hydrothermal gold mineralization in the Witwatersrand basin. Nature 386:820–824CrossRefGoogle Scholar
  4. Beukes NJ, Cairncross B (1991) A lithostratigraphic-sedimentological reference profile for the late Mozaan Group, Pongola Sequence: application to sequence stratigraphy and correlation with the Witwatersrand Supergroup. S Afr J Geol 94:44–69Google Scholar
  5. Buck SG, Minter WEL (1985) Placer formation by fluvial degradation of an alluvial fan sequence: the Proterozoic Carbon Leader placer, Witwatersrand Supergroup, South Africa. J Geol Soc London 142:757–764CrossRefGoogle Scholar
  6. Catuneanu O (2001) Flexural partitioning of the late Archaean Witwatersrand foreland system. Sed Geol 141–142:95–112CrossRefGoogle Scholar
  7. Crow C, Condie KC (1987) Geochemistry and origin of late Archaean volcanic rocks from the Rhenosterhoek Formation, Dominion Group, South Africa. Precambr Res 37:217–229CrossRefGoogle Scholar
  8. Dankert BT, Hein KAA (2010) Evaluating the structural character and tectonic history of the Witwatersrand Basin. Precambr Res 177:1–22CrossRefGoogle Scholar
  9. Davidson CF (1965) The mode and origin of banket orebodies. Institute of Mining and Metallurgy, London, Transcripts 74:319–338Google Scholar
  10. de Wit MJ, Armstrong RA, Kamo SL, Erlank AJ (1993) Gold bearing sediments in the Pietersberg greenstone belt: age equivalents of the Witwatersrand Supergroup sediments. Econ Geol 88:1242–1252CrossRefGoogle Scholar
  11. Depiné M, Frimmel HE, Emsbo P, Koenig AE, Kern M (2013) Trace element distribution in uraninite from Mesoarchaean Witwatersrand conglomerates (South Africa) supports placer model and magmatogenic source. Miner Deposita 48:423–435CrossRefGoogle Scholar
  12. Drennan GR, Robb LJ (2006) The nature of hydrocarbons and related fluids in the Witwatersrand Basin, South Africa: Their role in metal redistribution. Geol Soc Am Spec Pap 405:353–385Google Scholar
  13. Els BG (1998) The question of alluvial fans in the auriferous Archaean and Proterozoic successions of South Africa. S Afr J Geol 101:17–25Google Scholar
  14. England GL, Rasmussen B, Krapez B, Groves DI (2002) Palaeoenvironmental significance of rounded pyrite in siliciclastic sequences of the Late Archaean Witwatersrand Basin: oxygen-deficient atmosphere or hydrothermal evolution. Sedimentology 49:1122–1156CrossRefGoogle Scholar
  15. Eriksson KA, Turner BR, Vos RG (1981) Evidence of tidal processes from the lower part of the Witwatersrand Supergroup, South Africa. Sed Geol 29:309–325CrossRefGoogle Scholar
  16. Farquhar J, Peters M, Johnston DT, Strauss H, Masterson A, Wiechert U, Kaufman AJ (2007) Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature 449:706–709CrossRefGoogle Scholar
  17. Feather C, Koen GM (1975) The mineralogy of the Witwatersrand reefs. Minerals Science and Engineering 7:189–224Google Scholar
  18. Frimmel HE (1994) Metamorphism of Witwatersrand gold. Explor Min Geol 3:357–370Google Scholar
  19. Frimmel HE (1997) Chlorite thermometry in the Witwatersrand basin: constraints on the Paleoproterozoic geotherm in the Kaapvaal Craton, South Africa. J Geol 105:601–615CrossRefGoogle Scholar
  20. Frimmel HE (2005) Archaean atmospheric evolution: evidence from the Witwatersrand gold fields, South Africa. Earth Sci Rev 70:1–46CrossRefGoogle Scholar
  21. Frimmel HE (2010) Verfügbarkeit von natürlich vorkommendem Uran. Unpublished Report, Office of Technology Assessment at the German Bundestag (TAB), Berlin, p 123Google Scholar
  22. Frimmel HE (2014) A giant Mesoarchean crustal gold-enrichment episode: possible causes and consequences for exploration In: Kelley K, Golden HC (eds) Building exploration capability for the 21st Century. Society of Economic Geologists, Special Publication 18, pp 209–234Google Scholar
  23. Frimmel HE (2018) Episodic concentration of gold to ore grade through Earth’s history. Earth Sci Rev 180:148–158CrossRefGoogle Scholar
  24. Frimmel HE, Le Roex AP, Knight J, Minter WEL (1993) A case study of the postdepositional alteration of the Witwatersrand Basal reef gold placer. Econ Geol 88:249–265CrossRefGoogle Scholar
  25. Frimmel HE, Hallbauer DK, Gartz VH (1999) Gold mobilizing fluids in the Witwatersrand Basin: composition and possible sources. Mineral Petrol 66:55–81CrossRefGoogle Scholar
  26. Frimmel HE, Minter WEL (2002) Recent developments concerning the geological history and genesis of the Witwatersrand gold deposits, South Africa. In: Goldfarb RJ, Nielsen RL (eds) Integrated methods for discovery: global exploration in the twenty-first century. Society of Economic Geologists, Littleton, Special Publication 9, pp 17–45Google Scholar
  27. Frimmel HE, Groves DI, Kirk J, Ruiz J, Chesley J, Minter WEL (2005) The formation and preservation of the Witwatersrand goldfields, the largest gold province in the world. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic Geology One Hundredth Anniversary Volume. Society of Economic Geologists, Littleton, Colorado, pp 769–797Google Scholar
  28. Frimmel HE, Zeh A, Lehrmann B, Hallbauer DK, Frank W (2009) Geochemical and geochronological constraints on the nature of the immediate basement beneath the Mesoarchaean auriferous Witwatersrand Basin, South Africa. J Petrol 50:2187–2220CrossRefGoogle Scholar
  29. Frimmel HE, Schedel S, Brätz H (2014) Uraninite chemistry as forensic tool for provenance analysis. Appl Geochem 48:104–121CrossRefGoogle Scholar
  30. Frimmel HE, Hennigh Q (2015) First whiffs of atmospheric oxygen triggered onset of crustal gold cycle. Miner Deposita 50:5–23CrossRefGoogle Scholar
  31. Fuchs S, Williams-Jones AE, Jackson SE, Przybylowicz WJ (2016) Metal distribution in pyrobitumen of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa: Evidence for liquid hydrocarbon ore fluids. Chem Geol 426:45–59CrossRefGoogle Scholar
  32. Gartz VH, Frimmel HE (1999) Complex metasomatism of an Archean placer in the Witwatersrand basin, South Africa: The Ventersdorp Contact reef - a hydrothermal aquifer? Econ Geol 94:689–706CrossRefGoogle Scholar
  33. Gibson RL, Wallmach T (1995) Low pressure-high temperature metamorphism in the Vredefort Dome, South Africa—Anticlockwise pressure-temperature path followed by rapid decompression. Geol J 30:121–135CrossRefGoogle Scholar
  34. Gray GJ, Lawrence SR, Kenyon K, Cornford C (1998) Nature and origin of carbon in the Archean Witwatersrand Basin, South Africa. J Geol Soc, London 155:39–59CrossRefGoogle Scholar
  35. Gumsley A, Stamsnijder J, Larsson E, Söderlund U, Naeraa T, de Kock MO, Ernst R (2018) The 2789-2782 Ma Klipriviersberg large igneous province: implications for the chronostratigraphy of the Ventersdorp Supergroup and the timing of Witwatersrand gold deposition. Geocongress 2018, 18-20 July 2018, Johannesburg, Geological Society of South Africa, Abstract Book, p 133Google Scholar
  36. Guy BM, Beukes NJ, Gutzmer J (2010) Paleoenvironmental controls on the texture and chemical composition of pyrite from non-conglomeratic sedimentary rocks of the Mesoarchean Witwatersrand Supergroup, South Africa. S Afr J Geol 113:195–228CrossRefGoogle Scholar
  37. Hallbauer DK, Joughin NC (1973) The size distribution and morphology of gold particles in the Witwatersrand reefs and their crushed products. J S Afr Inst Min Metall 1973:395–405Google Scholar
  38. Hallbauer DK (1975) The plant origin of Witwatersrand carbon. Miner Sci Eng 7:111–131Google Scholar
  39. Hallbauer DK (1986) The mineralogy and geochemistry of Witwatersrand pyrite, gold, uranium, and carbonaceous matter. In: Anhaeusser CR, Maske S (eds) Mineral deposits of Southern Africa. Geological Society of South Africa, Johannesburg, pp 731–752Google Scholar
  40. Hayward CL, Reimold WU, Gibson RL, Robb LJ (2005) Gold mineralization within the Witwatersrand basin, South Africa: evidence for a modified placer origin, and the role of the Vredefort impact event. In: MacDonald I, Boyce AJ, Butler IB, Herrington RJ, Polya DA (eds) Mineral deposits and earth evolution. Geological Society, London, Special Publication 248, pp 31–58Google Scholar
  41. Heinrich CA (2015) Witwatersrand gold deposits formed by volcanic rain, anoxic rivers and Archaean life. Nat Geosci 8:206–209CrossRefGoogle Scholar
  42. Henkel H, Reimold WU (1998) Integrated geophysical modelling of a giant, complex impact structure: anatomy of the Vredefort Structure, South Africa. Tectonophysics 287:1–20CrossRefGoogle Scholar
  43. Heubeck C (2019) The Moodies Group—a High-Resolution Archive of Archean Surface Processes and Basin-Forming Mechanisms. In: Kröner A, Hofmann A (eds) The Archaean Geology of the Kaapvaal Craton, Southern Africa. Springer, Heidelberg, Chap. 6, pp 203–239Google Scholar
  44. Hölzing A, Frimmel HE, Voland V, Dremel K, Zabler S, Minter WEL (2015) The cover of Mineralium Deposita’s anniversary volume uncovered. In: André-Mayer A-S, Cathelineau M, Muchez P, Pirard E, Sindern S (eds) Mineral resources in a sustainable world, Proceedings of 13th Biennial SGA Meeting, 24–27 August 2015. Université de Lorraine, Nancy, vol. 4, pp 1407–1410Google Scholar
  45. Hofmann A, Bekker A, Rouxel O, Rumble D, Master S (2009) Multiple sulphur and iron isotope composition of detrital pyrite in Archaean sedimentary rocks: A new tool for provenance analysis. Earth Planet Sci Lett 286:436–445CrossRefGoogle Scholar
  46. Jolley SJ, Henderson HC, Barnicoat AC, Fox NPC (1999) Thrust-fracture network and hydrothermal gold mineralization: Witwatersrand Basin, South Africa. In: McCaffrey KJW, Lonergan L, Wilkinson JJ (eds) Fractures, Fluid Flow and Mineralization. Geological Society, London, Special Publication 155: 153–165Google Scholar
  47. Kamo SL, Reimold WU, Krogh TE, Colliston WP (1996) A 2.023 Ga age for the Vredefort impact event and a first report of shock metamorphosed zircons in pseudotachylitic breccias and granophyre. Earth Planet Sci Lett 144:369–387CrossRefGoogle Scholar
  48. Kingsley CS (1987) Facies changes from fluvial conglomerate to braided sandstone of the early Proterozoic Eldorado Formation, Welkom Goldfieldd, South Africa. SEPM Spec Publ 39:359–370Google Scholar
  49. Koglin N, Frimmel HE, Minter WEL, Brätz H (2010a) Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits. Miner Deposita 45:259–280CrossRefGoogle Scholar
  50. Koglin N, Zeh A, Frimmel HE, Gerdes A (2010b) New constraints on the auriferous Witwatersrand sediment provenance from combined detrital zircon U-Pb and Lu-Hf isotope data for the Eldorado Reef (Central Rand Group, South Africa). Precambr Res 183:817–824CrossRefGoogle Scholar
  51. Kositcin N, McNaughton NJ, Griffin BJ, Fletcher IR, Groves DI, Rasmussen B (2003) Textural and geochemical discrimination between xenotime of different origin in the Archaean Witwatersrand Basin, South Africa. Geochim Cosmochim Acta 67:709–731CrossRefGoogle Scholar
  52. Kositcin N, Krapez B (2004) SHRIMP U-Pb detrital zircon geochronology of the Late Archaean Witwatersrand Basin of South Africa: relation between zircon provenance age spectra and basin evolution. Precambr Res 129:141–168CrossRefGoogle Scholar
  53. Large RR, Meffre S, Burnett R, Guy B, Bull S, Gilbert S, Goemann K, Danyushevsky L (2013) Evidence for an intrabasinal source and multiple concentration processes in the formation of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa. Econ Geol 108:1215–1241CrossRefGoogle Scholar
  54. Law JDM, Bailey AC, Cadle AB, Phillips GN, Stanistreet IG (1990) Reconstructive approach to the classification of Witwatersrand ‘quartzites’. S Afr J Geol 93:83–92Google Scholar
  55. Manzi MSD, Hein KAA, King N, Durrheim RJ (2013) Neoarchaean tectonic history of the Witwatersrand Basin and Ventersdorp Supergroup: new constraints from high-resolution 3D seismic reflection data. Tectonophysics 590:94–105CrossRefGoogle Scholar
  56. Marsh JS, Bowen MP, Rogers NW, Bowen TB (1989) Volcanic rocks of the Witwatersrand Triad, South Africa. II: Petrogenesis of mafic and felsic rocks of the Dominion Group. Precambr Res 44:39–65CrossRefGoogle Scholar
  57. Martin DM, Stanistreet IG, Camden-Smith PM (1989) The interaction between tectonics and mudflow deposits within the Main Conglomerate formation in the 2.8–2.7 Ga Witwatersrand Basin. Precambr Res 44:19–38CrossRefGoogle Scholar
  58. McCarthy TS (2006) The Witwatersrand Supergroup. In: Johnson MR, Anhaeusser CR, Thomas RJ (eds) The geology of South Africa. Geological Society of South Africa, Johannesburg, pp 155–186Google Scholar
  59. Mellor ET (1917) The geology of the Witwatersrand. explanation to the geological map. Spec Publi Geol Survey S Afr 3:1–46Google Scholar
  60. Minter WEL (1978) A sedimentological synthesis of placer gold, uranium and pyrite concentrations in Proterozoic Witwatersrand sediments. In: Miall AD (ed) Fluvial sedimentology. Canadian Society of Petroleum Geologists, pp 801–829Google Scholar
  61. Minter WEL (1999) Irrefutable detrital origin of Witwatersrand gold and evidence of eolian signatures. Econ Geol 94:665–670CrossRefGoogle Scholar
  62. Minter WEL, Feather CE, Glathaar CW (1988) Sedimentological and mineralogical aspects of the newly discovered Witwatersrand placer deposit that reflect Proterozoic weathering, Welkom gold field, South Africa. Econ Geol 83:481–491CrossRefGoogle Scholar
  63. Minter WEL, Loen JS (1991) Palaeocurrent dispersal patterns of Witwatersrand gold placers. S Afr J Geol 94:70–85Google Scholar
  64. Mossman DJ, Minter WEL, Dutkiewicz A, Hallbauer DK, George SC, Hennigh Q, Reimer TO, Horscroft FD (2008) The indigenous origin of Witwatersrand “carbon”. Precambr Res 164:173–186CrossRefGoogle Scholar
  65. Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717CrossRefGoogle Scholar
  66. Nwaila G, Frimmel HE, Minter WEL (2017) Provenance and geochemical variations in shales of the Mesoarchaean Witwatersrand Supergroup. J Geol 125:399–422CrossRefGoogle Scholar
  67. Phillips GN, Law JDM (1994) Metamorphism of the Witwatersrand gold fields: a review. Ore Geol Rev 9:1–31CrossRefGoogle Scholar
  68. Phillips GN, Law JDM (2000) Witwatersrand gold fields: geology, genesis and exploration. SEG Reviews 13:439–500Google Scholar
  69. Phillips GN, Powell R (2011) Origin of Witwatersrand gold: a metamorphic devolatilisation-hydrothermal replacement model. Appl Earth Sci (Trans Inst Min Metall B) 120:112–129CrossRefGoogle Scholar
  70. Poujol M, Anhaeusser CR (2001) The Johannesburg Dome, South Africa: new single zircon U-Pb isotopic evidence for early Archaean granite-greenstone development within the central Kaapvaal Craton. Precambr Res 108:139–158CrossRefGoogle Scholar
  71. Poujol M, Kiefer R, Robb LJ, Annhaeusser CR, Armstrong RA (2005) New U-Pb data on zircons from the Amalia greenstone belt, Southern Africa: insights into the Neoarchaean evolution of the Kaapvaal Craton. S Afr J Geol 108:317–332CrossRefGoogle Scholar
  72. Ramdohr P (1958) New observations on the ores of the Witwatersrand in South Africa and their genetic significance. Trans Geol Soc South Africa 61:1–50Google Scholar
  73. RMG (2015) Raw Materials Data Base. © Intierra Raw Materials Group, StockholmGoogle Scholar
  74. Robb LJ, Meyer FM (1991) A contribution to recent debate concerning epigenetic versus syngenetic mineralization processes in the Witwatersrand Basin. Econ Geol 86:396–401CrossRefGoogle Scholar
  75. Robb LJ, Davis D, Kamo SL, Meyer FM (1992) Ages of altered granites adjoining the Witwatersrand Basin with implications for the origin of gold and uranium. Nature 357:677–680CrossRefGoogle Scholar
  76. Robb LJ, Meyer FM (1995) The Witwatersrand Basin, South Africa: geological framework and mineralization processes. Ore Geol Rev 10:67–94CrossRefGoogle Scholar
  77. Robb LJ, Robb VM (1998) Gold in the Witwatersrand Basin. In: Wilson MGC, Anhaeusser CR (eds) The mineral resources of South Africa. Council for Geoscience, Pretoria, pp 294–349Google Scholar
  78. SACS, South African Committee for Stratigraphy (1980) Part 1: Lithostratigraphy of the Republic of South Africa, South West Africa/Namibia and the Republics of Bophuthatswana, Transkei and Venda. Department of Mineral and Energy Affairs, Geological Survey, PretoriaGoogle Scholar
  79. Schidlowski M (1981) Uraniferous constituents of the Witwatersrand conglomerates: ore-microscopic observations and implications for Witwatersrand metallogeny. US Geol Surv Prof Pap 1161:N1–N29Google Scholar
  80. Smith AJB, Beukes NJ, Gutzmer J (2013) The composition and depositional environments of Mesoarchean iron formations of the West Rand Group of the Witwatersrand Supergroup, South Africa. Econ Geol 108:111–134CrossRefGoogle Scholar
  81. Spangenberg J, Frimmel HE (2001) Basin-internal derivation of hydrocarbons in the Witwatersrand Basin, South Africa: Evidence from bulk and molecular δ13C data. Chem Geol 173:339–355CrossRefGoogle Scholar
  82. Sutton SJ, Ritger SD, Maynard JB (1990) Stratigraphic control of chemistry and mineralogy in metamorphosed Witwatersrand quartzites. J Geol 98:329–341CrossRefGoogle Scholar
  83. Therriault A, Grieve R, Reimold WU (1997) Original size of the Vredefort impact structure: implications for the geological evolution of the Witwatersrand Basin. Meteorit Planet Sci 32:71–77CrossRefGoogle Scholar
  84. Tinker J, de Wit M, Grotzinger J (2002) Seismic stratigraphic constraints on Neoarchean-Paleoproterozoic evolution of the western margin of the Kaapvaal Craton, South Africa. S Afr J Geol 105:107–134CrossRefGoogle Scholar
  85. Tucker RF, Viljoen RP, Viljoen MJ (2016) A review of the Witwatersrand Basin—The world’s greatest goldfield. Episodes 39:105–133CrossRefGoogle Scholar
  86. Tweedie EB (1986) The Evander goldfield. In: Anhaeusser CR, Maske S (eds) Mineral deposits of Southern Africa. Geological Society of South Africa, Johannesburg, pp 705–730Google Scholar
  87. Vennemann TW, Kesler SE, O’Neil JR (1992) Stable isotope compositions of quartz pebbles and their fluid inclusions as tracers of sediment provenance: Implications for gold- and uranium-bearing quartz pebble conglomerates. Geology 20:837–840CrossRefGoogle Scholar
  88. Vennemann TW, Kesler SE, Frederickson GC, Minter WEL, Heine RR (1995) Oxygen isotope sedimentology of gold- and uranium-bearing Witwatersrand and Huronian Supergroup quartz-pebble conglomerates. Econ Geol 91:322–342CrossRefGoogle Scholar
  89. Wallmach T, Meyer FM (1990) A petrogenetic grid for metamorphosed aluminous Witwatersrand shales. S Afr J Geol 93:93–102Google Scholar
  90. Winter HdlR, Brink MC (1991) Chronostratigraphic subdivision of the Witwatersrand Basin based on Western Transvaal composite columns. S Afr J Geol 94:191–203Google Scholar
  91. Young GM, von Brunn V, Gold DJC, Minter WEL (1998) Earth’s oldest reported glaciation: physical and chemical evidence from the Archean Mozaan Group (−2.9 Ga) of South Africa. J Geol 106:523–538CrossRefGoogle Scholar
  92. Zeh A, Jaguin J, Poujol M, Boulvais P, Block S, Paquette J-L (2013) Juvenile crust formation in the northeastern Kaapvaal Craton at 2.97 Ga—Implications for Archean terrane accretion, and the source of the Pietersburg gold. Precambr Res 233:20–43CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Geodynamics and Geomaterials ResearchBavarian Georesources Centre, Institute of Geography and Geology, University of WürzburgWürzburgGermany
  2. 2.Department of Geological SciencesUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations