Skip to main content

Archaean Crystalline Rocks of the Eastern Kaapvaal Craton

  • Chapter
  • First Online:
The Archaean Geology of the Kaapvaal Craton, Southern Africa

Abstract

The eastern part of the Kaapvaal Craton represents a classical granitoid-greenstone terrain and contains the oldest rocks of the African continent, exhibiting about 1000 Ma of crustal evolution from 3.66 to 2.67 Ga. The granitoid rocks predominantly consist of the tonalite–trondhjemite–granodiorite (TTG) association with true granites becoming abundant at about 3 Ga. Greenstones are represented by the well-preserved and well-studied 3.54–3.2 Ga Barberton Greenstone Belt and smaller ca. 3.45 Ga greenstone belt remnants infolded in TTG gneisses around the BGB as well as in the Ancient Gneiss Complex in Swaziland. The origin of both the TTGs and greenstone units is still debated as strong deformation and medium- to high-grade metamorphism have obliterated most of the original rock relationships. This is largely due to an extensive tectono-magmato-metamorphic event at ca. 3.2 Ga that affected virtually the entire eastern part of the craton. Heat provided by mantle-derived melts during this event led to extensive intracrustal melting, with melt migration resulting in depletion of the lower crust in radioactive and other mobile elements. Long-lived extraction of granitoid magmas up to about 2.67 Ga increased the rigidity of the lower crust, causing tectonic stabilization of the Kaapvaal Craton.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agangi A, Hofmann A, Elburg MA (2018) A review of Palaeoarchaean felsic volcanism in the eastern Kaapvaal craton: linking plutonic and volcanic records. Geosci Front 9:667–688

    Article  Google Scholar 

  • Anhaeusser CR (1973) The evolution of the early Precambrian crust of southern Africa. Philos Trans Roy Soc Lond A 273:359–388

    Article  Google Scholar 

  • Anhaeusser CR (2010) Magmatic and structural characteristics of the ca. 3443-3437 Ma Theespruit trondhjemite pluton, Barberton Mountain Land, South Africa. Am J Sci 310:1136–1167

    Article  Google Scholar 

  • Anhaeusser CR (2014) Archaean greenstone belts and associated granitic rocks—a review. J Afr Earth Sc 100:684–732

    Article  Google Scholar 

  • Anhaeusser CR, Robb LJ (1980) Regional and detailed field and geochemical studies of Archean trondhjemitic gneisses, migmatites and greenstone xenoliths in the southern part of the Barberton Mountain Land, South Africa. Precambr Res 11:373–397

    Article  Google Scholar 

  • Anhaeusser CR, Mason R, Viljoen MJ, Viljoen RP (1969) A reappraisal of some aspects of Precambrian shield geology. Geol Soc Am Bull 80:2175–2200

    Article  Google Scholar 

  • Armstrong RA, Compston W, de Wit MJ, Williams IS (1990) The stratigraphy of the 3.5–3.2 Ga Barberton Greenstone Belt revisited: a single zircon ion microprobe study. Earth Planetary Sci Lett 101:90–106

    Article  Google Scholar 

  • Barton JM Jr, Robb LJ, Anhaeusser CR, Van Nierop DA (1983) Geochronologic and Sr-isotopic studies of certain units in the Barberton granite-greenstone terrane, South Africa. Spec Publ Geol Soc S Afr 9:63–72

    Google Scholar 

  • Bédard JH (2006) A catalytic delamination-driven model for coupled genesis of Archaean crust and subcontinental lithospheric mantle. Geochim Cosmochim Acta 70:1188–1214

    Article  Google Scholar 

  • Bédard JH, Brouillette P, Madore L, Berlaz A (2003) Archaean cratonization and deformation in the northern Superior Province, Canada: an evaluation of plate tectonic versus vertical tectonic models. Precambr Res 127(61):87

    Google Scholar 

  • Bird P (1979) Continental delamination and the Colorado Plateau. J Geophys Res 84:7561–7571

    Article  Google Scholar 

  • Brown M (2015) Paleo- to Mesoarchean polymetamorphism in the Barberton granite-greenstone belt, South Africa: constraints from U-Pb monazite and Lu-Hf garnet geochronology on the tectonic processes that shaped the belt: discussion. Geol Soc Am Bull 127:1550–1557

    Article  Google Scholar 

  • Byerly G, Lowe DR, Heubeck C (2018) Geologic evolution of the Barberton greenstone belt—a unique record of crustal development, surface processes, and early life 3.55 to 3.20 Ga. In: Van Kranendonk MJ, Bennett VC, Hofmann JE (eds) Earth’s oldest rocks, 2nd edn. Elsevier, Amsterdam (in press)

    Chapter  Google Scholar 

  • Carlson RW, Boyd FR, Shirey SB, Janney PE, Grove TL, Bowring SA, Schmitz MD, Dann JC, Bell DR, Gurney JJ, Richardson SH, Tredoux M, Menzies AH, Pearson DG, Hart RJ, Wilson AH, Moser D (2000) Continental growth, preservation, and modification in Southern Africa. GSA Today 10(2):1–7

    Google Scholar 

  • Collins WJ, Van Kranendonk MJ (1999) Model for the development of kyanite during partial convective overturn of Archaean granite-greenstone terranes: the Pilbara Craton, Australia. J Metamorph Geol 17:145–156

    Article  Google Scholar 

  • Compston W, Kröner A (1988) Multiple zircon growth within early Archaean tonalitic gneiss from the Ancient Gneiss Complex, Swaziland. Earth Planet Sci Lett 87:13–28

    Article  Google Scholar 

  • Condie KC, Kröner A, Milisenda CC (1996) Geochemistry and geochronology of the Mkhondo suite, Swaziland: evidence for passive-margin deposition and granulite facies metamorphism in the Late Archean of Southern Africa. J Afr Earth Sci 21:483–506

    Article  Google Scholar 

  • Cotton J, Le Dez A, Bau M, Caroff M, Maury RC, Duski P, Fourcade S, Bohn M, Brousse R (1995) Origin of anomalous rare-Earth-element and yttrium enrichments in subaerially exposed basalts: evidence from French Polynesia. Chem Geol 119:115–138

    Article  Google Scholar 

  • Cutts KA, Stevens G, Hoffmann JE, Buick IS, Frei D, Münker C (2014) Paleo- to Mesoarchean poly-metamorphism in the Barberton Granite-Greenstone Belt, South Africa: Constraints from U-Pb monazite and Lu-Hf garnet geochronology on the tectonic processes that shaped the belt. Geol Soc Am Bull 126:251–270

    Article  Google Scholar 

  • de Ronde CEJ, Kamo SL (2000) An Archaean arc-arc collisional event: a short-lived (ca. 3 Myr) episode, Weltevreden area, Barberton greenstone belt, South Africa. J Afr Earth Sci 30:219-248

    Google Scholar 

  • de Wit MJ, Fripp REP, Stanistreet IG (1983) Tectonic and stratigraphic implications of new field observations along the southern part of the Barberton Greenstone Belt. Spec Publ Geol Soc S Afr 9:21–30

    Google Scholar 

  • de Wit MJ, Hart RA, Hart R (1987) The Jamestown Ophiolite Complex, Barberton mountain belt: a section through 3.5 Ga oceanic crust. J Afr Earth Sc 6:681–730

    Google Scholar 

  • de Wit MJ, Roering C, Hart RJ, Armstrong RA, de Ronde CEJ, Green RWE, Tredoux M, Peberdy E, Hart RA (1992) Formation of an Archaean continent. Nature 357:553–562

    Article  Google Scholar 

  • de Wit MJ, Furnes H, Robins B (2011) Geology and tectonostratigraphy of the Onverwacht Suite, Barberton greenstone belt, South Africa. Precambr Res 186:1–27

    Article  Google Scholar 

  • de Wit MJ, Furnes H, MacLennan S, Doucouré M, Schoene B, Weckmann U, Martínez U, Bowring S (2018) Paleoarchean bedrock lithologies across the Makhonjwa Mountains of South Africa and Swaziland linked to geochemical, magnetic and tectonic data reveal early plate tectonic genes flanking subduction margins. Geosci Front 9:603–665

    Article  Google Scholar 

  • Diener JFA, Stevens G, Kisters AFM, Poujol M (2005) Metamorphism and exhumation of the basal parts of the Barberton greenstone belt, South Africa: Constraining the rates of Mesoarchaean tectonism. Precambr Res 143:87–112

    Article  Google Scholar 

  • Dilek Y, Furnes H (2011) Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol Soc Am Bull 123:387–411

    Article  Google Scholar 

  • Dlamini N, Hofmann A, Belyanin G, Xie H, Kröner A, Wilson A, Slabunov A (2017) Supracrustal gneisses in southern Swaziland: a basalt-sandstone assemblage of the upper Mozaan Group deformed in the Neoarchaean. S Afr J Geol 120:477–500

    Article  Google Scholar 

  • Drabon N, Lowe DR, Byerly GR, Harrington JA (2017) Detrital zircon geochronology of sandstones of the 3.6–3.2 Ga Barberton greenstone belt: no evidence for older continental crust. Geology 45:803–806

    Article  Google Scholar 

  • Dziggel A, Armstrong RA, Stevens G, Nasdala L (2005) Growth of zircon and titanite during metamorphism in the granitoid-gneiss terrane south of the Barberton greenstone belt, South Africa. Mineral Mag 69:1019–1036

    Article  Google Scholar 

  • Dziggel A, Stevens G, Poujol M, Anhaeusser CR, Armstrong RA (2002) Metamorphism of the granite-greenstone terrane south of the Barberton greenstone belt, South Africa: an insight into the tectono-thermal evolution of the lower portions of the Onverwacht Group. Precambr Res 114:221–247

    Article  Google Scholar 

  • Fischer R, Gerya T (2016) Early earth plume-lid tectonics: a high-resolution 3D numerical modeling approach. J Geodyn 100:198–214

    Article  Google Scholar 

  • Foley S, Tiepolo M, Vanucci R (2002) Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 41:837–840

    Article  Google Scholar 

  • François C, Philippot P, Rey P, Rubatto D (2014) Burial and exhumation during Archean sagduction in the East Pilbara granite-greenstone terrane. Earth Planet Sci Lett 396:235–251

    Article  Google Scholar 

  • Furnes H, Robins B, de Wit MJ (2012) Geochemistry and petrology of lavas in the upper Onverwacht Suite, Barberton Mountain Land, South Africa. S Afr J Geol 115:171–210

    Article  Google Scholar 

  • Furnes H, de Wit MJ, Robins B (2013) A review of new interpretations of the tectonostratigraphy, geochemistry and evolution of the Onverwacht Suite, Barberton Greenstone Belt, South Africa. Gondwana Res 23:403–428

    Article  Google Scholar 

  • Garcon M, Carlsson RW, Shirey SB, Arndt NT, Horan MF, Mock TD (2017) Erosion of Archean continents: The Sm-Nd and Lu-Hf isotopic record of Barberton sedimentary rocks. Geochim Cosmochim Acta 206:216–235

    Article  Google Scholar 

  • Gardiner NJ, Hickman A, Kirkland CL, Lu Y, Johnson T, Zhao J-X (2017) Processes of crust formation in the early earth imaged through Hf isotopes from the East Pilbara Terrane. Precambr Res 297:56–76

    Article  Google Scholar 

  • Griffin WL, Belousova EA, O’Neill C, O’Reilly S, Malkovets V, Pearson NJ, Spetsius S, Wilde SA (2014) The world turns over: Hadean-Archean crust–mantle evolution. Lithos 189:2–15

    Article  Google Scholar 

  • Grosch EG, Kosler J, McLoughlin N, Drost K, Slama J, Pedersen B (2011) Paleoarchean detrital zircon ages from the earliest tectonic basin in the Barberton Greenstone Belt, South Africa. Precambr Res 191:85–99

    Google Scholar 

  • Gumsley A, Olsson J, Söderlund U, de Kock M, Hofmann A, Klausen M (2015) Precise U-Pb baddeleyite age dating of the Usushwana Complex, Southern Africa—implications for the Mesoarchaean magmatic and sedimentological evolution of the Pongola Supergroup, Kaapvaal craton. Precambr Res 267:174–185

    Article  Google Scholar 

  • Herzberg C (2015) Archean drips. Nat Geosci 7:7–8

    Article  Google Scholar 

  • Herzberg C, Condie K, Korenaga J (2010) Thermal history of the earth and its petrological expression. Earth Planet Sci Lett 292:79–88

    Article  Google Scholar 

  • Heubeck C, Wendt JI, Toulkeridis T, Kröner A, Lowe DR (1993) Timing of deformation of the Archaean Barberton greenstone belt, South Africa: constraints from zircon dating of the Salisbury Kop pluton. S Afr J Geolol 96:1–8

    Google Scholar 

  • Heubeck C (2019) The Moodies Group—A High-Resolution Archive of Archaean Surface and Basin-Forming Processes. In: Kröner A, Hofmann A (eds) The Archaean Kaapvaal Craton, Southern Africa. Springer Geosciences, Berlin, pp 133–169

    Google Scholar 

  • Hoffmann JE, Kröner A, Hegner E, Viehmann S, Xie H, Iiacheri LM, Schneider KP, Hofmann A, Wong J, Geng H, Yang JH (2016) Source composition, fractional crystallisation and magma mixing processes of the 3.48–3.43 Ga Tsawela tonalite suite (Ancient Gneiss Complex, Swaziland)—implications for Palaeoarchean geodynamics. Precambr Res 276:43–66

    Article  Google Scholar 

  • Hoffmann JE, Musese E, Kröner A, Schneider KP, Hegner E, Hofmann A, Kasper H-U, Münker C (submitted). Hf-Nd isotope and trace element constraints on the mantle sources and contamination history of the ca. 3.46 Ga Dwalile Greenstone belt, Swaziland. Geoscience

    Google Scholar 

  • Hoffmann JE, Kröner A (2018) Early Archaean crustal evolution in southern Africa—an updated record of the Ancient Gneiss Complex of Swaziland. In: Van Kranendonk MJ, Bennett VC, Hoffmann JE (eds) Earth’s oldest rocks, 2nd edn. Elsevier, Amsterdam, pp 553–567

    Google Scholar 

  • Hoffmann JE, Zhang C, Moyen J-F, Nagel TJ (2018) The formation of tonalites-trondjhemites-granodiorites in early continental crust. In: Van Kranendonk MJ, Bennett VC, Hoffmann JE (eds) Earth’s oldest rocks, 2nd edn. Elsevier, Amsterdam, pp 133–168

    Chapter  Google Scholar 

  • Hofmann A, Kröner A, Xie H, Hegner E, Belyanin G, Kramers J, Bolhar R, Slabunov A, Reinhard J (2015) The Nhlangano gneiss dome in south-west Swaziland—a record of crustal destabilization of the eastern Kaapvaal craton in the Neoarchaean. Precambr Res 258:109–132

    Article  Google Scholar 

  • Hofmann A, Anhaeusser C, Dixon J, Kröner A, Saha L, Wilson A, Xie H (2019) Archaean Granitoid-Greenstone Geology of the Southeastern Part of the Kaapvaal Craton. In: Kröner A, Hofmann A (eds) The Archaean Geology of the Kaapvaal Craton, Southern Africa, Springer, pp 33–54

    Google Scholar 

  • Hunter DR (1970) The Ancient Gneiss Complex in Swaziland. Trans Geol Soc S Afr 73:107–150

    Google Scholar 

  • Hunter DR (1957) The geology, petrology and classification of the Swaziland granites and gneisses. Trans Geol Soc S Afr 60:85–125

    Google Scholar 

  • Hunter DR (1973) The granitic rocks of the Precambrian in Swaziland. Spec Publ Geol Soc S Afr 3:131–147

    Google Scholar 

  • Hunter DR (1979) The role of tonalitic to trondhjemitic rocks in the crustal development of Swaziland and the eastern Trasvaal, South Africa. In: Barker, F (ed) Trondhjemites, dacites and related rocks. Elsevier, Amsterdam, pp 301–322

    Google Scholar 

  • Hunter DR, Barker F, Millard Jr, HT (1978) The geochemical nature of the Ancient Gneiss Complex and Granodiorite Suite, Swaziland: a preliminary study. Precambr Res 7:105–127

    Google Scholar 

  • Hunter DR, Barker F, Millard Jr HT (1984) Geochemical investigation of Archaean bimodal and Dwalile metamorphic suites, Ancient Gneiss Complex, Swaziland. Precambr Res 24:131–155

    Article  Google Scholar 

  • Jackson MPA (1984) Archaean structural styles in the Ancient Gneiss Complex of Swaziland, southern Africa. In: Kröner A, Greiling R (eds), Precambrian Tectonics Illustrated. E. Schweizerbart`sche Verlagsbuchhandlung, Stuttgart, Germany, pp 1–18

    Google Scholar 

  • John T, Klemd R, Klemme S, Pfänder JA, Hoffmann JE, Gao J (2011) Nb–Ta fractionation by partial melting at the titanite-rutile transition. Contrib Mineral Petrol 161:35–45

    Article  Google Scholar 

  • Johnson TE, Brown M, Gardiner NJ, Kirkland CL, Smithies RH (2017) Earth’s first stable continents did not form by subduction. Nature 543:239–242

    Article  Google Scholar 

  • Johnson TE, Brown M, Kaus BJ, VanTongeren JA (2014) Delamination and recycling of Archaean crust caused by gravitational instabilities. Nat Geosci 7:47–52

    Article  Google Scholar 

  • Kamo S, Davis DW (1994) Reassessment of Archean crustal development in the Barberton Mountain Land, South Africa, based on U-Pb dating. Tectonics 13:167–192

    Article  Google Scholar 

  • Kay RW, Kay MS (1993) Delamination and delamination magmatism. Tectonophysics 219:177–189

    Article  Google Scholar 

  • Kemp AIS, Wilde SA, Hawkesworth CJ, Coath CD, Nemchin A, Pidgeon RT, Vervoort JD, DuFrane SA (2010) Hadean crustal evolution revisited: New constraints from Pb–Hf isotope systematics of the Jack Hills zircons. Earth Planet Sci Lett 296:45–56

    Article  Google Scholar 

  • Kisters AFM, Belcher RW, Poujol M, Dziggel A (2010) Continental growth and convergence-related arc plutonism in the Mesoarchaean: evidence from the Barberton granitoid-greenstone terrain, South Africa. Precambr Res 178:15–26

    Article  Google Scholar 

  • Kisters AFM, Stevens G, Dziggel A, Armstrong RA (2003) Extensional detachment faulting and core complex formation in the southern Barberton granite-greenstone terrain, South Africa: evidence for a 3.2 Ga orogenic collapse. Precambr Res 127:355–378

    Article  Google Scholar 

  • Klemme S, Prowatke S, Hametner K, Günther D (2005) Partitioning of trace elements between rutile and silicate melts: implications for subduction zones. Geochim Cosmochim Acta 49:2361–2371

    Article  Google Scholar 

  • Klemme S, Günther D, Hametner K, Prowatke S, Zack T (2006) The partitioning of trace elements between ilmenite, ulvospinel, armalcolite and silicate melts with implications for the early differentiation of the moon. Chem Geol 234:251–263

    Article  Google Scholar 

  • Kröner A (1985) Evolution of the Archean continental crust. Annu Rev Earth Planet Sci 13:49–74

    Article  Google Scholar 

  • Kröner A (2007) The Ancient Gneiss Complex of Swaziland and environs: record of early Archaean crustal evolution in southern Africa. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds), Earth’s oldest rocks. Elsevier, Amsterdam, pp 465–480

    Google Scholar 

  • Kröner A, Byerly GR, Lowe DR (1991) Chronology of early Archaean granite greenstone evolution in the Barberton Mountain land, South Africa, based on precise dating by single zircon evaporation. Earth Planet Sci Lett 103:41–54

    Article  Google Scholar 

  • Kröner A, Compston W, Williams IS (1989) Growth of early Archaean crust in the Ancient Gneiss Complex of Swaziland as revealed by single zircon dating. Tectonophysics 161:271–298

    Article  Google Scholar 

  • Kröner A, Hegner E, Wendt JI, Byerly GR (1996) The oldest part of the Barberton granitoid-greenstone terrain, South Africa: evidence for crust formation between 3.5 and 3.7 Ga. Precambr Res 78:105–124

    Article  Google Scholar 

  • Kröner A, Hoffmann JE, Xie H, Wu F, Münker C, Hegner E, Wong J, Wan Y, Liu D, (2013) Generation of early Archaean felsic greenstone volcanic rocks through crustal melting in the Kaapvaal, craton, southern Africa. Earth Planet Sci Lett 381:188–197

    Article  Google Scholar 

  • Kröner A, Tegtmeyer A (1994) Gneiss-greenstone relationships in the Ancient Gneiss Complex of southwestern Swaziland, Southern Africa, and implications for early crustal evolution. Precambr Res 67:109–139

    Article  Google Scholar 

  • Kröner A, Hoffmann JE, Xie H, Münker C, Hegner E, Wan Y, Hofmann A, Liu D, Yang J (2014) Generation of early Archaean grey gneisses through melting of older continental crust in the eastern Kaapvaal craton, Southern Africa. Precambr Res 255:823–846

    Article  Google Scholar 

  • Kröner A, Anhaeusser CR, Hoffmann JE, Wong J, Geng H, Hegner E, Xie H, Yang J, Liu D (2016) Chronology of the oldest supracrustal sequences in the Palaeoarchaean Barberton Greenstone Belt, South Africa and Swaziland. Precambr Res 279:123–143

    Article  Google Scholar 

  • Kröner A, Nagel TJ, Hoffmann JE, Liu X, Wong J, Hegner E, Xie H, Kasper U, Hofmann A, Liu D (2018) High-temperature metamorphism and crustal melting at ca. 3.2 Ga in the eastern Kaapvaal craton, southern Africa. Precambrian Research 317:101–116

    Article  Google Scholar 

  • Lamb S, Paris I (1988) Post-Onverwacht Group stratigraphy in the southeast part of the Archaean Barberton greenstone belt. J Afr Earth Sc 7:285–306

    Article  Google Scholar 

  • Lana C, Kisters AFM, Stevens G (2010). Exhumation of Mesoarchean TTG gneisses from the middle crust: insights from the Steynsdorp core complex, Barberton granitoid-greenstone terrain, South Africa. Geol Soc Am Bull 122:183–197

    Article  Google Scholar 

  • Layer PW, Kröner A, McWilliams M, York D (1989) Elements of the Archean thermal history and apparent polar wander of the eastern Kaapvaal Craton, Swaziland, from single grain dating and paleomagnetism. Earth Planet Sci Lett 93:23–34

    Article  Google Scholar 

  • Layer PW, Kröner A, York D (1992) Pre-3000 Ma thermal history of the Archean Kaap Valley pluton, South Africa. Geol 20:717–720

    Article  Google Scholar 

  • Layer PW, Lopez-Martinez M, Kröner A, York D, McWilliams M (1998) Thermochronometry and paleomagnetism of the Archean Nelshoogte Pluton, South Africa. Geophys J Inter 135:129–145

    Article  Google Scholar 

  • Luskin C, Wilson A, Gold D, Hofmann A (2019) The Pongola Supergroup: Mesoarchaean Deposition Following Kaapvaal Craton Stabilization. In: Kröner A, Hofmann A (eds) The Archaean Kaapvaal Craton, Southern Africa. Springer Geosciences, Berlin, pp 225–254

    Google Scholar 

  • Maphalala R, Kröner A, Kramers JD (1989) Rb-Sr ages for Archaean granitoids and tin-bearing pegmatites in Swaziland, Southern Africa. J Afr Earth Sc 9:749–757

    Article  Google Scholar 

  • Maphalala R, Kröner A (1993) Pb-Pb singe zircon ages for the younger Archaean granitoids of Swaziland, southern Africa. Extended abstracts, vol II, 16th Colloquium of African Geology, Mbabane, Swaziland, pp 201–206

    Google Scholar 

  • Martin H, Moyen J-F, Guitreau M, Blichert-Toft J (2014) Why Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos 198–199:1–13

    Article  Google Scholar 

  • McDonough WL, Sun S-S (1995) The composition of the earth. Chem Geol 120:223–253

    Article  Google Scholar 

  • Meyer FM, Robb LJ, Reimold WU, Debruiyn H (1994) Contrasting low-Ca and high-Ca granites in the Archaean Barberton Mountain Land, Southern Africa. Lithos 32:63–76

    Article  Google Scholar 

  • Moser DE, Flowers RM, Hart RJ (2001) Birth of the Kaapvaal tectosphere 3.08 billion years Ago. Sci 291:465–468

    Article  Google Scholar 

  • Moyen J-F (2011) The composite Archaean grey gneisses: petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos 123:21–36

    Article  Google Scholar 

  • Moyen J-F, Martin H (2012) Forty years of TTG research. Lithos 148:312–336

    Article  Google Scholar 

  • Moyen JF, Laurent O, Chelle-Michou C, Couzinié S, Vanderhaeghe O, Zeh A, Villaros A, Gardien V (2017) Collision vs. subduction-related magmatism: two contrasting ways of granite formation and implications for crustal growth. Lithos 277:154–177

    Article  Google Scholar 

  • Moyen J-F, Laurent O (2018) Archaean tectonic systems: a view from igneous rocks. Lithos 302–303:99–125

    Article  Google Scholar 

  • Moyen J-F, Stevens G, Kisters AFM (2006) Record of mid-Archaean subduction from metamorphism in the Barberton terrain, South Africa. Nature 442:559–562

    Article  Google Scholar 

  • Moyen J-F, Stevens G, Kisters AFM, Belcher RW, Lamirre B (2018). TTG plutons of the Barberton granitoid-greenstone terrain, South Africa. In: Van Kranendonk MJ, Bennett VC, Hoffmann JE (eds) Earth’s oldest rocks, 2nd Edition. Elsevier, Amsterdam, 293–327

    Chapter  Google Scholar 

  • Mukasa SB, Wilson AH, Young KR (2013) Geochronological constraints on the magmatic and tectonic development of the Pongola Supergroup (Central Region), South Africa. Precambr Res 224:268–286

    Article  Google Scholar 

  • Murphy RCL (2015) Stabilizing a craton: the origin and emplacement of the 3.1 Ga Mpuluzi Batholith. Unpublished PhD thesis, Macquarie University, Sydney, Australia, 224p and appendices

    Google Scholar 

  • Musese E-M (2014) Geochemische Untersuchungen an paläoarchaischen Grünsteinen von Dwalile, Swaziland. Unpublished MSc thesis, University of Cologne, Germany, 87p

    Google Scholar 

  • Nagel TJ, Hoffmann JE, Münker C (2012) Melting of Eoarchean tonalite-trondhjemite-granodiorite suite from thickened mafic arc crust. Geology 40:375–378

    Article  Google Scholar 

  • Nédélec A, Chevrel MO, Moyen JF, Ganne J, Fabre S (2012) TTGs in the making: natural evidence from the Inyoni shear zone (Barberton, South Africa). Lithos 153:25–38

    Article  Google Scholar 

  • Palme H, O’Neill HSC (2014) Cosmochemical estimates of mantle composition. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry Volume 3: The Mantle and Core, 2nd edn. Elsevier, Amsterdam, pp 1–39

    Google Scholar 

  • Pearson DG, Carlson RW, Shirey SB, Boyd FR, Nixon PH (1995) Stabilisation of Archaean lithospheric mantle: a Re-Os isotope study of peridotite xenoliths from the Kaapvaal craton. Earth Planet Sci Lett 134:341–357

    Article  Google Scholar 

  • Peng T, Wang GD, Wang YHC, Chen H-X, Wu C-M (2019). Metamorphic P-T path and geochronology of garnet-bearing amphibolite of the Inyoni Shear Zone, southwestern Barberton Greenstone Belt, South Africa. Precambrian Research 321:261–276

    Article  Google Scholar 

  • Reinhard J, Elburg MA, Andersen T (2015) Zircon U-Pb age data and Hf isotopic signature of Kaapvaal basement granitoids from the Archaean White Mfolozi Inlier, Northern Kwazulu-Natal. S Afr J Geol 118:473–488

    Article  Google Scholar 

  • Robb LJ (1983a) The nature, origin and significance of Archaean migmatites in the Barberton Mountain Land: a new approach in the assessment of early crustal evolution. In: Anhaeusser CR (ed) Contributions to the Geology of the Barberton Mountain Land. Geol Soc S Afr Spec Publ 9:81–101

    Google Scholar 

  • Robb LJ (1983b) Geological and chemical characteristics of late granite plutons in the Barberton Region and Swaziland with emphasis on the Dalmein Pluton–a review. In: Anhaeusser CR (ed) Contributions to the Geology of the Barberton Mountain Land. Geol Soc S Afr Spec Publ 9: 153–168

    Google Scholar 

  • Robb LJ, Anhaeusser CR (1983) Chemical and petrogenetic characteristics of Archaean tonalite-trondhjemite gneiss plutons in the Barberton Mountain Land. In: Anhaeusser CR (ed) Contributions to the Geology of the Barberton Mountain Land. Geol Soc S Afr Spec Publ 9: 81–101

    Google Scholar 

  • Robb LJ, Brandl G, Anhaeusser CR, Poujol M (2006) Archaean granitoid intrusions. In: Johnson MR, Anhaeusser CR, Thomas RJ (eds) The geology of South Africa. Geological Society of South Africa and Council for Geoscience, Johannesburg and Pretoria, pp 57–94

    Google Scholar 

  • Roerdink DL, Mason PRD, Whitehouse MJ, Brouwer FM (2016) Reworking of atmospheric sulfur in a Paleoarchean hydrothermal system at Londozi, Barberton Greenstone Belt, Swaziland. Precambr Res 280:195–204

    Article  Google Scholar 

  • Rozel AB, Golabek GJ, Jain C, Tackley PJ, Gerya T (2017) Continental crust formation on early earth controlled by intrusive magmatism. Nature 545:332–335

    Article  Google Scholar 

  • Schneider K, Hoffmann JE, Münker C, Patyniak M, Sprung P, Roerdink D, Garbe-Schönberg D, Kröner A (submitted). The origin of komatiites and basalts of the lower Onverwacht Group, Barberton Greenstone Belt (South Africa). Chemical Geology

    Google Scholar 

  • Schoene B, de Wit M, Bowring SA (2008) Mesoarchean assembly and stabilization of the eastern Kaapvaal craton: a structural-thermochronological perspective. Tectonics 27: TC5010, https://doi.org/10.1029/2008tc002267

    Article  Google Scholar 

  • Schoene B, Bowring S (2010) Rates and mechanisms of Mesoarchean magmatic arc construction, eastern Kaapvaal craton, Swaziland. Geol Soc Am Bull 122:408–429

    Article  Google Scholar 

  • Schoene B, Dudas FOL, Bowring S, de Wit M (2009) Sm–Nd isotopic mapping of lithospheric growth and stabilization in the eastern Kaapvaal craton. Terra Nova 21:219–228

    Article  Google Scholar 

  • Sinigoi S, Quick JE, Demarchi G, Klötzli US (2016) Production of hybrid granitic magma at the advancing front of basaltic underplating: Inferences from the Sesia magmatic system (South-Western Alps, Italy). Lithos 252–253:109–122

    Article  Google Scholar 

  • Sizova E, Gerya T, Brown M, Stüwe K (2018) What drives metamorphism in early Archean greenstone belts? Insights from numerical modeling. Tectonophysics (in press). https://doi.org/10.1016/j.tecto.2017.07.020

    Article  Google Scholar 

  • Sossi PA, Eggins SA, Nesbitt RW, Nebel O, Hergt JM, Campbell IH, O’Neill H, St C, Van Kranendonk M, Davies DR (2016) Petrogenesis and geochemistry of Archean komatiites. J Petrol 57:147–184

    Article  Google Scholar 

  • Suhr N, Hoffmann JE, Kröner A, Schröder S (2015) Archaean granulitic Paragneisses from Central Swaziland: Inferences on Paleoarchaean crustal reworking and a complex metamorphic history. J Geol Soc London 172:139–152

    Article  Google Scholar 

  • Sweetapple MT, Collins PLF (2002) Genetic framework for the classification and distribution of Archean rare metal pegmatites in the North Pilbara Craton, Western Australia. Econ Geol 97:873–895

    Article  Google Scholar 

  • Tang M, Wang X-L, Shu, X-J, Wang D, Yang T, Gopon P (2014) Hafnium isotopic heterogeneity in zircons from granitic rocks: Geochemical evaluation and modeling of “zircon effect” in crustal anatexis. Earth Planet Sci Lett 389:188–199

    Article  Google Scholar 

  • Taylor J, Stevens G, Buick IS, Lana C (2012a) Successive midcrustal, high-grade metamorphic events provide insight into Mid-Archean mountain building along the SE margin of the proto-Kaapvaal craton. Geol Soc Am Bull 124:1191–1211

    Article  Google Scholar 

  • Taylor J, Stevens G, Lana C (2012b) Age and field relationshios of Mahamba orthogneisses and Mkhondo Valley Metamorphic Suite paragneisses from the Mkhondo River, Ancient Gneiss Complex, Swaziland. S Afr J Geol 115:369–384

    Article  Google Scholar 

  • Taylor J, Zeh A, Gerdes A (2017) U-Pb–Hf isotope systematics of detrital zircons in high-grade paragneisses of the Ancient Gneiss Complex, Swaziland: Evidence for two periods of juvenile crust formation, Paleo- and Mesoarchaean sediment deposition, and 3.23 Ga terrane accretion. Precambr Res 280:205–220

    Article  Google Scholar 

  • Trumbull RB (1993) A petrological and Rb-Sr isotopic study of an early Archeran fertile granite-pegmatite system: the Sinceni Pluton in Swaziland. Precambr Res 61:89–116

    Article  Google Scholar 

  • Van Kranendonk MJ (2011) Cool greenstone drips and the role of partial convective overturn in Barberton greenstone belt evolution. J Afr Earth Sc 60:346–352

    Article  Google Scholar 

  • Van Kranendonk MJ, Bennett VC, Hoffmann, JE (eds) (2018) Earth’s oldest rocks, 2nd Edition. Elsevier, Amsterdam, in press

    Google Scholar 

  • Van Kranendonk MJ, Kröner A, Hegner E, Connelly J (2009) Age, lithology and structural evolution of the c. 3.53 Ga Theespruit Formation in the Tjakastad area, southwestern Barberton Greenstone Belt, South Africa, with implications for Archean tectonics. Chem Geol 261:114–138

    Google Scholar 

  • Van Kranendonk MJ, Kröner A, Hoffmann JE, Nagel T, Anhaeusser CR (2014) Just another drip: Re-analysis of a proposed Mesoarchean suture from the Barberton Mountain Land, South Africa. Precambr Res 254:19–35

    Article  Google Scholar 

  • van Schijndel V, Stevens G, Zeh A, Frei D, Lana C (2017) Zircon geochronology and Hf isotopes of the Dwalile supracrustal suite, Ancient Gneiss Complex, Swaziland: Insights into the diversity of Palaeoarchaean source rocks, depositional and metamorphic ages. Precambr Res 295:48–66

    Google Scholar 

  • Viljoen MJ, Viljoen RP (1969) An introduction to the geology of the Barberton granite–greenstone terrain. Geol Soc S Afr Spec Publ 2:9–28

    Google Scholar 

  • Wan Y, Xie H, Dong C, Kröner A, Bai W, Liu S, Xie S, Ma M, Li Y, Liu D (2018) Hadean to Paleoarchean rocks and zircons in China. In: Van Kranendonk MJ, Bennett VC, Hoffmann JE (eds) Earth’s oldest rocks, 2nd Edition. Elsevier, Amsterdam, pp 293–327

    Chapter  Google Scholar 

  • Wang G-D, Wang HYC, Chen H-X, Zhang B, Zhang Q, Wu C-M (2017) Geochronology and geochemistry of the TTG and potassic granite of the Taihua complex, Mts. Huashan: implications for crustal evolution of the southern North China Craton. Precambr Res 288:72–90

    Article  Google Scholar 

  • Wilson AC (1980) 1:50.000 Geological Map of Swaziland, with Explanatory Notes. Swaziland Geological Survey and Mines Department, Mbabane, Swaziland

    Google Scholar 

  • Wilson AC (Compiler) (1982) 1:250,000 Geological Map of Swaziland. Geological Survey and Mines Department, Mbabane, Swaziland

    Google Scholar 

  • Zeh A, Gerdes A, Barton JM Jr (2009) Archean accretion and crustal evolution of the Kalahari craton—the zircon age and Hf isotope record of granitic rocks from Barberton/Swaziland to the Francistown arc. J Petrol 50:933–966

    Article  Google Scholar 

  • Zeh A, Gerdes A, Millonig L (2011) Hafnium isotope record of the Ancient Gneiss Complex, Swaziland, southern Africa; evidence for Archaean crust–mantle formation and crust reworking between 3.66 and 2.73 Ga. J Geol Soc London 168:1–11

    Article  Google Scholar 

  • Zhang C, Holtz F, Koepke J, Wolff PE, Ma C, Bédard JH (2013) Constraints from experimental melting of amphibolite on the depth of formation of garnet-rich restites, and implications for models of early Archean crustal growth. Precambr Res 231:206–217

    Article  Google Scholar 

Download references

Acknowledgements

We thank Martin Van Kranendonk, Axel Hofmann, Carl Anhaeusser, Gary Stevens and members of an international field workshop at Badplaas in 2016 for discussions. Guangshen Nie and Baoying Zheng of the Beijing SHRIMP Centre prepared most of the zircon concentrates, Liqin Zhou and Xiao-Chao Che provided the zircon CL images, Chun Yang prepared perfect zircon mounts, and Jianhui Liu and Zhiqing Yang made sure that SHRIMP II was in excellent operating conditions. Dieter Garbe-Schönberg, Anja Schleicher, Ernst Hegner and Axel Hofmann kindly provided some chemical or isotopic analyses listed in Tables S1 and S3. Jianfeng Gao of the Institute of Geochemistry, Chinese Academy of Sciences, provided an unpublished Excel-based program to construct the Hf evolution diagrams of Figs. 10, 12, S3 and S6. Gary Stevens and Alex Kisters kindly supplied Table 1.4. Comments of Tim Johnson, Laurence Robb and Axel Hofmann improved the manuscript. This study was supported by grants of the Deutsche Forschungsgemeinschaft to AK (KR590/92-1, 92-2, 94-1, 97-1, 98-1) and grant HO4794/1-1 to JEH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Kröner .

Editor information

Editors and Affiliations

1.1 Electronic Supplementary Material

Below is the link to the electronic supplementary material.

419257_1_En_1_MOESM1_ESM.doc

Supplementary material 1 (DOC 4.54 MB)

419257_1_En_1_MOESM2_ESM.doc

Supplementary material 2 (DOC 86 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kröner, A. et al. (2019). Archaean Crystalline Rocks of the Eastern Kaapvaal Craton. In: Kröner, A., Hofmann, A. (eds) The Archaean Geology of the Kaapvaal Craton, Southern Africa. Regional Geology Reviews. Springer, Cham. https://doi.org/10.1007/978-3-319-78652-0_1

Download citation

Publish with us

Policies and ethics