Advertisement

Anaerobic Bacteria: Antimicrobial Susceptibility Testing and Resistance Patterns

  • Audrey N. Schuetz
Chapter
Part of the Emerging Infectious Diseases of the 21st Century book series (EIDC)

Abstract

Our ability to measure the effects of antimicrobial resistance on infections by anaerobic bacterial pathogens is more difficult than with their aerobic counterparts. Among the problems are inadequate identification of the pathogen genus or species, renaming and reclassifying of anaerobic pathogens, lack of consensus regarding susceptibility testing methods, and disagreements concerning breakpoints and interpretive categories. Consequently, few objective conclusions can be drawn about changes in the prevalence of resistance over time. Recent application of molecular identification methods is shifting clinical laboratory identification of samples from general categories (e.g., Gram-positive anaerobic cocci) to pathogen genera and species, and problems with breakpoint interpretations are being recognized. Susceptibility data are summarized for major antimicrobials with the four groups of anaerobic pathogens (anaerobic cocci, Gram-positive non-spore-forming bacilli, Gram-positive spore-forming bacilli, and Gram-negative bacilli) to serve as a knowledge base. A brief introduction to susceptibility testing is provided for readers unfamiliar with this topic.

References

  1. 1.
    Brook I, Wexler HM, Goldstein EJ. Antianaerobic antimicrobials: spectrum and susceptibility testing. Clin Microbiol Rev. 2013;26(3):526–46.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    CLSI. Analysis and presentation of cumulative antimicrobial susceptibility test data; approved guideline, 4th ed. CLSI M39-A4. Wayne, PA: Clinical and Laboratory Standards Institute; 2014.Google Scholar
  3. 3.
    CLSI. Methods for antimicrobial susceptibility testing of anaerobic bacteria; approved standard, 8th ed. CLSI M11-A8. Wayne, PA: Clinical and Laboratory Standards Institute; 2012.Google Scholar
  4. 4.
    CLSI. Performance standards for antimicrobial susceptibility testing. 27th ed. CLSI supplement M100. Wayne, PA: Clinical and Laboratory Standards Institute; 2017.Google Scholar
  5. 5.
    Hastey CJ, Boyd H, Schuetz AN, Anderson K, Citron DM, Dzink-Fox J, et al. Changes in the antibiotic susceptibility of anaerobic bacteria from 2007–2009 to 2010–2012 based on the CLSI methodology. Anaerobe. 2016;42:27–30.PubMedCrossRefGoogle Scholar
  6. 6.
    Poulet PP, Duffaut D, Lodter JP. Evaluation of the Etest for determining the in-vitro susceptibilities of Prevotella intermedia isolates to metronidazole. J Antimicrob Chemother. 1999;43(4):610–1.PubMedCrossRefGoogle Scholar
  7. 7.
    Nagy E, Justesen US, Eitel Z, Urban E, Infection ESGoA. Development of EUCAST disk diffusion method for susceptibility testing of the Bacteroides fragilis group isolates. Anaerobe. 2015;31:65–71.PubMedCrossRefGoogle Scholar
  8. 8.
    Hastey CJ, Dale SE, Nary J, Citron D, Law JH, Roe-Carpenter DE, et al. Comparison of Clostridium difficile minimum inhibitory concentrations obtained using agar dilution vs broth microdilution methods. Anaerobe. 2017;44:73–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Munson E, Carroll KC. What’s in a name? New bacterial species and changes to taxonomic status from 2012 through 2015. J Clin Microbiol. 2017;55(1):24–42.PubMedCrossRefGoogle Scholar
  10. 10.
    Song Y, Finegold SM. Peptostreptococcus, Finegoldia, Anaerococcus, Peptoniphilus, Veillonella, and other anaerobic cocci. In: Jorgensen JH, Pfaller MA, editors. Manual of clinical microbiology. 11th ed. Washington, DC: ASM Press; 2015. p. 909–39.CrossRefGoogle Scholar
  11. 11.
    Murdoch DA. Gram-positive anaerobic cocci. Clin Microbiol Rev. 1998;11(1):81–120.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Brook I. Recovery of anaerobic bacteria from clinical specimens in 12 years at two military hospitals. J Clin Microbiol. 1988;26(6):1181–8.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Brazier J, Chmelar D, Dubreuil L, Feierl G, Hedberg M, Kalenic S, et al. European surveillance study on antimicrobial susceptibility of Gram-positive anaerobic cocci. Int J Antimicrob Agents. 2008;31(4):316–20.PubMedCrossRefGoogle Scholar
  14. 14.
    Wren MW. Anaerobic cocci of clinical importance. Br J Biomed Sci. 1996;53(4):294–301.PubMedGoogle Scholar
  15. 15.
    Wildeboer-Veloo AC, Harmsen HJ, Welling GW, Degener JE. Development of 16S rRNA-based probes for the identification of Gram-positive anaerobic cocci isolated from human clinical specimens. Clin Microbiol Infect. 2007;13(10):985–92.PubMedCrossRefGoogle Scholar
  16. 16.
    Brazier JS, Hall V, Morris TE, Gal M, Duerden BI. Antibiotic susceptibilities of Gram-positive anaerobic cocci: results of a sentinel study in England and Wales. J Antimicrob Chemother. 2003;52(2):224–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Goldstein EJ, Citron DM, Warren YA, Tyrrell KL, Merriam CV, Fernandez HT. In vitro activities of dalbavancin and 12 other agents against 329 aerobic and anaerobic Gram-positive isolates recovered from diabetic foot infections. Antimicrob Agents Chemother. 2006;50(8):2875–9.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Mory F, Lozniewski A, Bland S, Sedallian A, Grollier G, Girard-Pipau F, et al. Survey of anaerobic susceptibility patterns: a French multicentre study. Int J Antimicrob Agents. 1998;10(3):229–36.PubMedCrossRefGoogle Scholar
  19. 19.
    Goto T, Yamashita A, Hirakawa H, Matsutani M, Todo K, Ohshima K, et al. Complete genome sequence of Finegoldia magna, an anaerobic opportunistic pathogen. DNA Res. 2008;15(1):39–47.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Aldridge KE, Ashcraft D, Cambre K, Pierson CL, Jenkins SG, Rosenblatt JE. Multicenter survey of the changing in vitro antimicrobial susceptibilities of clinical isolates of Bacteroides fragilis group, Prevotella, Fusobacterium, Porphyromonas, and Peptostreptococcus species. Antimicrob Agents Chemother. 2001;45(4):1238–43.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Hawser SP. Activity of tigecycline and comparators against recent clinical isolates of Finegoldia magna from Europe. Eur J Clin Microbiol Infect Dis. 2010;29(8):1011–3.PubMedCrossRefGoogle Scholar
  22. 22.
    Koeth LM, Good CE, Appelbaum PC, Goldstein EJ, Rodloff AC, Claros M, et al. Surveillance of susceptibility patterns in 1297 European and US anaerobic and capnophilic isolates to co-amoxiclav and five other antimicrobial agents. J Antimicrob Chemother. 2004;53(6):1039–44.PubMedCrossRefGoogle Scholar
  23. 23.
    Citron DM, Kwok YY, Appleman MD. In vitro activity of oritavancin (LY333328), vancomycin, clindamycin, and metronidazole against Clostridium perfringens, Propionibacterium acnes, and anaerobic Gram-positive cocci. Anaerobe. 2005;11(1–2):93–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Kononen E, Bryk A, Niemi P, Kanervo-Nordstrom A. Antimicrobial susceptibilities of Peptostreptococcus anaerobius and the newly described Peptostreptococcus stomatis isolated from various human sources. Antimicrob Agents Chemother. 2007;51(6):2205–7.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Veloo AC, Welling GW, Degener JE. Antimicrobial susceptibility of clinically relevant Gram-positive anaerobic cocci collected over a three-year period in the Netherlands. Antimicrob Agents Chemother. 2011;55(3):1199–203.PubMedCrossRefGoogle Scholar
  26. 26.
    Veloo AC, van Winkelhoff AJ. Antibiotic susceptibility profiles of anaerobic pathogens in the Netherlands. Anaerobe. 2015;31:19–24.PubMedCrossRefGoogle Scholar
  27. 27.
    Reig M, Mir N, Baquero F. Penicillin resistance in Veillonella. Antimicrob Agents Chemother. 1997;41(5):1210.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Reig M, Baquero F. Antibacterial activity of clavulanate and tazobactam on Peptostreptococcus spp. J Antimicrob Chemother. 1994;33(2):358–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Garcia-Rodriguez JA, Garcia-Sanchez JE, Munoz-Bellido JL. Antimicrobial resistance in anaerobic bacteria: current situation. Anaerobe. 1995;1(2):69–80.PubMedCrossRefGoogle Scholar
  30. 30.
    Theron MM, Janse Van Rensburg MN, Chalkley LJ. Nitroimidazole resistance genes (nimB) in anaerobic Gram-positive cocci (previously Peptostreptococcus spp.). J Antimicrob Chemother. 2004;54(1):240–2.PubMedCrossRefGoogle Scholar
  31. 31.
    Hall V, Copsey SD. Propionibacterium, Lactobacillus, Actinomyces, and other non-spore-forming anaerobic Gram-positive rods. In: Jorgensen JH, Pfaller MA, editors. Manual of clinical microbiology. 11th ed. Washington, DC: ASM Press; 2015. p. 920–39.CrossRefGoogle Scholar
  32. 32.
    Siqueira JF Jr, Rocas IN. Polymerase chain reaction detection of Propionibacterium propionicus and Actinomyces radicidentis in primary and persistent endodontic infections. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2003;96(2):215–22.PubMedCrossRefGoogle Scholar
  33. 33.
    Cannon JP, Lee TA, Bolanos JT, Danziger LH. Pathogenic relevance of Lactobacillus: a retrospective review of over 200 cases. Eur J Clin Microbiol Infect Dis. 2005;24(1):31–40.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Land MH, Rouster-Stevens K, Woods CR, Cannon ML, Cnota J, Shetty AK. Lactobacillus sepsis associated with probiotic therapy. Pediatrics. 2005;115(1):178–81.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Rautio M, Saxen H, Siitonen A, Nikku R, Jousimies-Somer H. Bacteriology of histopathologically defined appendicitis in children. Pediatr Infect Dis J. 2000;19(11):1078–83.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Stackebrandt E, Cummins CS, Johnson JL. Family Propionibacteriaceae: the genus Propionibacterium. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K, Stackebrandt E, editors. The prokaryotes. New York: Springer; 2006. p. 400–18.CrossRefGoogle Scholar
  37. 37.
    Butler-Wu SM, Sengupta DJ, Kittichotirat W, Matsen FA 3rd, Bumgarner RE. Genome sequence of a novel species, Propionibacterium humerusii. J Bacteriol. 2011;193(14):3678.37.CrossRefGoogle Scholar
  38. 38.
    Scholz CF, Kilian M. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propionibacterium to the proposed novel genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov. Int J Syst Evol Microbiol. 2016;66(11):4422–32.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Oprica C, Nord CE, Bacteria ESGoARiA. European surveillance study on the antibiotic susceptibility of Propionibacterium acnes. Clin Microbiol Infect. 2005;11(3):204–13.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Tyrrell KL, Citron DM, Warren YA, Fernandez HT, Merriam CV, Goldstein EJ. In vitro activities of daptomycin, vancomycin, and penicillin against Clostridium difficile, C. perfringens, Finegoldia magna, and Propionibacterium acnes. Antimicrob Agents Chemother. 2006;50(8):2728–31.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Smith AJ, Hall V, Thakker B, Gemmell CG. Antimicrobial susceptibility testing of Actinomyces species with 12 antimicrobial agents. J Antimicrob Chemother. 2005;56(2):407–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Goldstein EJC, Citron DM. Resistance trends in antimicrobial susceptibility of anaerobic bacteria, part I. Clin Microbiol Newsl. 2011;33(1):1–8.CrossRefGoogle Scholar
  43. 43.
    Goldstein EJ, Citron DM, Merriam CV, Warren YA, Tyrrell KL, Fernandez HT. In vitro activities of the new semisynthetic glycopeptide telavancin (TD-6424), vancomycin, daptomycin, linezolid, and four comparator agents against anaerobic Gram-positive species and Corynebacterium spp. Antimicrob Agents Chemother. 2004;48(6):2149–52.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Edmiston CE, Krepel CJ, Seabrook GR, Somberg LR, Nakeeb A, Cambria RA, et al. In vitro activities of moxifloxacin against 900 aerobic and anaerobic surgical isolates from patients with intra-abdominal and diabetic foot infections. Antimicrob Agents Chemother. 2004;48(3):1012–6.44.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    CLSI, editor. Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria. 3rd ed. CLSI guideline M45. Wayne, PA: Clinical and Laboratory Standards Institute; 2015.Google Scholar
  46. 46.
    Salminen MK, Rautelin H, Tynkkynen S, Poussa T, Saxelin M, Valtonen V, et al. Lactobacillus bacteremia, species identification, and antimicrobial susceptibility of 85 blood isolates. Clin Infect Dis. 2006;42(5):e35–44.PubMedCrossRefGoogle Scholar
  47. 47.
    Lawson PA, Citron DM, Tyrrell KL, Finegold SM. Reclassification of Clostridium difficile as Clostridioides difficile (Hall and O'Toole 1935) Prévot 1938. Anaerobe. 2016 Aug;40:95–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Goudarzi M, Goudarzi H, Alebouyeh M, Azimi Rad M, Shayegan Mehr FS, Zali MR, et al. Antimicrobial susceptibility of clostridium difficile clinical isolates in Iran. Iran Red Crescent Med J. 2013;15(8):704–11.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Baines SD, Wilcox MH. Antimicrobial resistance and reduced susceptibility in Clostridium difficile: potential consequences for induction, treatment, and recurrence of C. difficile infection. Antibiotics (Basel). 2015;4(3):267–98.CrossRefGoogle Scholar
  50. 50.
    He M, Miyajima F, Roberts P, Ellison L, Pickard DJ, Martin MJ, et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet. 2013;45(1):109–13.PubMedCrossRefGoogle Scholar
  51. 51.
    Spigaglia P. Recent advances in the understanding of antibiotic resistance in Clostridium difficile infection. Ther Adv Infect Dis. 2016;3(1):23–42.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Snydman DR, McDermott LA, Jacobus NV, Thorpe C, Stone S, Jenkins SG, et al. U.S.-Based National Sentinel Surveillance Study for the epidemiology of Clostridium difficile-associated diarrheal isolates and their susceptibility to fidaxomicin. Antimicrob Agents Chemother. 2015;59(10):6437–43.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Freeman J, Vernon J, Morris K, Nicholson S, Todhunter S, Longshaw C, et al. Pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes. Clin Microbiol Infect. 2015;21(3):248 e9–e16.CrossRefGoogle Scholar
  54. 54.
    Tenover FC, Tickler IA, Persing DH. Antimicrobial-resistant strains of Clostridium difficile from North America. Antimicrob Agents Chemother. 2012;56(6):2929–32.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Goldstein EJ, Babakhani F, Citron DM. Antimicrobial activities of fidaxomicin. Clin Infect Dis. 2012;55(Suppl 2):S143–8.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Keessen EC, Hensgens MP, Spigaglia P, Barbanti F, Sanders IM, Kuijper EJ, et al. Antimicrobial susceptibility profiles of human and piglet Clostridium difficile PCR-ribotype 078. Antimicrob Resist Infect Control. 2013;2:14.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Peng Z, Jin D, Kim HB, Stratton CW, Wu B, Tang YW, et al. Update on antimicrobial resistance in Clostridium difficile: resistance mechanisms and antimicrobial susceptibility testing. J Clin Microbiol. 2017;55(7):1998–2008.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Shen J, Wang Y, Schwarz S. Presence and dissemination of the multiresistance gene cfr in Gram-positive and Gram-negative bacteria. J Antimicrob Chemother. 2013;68(8):1697–706.PubMedCrossRefGoogle Scholar
  59. 59.
    O'Connor JR, Galang MA, Sambol SP, Hecht DW, Vedantam G, Gerding DN, et al. Rifampin and rifaximin resistance in clinical isolates of Clostridium difficile. Antimicrob Agents Chemother. 2008;52(8):2813–7.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Leeds JA, Sachdeva M, Mullin S, Barnes SW, Ruzin A. In vitro selection, via serial passage, of Clostridium difficile mutants with reduced susceptibility to fidaxomicin or vancomycin. J Antimicrob Chemother. 2014;69(1):41–4.PubMedCrossRefGoogle Scholar
  61. 61.
    Stevens DL, Bryant AE, Carroll KC. Clostridium. In: Jorgensen JH, Pfaller MA, editors. Manual of clinical microbiology. 11th ed. Washington, DC: ASM Press; 2015. p. 940–66.CrossRefGoogle Scholar
  62. 62.
    Leal J, Gregson DB, Ross T, Church DL, Laupland KB. Epidemiology of Clostridium species bacteremia in Calgary, Canada, 2000-2006. J Infect. 2008;57(3):198–203.PubMedCrossRefGoogle Scholar
  63. 63.
    Dubreuil L, Odou MF. Anaerobic bacteria and antibiotics: what kind of unexpected resistance could I find in my laboratory tomorrow? Anaerobe. 2010;16(6):555–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Finegold SM, Song Y, Liu C, Hecht DW, Summanen P, Kononen E, et al. Clostridium clostridioforme: a mixture of three clinically important species. Eur J Clin Microbiol Infect Dis. 2005;24(5):319–24.PubMedCrossRefGoogle Scholar
  65. 65.
    Finegold SM, Molitoris D, Vaisanen ML. Study of the in vitro activities of rifaximin and comparator agents against 536 anaerobic intestinal bacteria from the perspective of potential utility in pathology involving bowel flora. Antimicrob Agents Chemother. 2009;53(1):281–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Winn WC, Allen SD, Janda WM, Koneman EW, Procop G, Schrechenberger PC, et al. Koneman’s color atlas and textbook of diagnostic microbiology. Philadelphia: Lippincott Williiams & Wilkins; 2005.Google Scholar
  67. 67.
    Ackermann G, Schaumann R, Pless B, Claros MC, Goldstein EJ, Rodloff AC. Comparative activity of moxifloxacin in vitro against obligately anaerobic bacteria. Eur J Clin Microbiol Infect Dis. 2000;19(3):228–32.PubMedCrossRefGoogle Scholar
  68. 68.
    Wexler HM. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev. 2007;20(4):593–621.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Snydman DR, Jacobus NV, McDermott LA, Golan Y, Hecht DW, Goldstein EJ, et al. Lessons learned from the anaerobe survey: historical perspective and review of the most recent data (2005-2007). Clin Infect Dis. 2010;50(Suppl 1):S26–33.PubMedCrossRefGoogle Scholar
  70. 70.
    Trevino M, Areses P, Penalver MD, Cortizo S, Pardo F, del Molino ML, et al. Susceptibility trends of Bacteroides fragilis group and characterisation of carbapenemase-producing strains by automated REP-PCR and MALDI TOF. Anaerobe. 2012;18(1):37–43.PubMedCrossRefGoogle Scholar
  71. 71.
    Nagy E, Urban E, Nord CE, Bacteria ESGoARiA. Antimicrobial susceptibility of Bacteroides fragilis group isolates in Europe: 20 years of experience. Clin Microbiol Infect. 2011;17(3):371–9.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Snydman DR, Jacobus NV, McDermott LA, Supran S, Cuchural GJ Jr, Finegold S, et al. Multicenter study of in vitro susceptibility of the Bacteroides fragilis group, 1995 to 1996, with comparison of resistance trends from 1990 to 1996. Antimicrob Agents Chemother. 1999;43(10):2417–22.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Seifert H, Dalhoff A, Group PS. German multicentre survey of the antibiotic susceptibility of Bacteroides fragilis group and Prevotella species isolated from intra-abdominal infections: results from the PRISMA study. J Antimicrob Chemother. 2010;65(11):2405–10.PubMedCrossRefGoogle Scholar
  74. 74.
    Snydman DR, Jacobus NV, McDermott LA, Golan Y, Goldstein EJ, Harrell L, et al. Update on resistance of Bacteroides fragilis group and related species with special attention to carbapenems 2006-2009. Anaerobe. 2011;17(4):147–51.PubMedCrossRefGoogle Scholar
  75. 75.
    Sherwood JE, Fraser S, Citron DM, Wexler H, Blakely G, Jobling K, et al. Multi-drug resistant Bacteroides fragilis recovered from blood and severe leg wounds caused by an improvised explosive device (IED) in Afghanistan. Anaerobe. 2011;17(4):152–5.PubMedCrossRefGoogle Scholar
  76. 76.
    Piriz S, Vadillo S, Quesada A, Criado J, Cerrato R, Ayala J. Relationship between penicillin-binding protein patterns and beta-lactamases in clinical isolates of Bacteroides fragilis with different susceptibility to beta-lactam antibiotics. J Med Microbiol. 2004;53(Pt 3):213–21.PubMedCrossRefGoogle Scholar
  77. 77.
    Aldridge KE, Ashcraft D, O'Brien M, Sanders CV. Bacteremia due to Bacteroides fragilis group: distribution of species, beta-lactamase production, and antimicrobial susceptibility patterns. Antimicrob Agents Chemother. 2003;47(1):148–53.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Behra-Miellet J, Calvet L, Dubreuil L. A Bacteroides thetaiotamicron porin that could take part in resistance to beta-lactams. Int J Antimicrob Agents. 2004;24(2):135–43.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Boente RF, Ferreira LQ, Falcao LS, Miranda KR, Guimaraes PL, Santos-Filho J, et al. Detection of resistance genes and susceptibility patterns in Bacteroides and Parabacteroides strains. Anaerobe. 2010;16(3):190–4.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Garcia N, Gutierrez G, Lorenzo M, Garcia JE, Piriz S, Quesada A. Genetic determinants for cfxA expression in Bacteroides strains isolated from human infections. J Antimicrob Chemother. 2008;62(5):942–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Soki J, Edwards R, Hedberg M, Fang H, Nagy E, Nord CE, et al. Examination of cfiA-mediated carbapenem resistance in Bacteroides fragilis strains from a European antibiotic susceptibility survey. Int J Antimicrob Agents. 2006;28(6):497–502.PubMedCrossRefGoogle Scholar
  82. 82.
    Toprak NU, Uzunkaya OD, Soki J, Soyletir G. Susceptibility profiles and resistance genes for carbapenems (cfiA) and metronidazole (nim) among Bacteroides species in a Turkish University Hospital. Anaerobe. 2012;18(1):169–71.PubMedCrossRefGoogle Scholar
  83. 83.
    Roberts MC, Sutcliffe J, Courvalin P, Jensen LB, Rood J, Seppala H. Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob Agents Chemother. 1999;43(12):2823–30.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Gal M, Brazier JS. Metronidazole resistance in Bacteroides spp. carrying nim genes and the selection of slow-growing metronidazole-resistant mutants. J Antimicrob Chemother. 2004;54(1):109–16.PubMedCrossRefGoogle Scholar
  85. 85.
    Lofmark S, Fang H, Hedberg M, Edlund C. Inducible metronidazole resistance and nim genes in clinical Bacteroides fragilis group isolates. Antimicrob Agents Chemother. 2005;49(3):1253–6.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Roberts SA, Shore KP, Paviour SD, Holland D, Morris AJ. Antimicrobial susceptibility of anaerobic bacteria in New Zealand: 1999-2003. J Antimicrob Chemother. 2006;57(5):992–8.PubMedCrossRefGoogle Scholar
  87. 87.
    Liu CY, Huang YT, Liao CH, Yen LC, Lin HY, Hsueh PR. Increasing trends in antimicrobial resistance among clinically important anaerobes and Bacteroides fragilis isolates causing nosocomial infections: emerging resistance to carbapenems. Antimicrob Agents Chemother. 2008;52(9):3161–8.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Bahar H, Torun MM, Demirci M, Kocazeybek B. Antimicrobial resistance and beta-lactamase production of clinical isolates of prevotella and porphyromonas species. Chemotherapy. 2005;51(1):9–14.PubMedCrossRefGoogle Scholar
  89. 89.
    Molitoris E, Wexler HM, Finegold SM. Sources and antimicrobial susceptibilities of Campylobacter gracilis and Sutterella wadsworthensis. Clin Infect Dis. 1997;25(Suppl 2):S264–5.PubMedCrossRefGoogle Scholar
  90. 90.
    King A, Downes J, Nord CE, Phillips I, European Study G. Antimicrobial susceptibility of non-Bacteroides fragilis group anaerobic Gram-negative bacilli in Europe. Clin Microbiol Infect. 1999;5(7):404–16.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mayo ClinicRochesterUSA

Personalised recommendations