Advertisement

The New Versus Old Target Debate for Drug Discovery

  • Alice L. Erwin
Chapter
Part of the Emerging Infectious Diseases of the 21st Century book series (EIDC)

Abstract

At the turn of the century, it appeared to many of us that the empiric methods that had been used to discover most antibiotics were passé. New technologies like combinatorial chemistry, high-throughput screening, and X-ray crystallography, together with genome sequences from several bacterial pathogens, would allow us to discover new classes of antibiotics with novel mechanisms. Looking back over the past two decades, the expected flood of new antibacterial scaffolds has not yet appeared, perhaps because of the emphasis on enzyme targets whose activity could easily be assayed. However, in the same period there has been a trickle of clinical candidates from other sources: new antibiotics acting on well-established targets; antibacterial compounds with a variety of unexpected or unknown mechanisms, discovered through empiric methods; and agents discovered by rational methods but with mechanisms very different from the enzyme targets of the genome era.

References

  1. 1.
    Andries K, Verhasselt P, Guillemont J, Göhlmann HWH, Neefs J-M, Winkler H, et al. A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science. 2005;307(5707):223–7.  https://doi.org/10.1126/science.1106753.CrossRefPubMedGoogle Scholar
  2. 2.
    Badarau A, Rouha H, Malafa S, Battles MB, Walker L, Nielson N, et al. Context matters: the importance of dimerization-induced conformation of the LukGH leukocidin of Staphylococcus aureus for the generation of neutralizing antibodies. MAbs. 2016;8(7):1347–60.  https://doi.org/10.1080/19420862.2016.1215791.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Barbachyn MR. Oxazolidinone antibacterial agents. In: Dougherty TJ, Pucci MJ, editors. Antibiotic discovery and development. Boston: Springer US; 2012. p. 271–99.CrossRefGoogle Scholar
  4. 4.
    Barker CA, Farha MA, Brown ED. Chemical genomic approaches to study model microbes. Chem Biol. 2010;17(6):624–32.  https://doi.org/10.1016/j.chembiol.2010.05.010.CrossRefPubMedGoogle Scholar
  5. 5.
    Barrett MP, Gemmell CG, Suckling CJ. Minor groove binders as anti-infective agents. Pharmacol Ther. 2013;139(1):12–23.  https://doi.org/10.1016/j.pharmthera.2013.03.002.CrossRefPubMedGoogle Scholar
  6. 6.
    Baumgartner D, Aebi S, Grandgirard D, Leib SL, Draeger A, Babiychuk E, et al. Clinical Streptococcus pneumoniae isolates induce differing CXCL8 responses from human nasopharyngeal epithelial cells which are reduced by liposomes. BMC Microbiol. 2016;16:154.  https://doi.org/10.1186/s12866-016-0777-5.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bisacchi GS, Manchester JI. A new-class antibacterial—almost. Lessons in drug discovery and development: a critical analysis of more than 50 years of effort toward ATPase inhibitors of DNA gyrase and topoisomerase IV. ACS Infect Dis. 2015;1(1):4–41.  https://doi.org/10.1021/id500013t.CrossRefPubMedGoogle Scholar
  8. 8.
    Blount KF, Megyola C, Plummer M, Osterman D, O'Connell T, Aristoff P, et al. Novel riboswitch-binding flavin analog that protects mice against Clostridium difficile infection without inhibiting cecal flora. Antimicrob Agents Chemother. 2015;59(9):5736–46.  https://doi.org/10.1128/AAC.01282-15.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Boucher HW, Ambrose PG, Chambers HF, Ebright RH, Jezek A, Murray BE, et al. White paper: developing antimicrobial drugs for resistant pathogens, narrow-spectrum indications, and unmet needs. J Infect Dis. 2017.  https://doi.org/10.1093/infdis/jix211.CrossRefGoogle Scholar
  10. 10.
    Bourne CR. Utility of the biosynthetic folate pathway for targets in antimicrobial discovery. Antibiotics (Basel). 2014;3(1):1–28.  https://doi.org/10.3390/antibiotics3010001.CrossRefGoogle Scholar
  11. 11.
    Brötz-Oesterhelt H, Brunner NA. How many modes of action should an antibiotic have? Curr Opin Pharmacol. 2008;8(5):564–73.  https://doi.org/10.1016/j.coph.2008.06.008.CrossRefPubMedGoogle Scholar
  12. 12.
    Bush K, Page MGP. What we may expect from novel antibacterial agents in the pipeline with respect to resistance and pharmacodynamic principles. J Pharmacokinet Pharmacodyn. 2017;44(2):113–32.  https://doi.org/10.1007/s10928-017-9506-4.CrossRefPubMedGoogle Scholar
  13. 13.
    Casadevall A. The third age of antimicrobial therapy. Clin Infect Dis. 2006;42(10):1414–6.  https://doi.org/10.1086/503431.CrossRefPubMedGoogle Scholar
  14. 14.
    Coleman K. Diazabicyclooctanes (DBOs): a potent new class of non-β-lactam β-lactamase inhibitors. Curr Opin Microbiol. 2011;14(5):550–5.  https://doi.org/10.1016/j.mib.2011.07.026.CrossRefPubMedGoogle Scholar
  15. 15.
    Corey R, Naderer OJ, O‘Riordan WD, Dumont E, Jones LS, Kurtinecz M, et al. Safety, tolerability, and efficacy of GSK1322322 in the treatment of acute bacterial skin and skin structure infections. Antimicrob Agents Chemother. 2014;58(11):6518–27.  https://doi.org/10.1128/AAC.03360-14.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Côté J-P, French S, Gehrke SS, MacNair CR, Mangat CS, Bharat A, et al. The genome-wide interaction network of nutrient stress genes in Escherichia coli. MBio. 2016;7(6):e01714–6.  https://doi.org/10.1128/mBio.01714-16.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Critchley IA, Green LS, Young CL, Bullard JM, Evans RJ, Price M, et al. Spectrum of activity and mode of action of REP3123, a new antibiotic to treat Clostridium difficile infections. J Antimicrob Chemother. 2009;63(5):954–63.  https://doi.org/10.1093/jac/dkp041.CrossRefPubMedGoogle Scholar
  18. 18.
    Davies J, Spiegelman GB, Yim G. The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol. 2006;9(5):445–53.  https://doi.org/10.1016/j.mib.2006.08.006.CrossRefPubMedGoogle Scholar
  19. 19.
    DeCenzo M, Kuranda M, Cohen S, Babiak J, Jiang Z-D, Su D, et al. Identification of compounds that inhibit late steps of peptidoglycan synthesis in bacteria. J Antibiot. 2002;55(3):288–95.CrossRefGoogle Scholar
  20. 20.
    Deng Y, Sun C, Hunt DK, Fyfe C, Chen C-L, Grossman TH, et al. Heterocyclyl tetracyclines. 1. 7-Trifluoromethyl-8-pyrrolidinyltetracyclines: potent, broad spectrum antibacterial agents with enhanced activity against Pseudomonas aeruginosa. J Med Chem. 2017;60(6):2498–512.  https://doi.org/10.1021/acs.jmedchem.6b01903.CrossRefPubMedGoogle Scholar
  21. 21.
    Diep BA, Le VTM, Visram ZC, Rouha H, Stulik L, Dip EC, et al. Improved protection in a rabbit model of CA-MRSA necrotizing pneumonia upon neutralization of leukocidins in addition to alpha-hemolysin. Antimicrob Agents Chemother. 2016:AAC.01213-16.  https://doi.org/10.1128/AAC.01213-16.CrossRefGoogle Scholar
  22. 22.
    DiGiandomenico A, Keller AE, Gao C, Rainey GJ, Warrener P, Camara MM, et al. A multifunctional bispecific antibody protects against Pseudomonas aeruginosa. Sci Transl Med. 2014;6(262):262ra155.  https://doi.org/10.1126/scitranslmed.3009655.CrossRefPubMedGoogle Scholar
  23. 23.
    Domagala JM, Hanna LD, Heifetz CL, Hutt MP, Mich TF, Sanchez JP, et al. New structure-activity relationships of the quinolone antibacterials using the target enzyme. The development and application of a DNA gyrase assay. J Med Chem. 1986;29(3):394–404.CrossRefGoogle Scholar
  24. 24.
    Donald RGK, Skwish S, Forsyth RA, Anderson JW, Zhong T, Burns C, et al. A Staphylococcus aureus fitness test platform for mechanism-based profiling of antibacterial compounds. Chem Biol. 2009;16(8):826–36.  https://doi.org/10.1016/j.chembiol.2009.07.004.CrossRefPubMedGoogle Scholar
  25. 25.
    Ehmann DE, Jahić H, Ross PL, Gu R-F, Hu J, Kern G, et al. Avibactam is a covalent, reversible, non–β-lactam β-lactamase inhibitor. Proc Natl Acad Sci U S A. 2012;109(29):11663–8.  https://doi.org/10.1073/pnas.1205073109.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Emiola A, George J, Andrews SS. A complete pathway model for lipid A biosynthesis in Escherichia coli. PLoS One. 2014.  https://doi.org/10.1371/journal.pone.0121216.CrossRefGoogle Scholar
  27. 27.
    Erwin AL. Antibacterial drug discovery targeting the lipopolysaccharide biosynthetic enzyme LpxC. Cold Spring Harb Perspect Med. 2016.  https://doi.org/10.1101/cshperspect.a025304.CrossRefGoogle Scholar
  28. 28.
    Estrada A, Wright DL, Anderson AC. Antibacterial antifolates: from development through resistance to the next generation. Cold Spring Harb Perspect Med. 2016;6(8).  https://doi.org/10.1101/cshperspect.a028324.CrossRefGoogle Scholar
  29. 29.
    Fernandes P, Martens E, Pereira D. Nature nurtures the design of new semi-synthetic macrolide antibiotics. J Antibiot. 2017;70(5):527–33.  https://doi.org/10.1038/ja.2016.137.CrossRefGoogle Scholar
  30. 30.
    Fonville NC, Bates D, Hastings PJ, Hanawalt PC, Rosenberg SM. Role of RecA and the SOS response in thymineless death in Escherichia coli. PLoS Genet. 2010;6(3):e1000865.  https://doi.org/10.1371/journal.pgen.1000865.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Giersing BK, Dastgheyb SS, Modjarrad K, Moorthy V. Status of vaccine research and development of vaccines for Staphylococcus aureus. Vaccine. 2016;34(26):2962–6.  https://doi.org/10.1016/j.vaccine.2016.03.110.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Grillot A-L, Le Tiran A, Shannon D, Krueger E, Liao Y, O’Dowd H, et al. Second-generation antibacterial benzimidazole ureas: discovery of a preclinical candidate with reduced metabolic liability. J Med Chem. 2014;57(21):8792–816.  https://doi.org/10.1021/jm500563g.CrossRefPubMedGoogle Scholar
  33. 33.
    Grossman TH. Tetracycline antibiotics and resistance. Cold Spring Harb Perspect Med. 2016;6(4):a025387.  https://doi.org/10.1101/cshperspect.a025387.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, et al. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 2011;7(7).  https://doi.org/10.1371/journal.ppat.1002158.CrossRefGoogle Scholar
  35. 35.
    Hammoudeh DI, Zhao Y, White SW, Lee RE. Replacing sulfa drugs with novel DHPS inhibitors. Future Med Chem. 2013;5(11):1331–40.  https://doi.org/10.4155/fmc.13.97.CrossRefPubMedGoogle Scholar
  36. 36.
    Haynes KM, Abdali N, Jhawar V, Zgurskaya HI, Parks JM, Green AT, et al. Identification and structure-activity relationships of novel compounds that potentiate the activities of antibiotics in Escherichia coli. J Med Chem. 2017.  https://doi.org/10.1021/acs.jmedchem.7b00453.CrossRefGoogle Scholar
  37. 37.
    Hooper DC. Emerging mechanisms of fluoroquinolone resistance. Emerg Infect Dis. 2001;7(2):337–41.  https://doi.org/10.3201/eid0702.700337.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Howard JJ, Sturge CR, Moustafa DA, Daly SM, Marshall-Batty KR, Felder CF, et al. Inhibition of Pseudomonas aeruginosa by peptide-conjugated phosphorodiamidate morpholino oligomers. Antimicrob Agents Chemother. 2017:AAC.01938-16.  https://doi.org/10.1128/AAC.01938-16.
  39. 39.
    Huber J, Donald RGK, Lee SH, Jarantow LW, Salvatore MJ, Meng X, et al. Chemical genetic identification of peptidoglycan inhibitors potentiating carbapenem activity against methicillin-resistant Staphylococcus aureus. Chem Biol. 2009;16(8):837–48.  https://doi.org/10.1016/j.chembiol.2009.05.012.CrossRefPubMedGoogle Scholar
  40. 40.
    Hurdle JG, O’Neill AJ, Chopra I. Prospects for aminoacyl-tRNA synthetase inhibitors as new antimicrobial agents. Antimicrob Agents Chemother. 2005;49(12):4821–33.  https://doi.org/10.1128/AAC.49.12.4821-4833.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Janardhanan J, Chang M, Mobashery S. The oxadiazole antibacterials. Curr Opin Microbiol. 2016;33:13–7.  https://doi.org/10.1016/j.mib.2016.05.009.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Jun SY, Jang IJ, Yoon S, Jang K, Yu K-S, Cho JY, et al. Pharmacokinetics and tolerance of the phage endolysin-based candidate drug SAL200 after a single intravenous administration among healthy volunteers. Antimicrob Agents Chemother. 2017;61(6).  https://doi.org/10.1128/AAC.02629-16.
  43. 43.
    Kim J-H, O’Brien KM, Sharma R, Boshoff HIM, Rehren G, Chakraborty S, et al. A genetic strategy to identify targets for the development of drugs that prevent bacterial persistence. Proc Natl Acad Sci. 2013;110(47):19095–100.  https://doi.org/10.1073/pnas.1315860110.CrossRefPubMedGoogle Scholar
  44. 44.
    Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. A common mechanism of cellular death induced by bactericidal antibiotics. Cell. 2007;130(5):797–810.  https://doi.org/10.1016/j.cell.2007.06.049.CrossRefPubMedGoogle Scholar
  45. 45.
    Kudrin P, Varik V, Oliveira SRA, Beljantseva J, Santos TDP, Dzhygyr I, et al. Subinhibitory concentrations of bacteriostatic antibiotics induce relA-dependent and relA-independent tolerance to β-lactams. Antimicrob Agents Chemother. 2017;61(4):e02173–16.  https://doi.org/10.1128/AAC.02173-16.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Lavesa-Curto M, Sayer H, Bullard D, MacDonald A, Wilkinson A, Smith A, et al. Characterization of a temperature-sensitive DNA ligase from Escherichia coli. Microbiology. 2004;150(Pt 12):4171–80.  https://doi.org/10.1099/mic.0.27287-0.CrossRefPubMedGoogle Scholar
  47. 47.
    Leeds JA. Antibacterials developed to target a single organism: mechanisms and frequencies of reduced susceptibility to the novel anti-Clostridium difficile compounds fidaxomicin and LFF571. Cold Spring Harb Perspect Med. 2016;6(2):a025445.  https://doi.org/10.1101/cshperspect.a025445.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Leeds JA, Dean CR. Peptide deformylase as an antibacterial target: a critical assessment. Curr Opin Pharmacol. 2006;6(5):445–52.  https://doi.org/10.1016/j.coph.2006.06.003.CrossRefPubMedGoogle Scholar
  49. 49.
    Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, et al. A new antibiotic kills pathogens without detectable resistance. Nature. 2015;advance online publication.  https://doi.org/10.1038/nature14098.CrossRefGoogle Scholar
  50. 50.
    Liu Y, Imlay JA. Cell death from antibiotics without the involvement of reactive oxygen species. Science. 2013;339(6124):1210–3.  https://doi.org/10.1126/science.1232751,  https://doi.org/10.1126/science.1232688.
  51. 51.
    Lomovskaya O, Bostian KA. Practical applications and feasibility of efflux pump inhibitors in the clinic–a vision for applied use. Biochem Pharmacol. 2006;71(7):910–8.  https://doi.org/10.1016/j.bcp.2005.12.008.CrossRefPubMedGoogle Scholar
  52. 52.
    Maffioli SI, Zhang Y, Degen D, Carzaniga T, Gatto GD, Serina S, et al. Antibacterial nucleoside-analog inhibitor of bacterial RNA polymerase. Cell. 2017;169(7):1240–8.e23.  https://doi.org/10.1016/j.cell.2017.05.042.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Mahmood HY, Jamshidi S, Sutton JM, Rahman KM. Current advances in developing inhibitors of bacterial multidrug efflux pumps. Curr Med Chem. 2016;23(10):1062–81.CrossRefGoogle Scholar
  54. 54.
    Maisonneuve E, Castro-Camargo M, Gerdes K. (p) ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell. 2013;154(5):1140–50.  https://doi.org/10.1016/j.cell.2013.07.048,  https://doi.org/10.1128/mBio.02267-16.
  55. 55.
    Mann J, Taylor PW, Dorgan CR, Johnson PD, Wilson FX, Vickers R, et al. The discovery of a novel antibiotic for the treatment of Clostridium difficile infections: a story of an effective academic-industrial partnership. Med Chem Commun. 2015;6(8):1420–6.  https://doi.org/10.1039/c5md00238a.CrossRefGoogle Scholar
  56. 56.
    Mattis DM, Spaulding AR, Chuang-Smith ON, Sundberg EJ, Schlievert PM, Kranz DM. Engineering a soluble high-affinity receptor domain that neutralizes staphylococcal enterotoxin C in rabbit models of disease. Protein Eng Des Sel. 2013;26(2):133–42.  https://doi.org/10.1093/protein/gzs094.CrossRefPubMedGoogle Scholar
  57. 57.
    Maura D, Ballok AE, Rahme LG. Considerations and caveats in anti-virulence drug development. Curr Opin Microbiol. 2016;33:41–6.  https://doi.org/10.1016/j.mib.2016.06.001.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    May KL, Silhavy TJ. Making a membrane on the other side of the wall. Biochim Biophys Acta. 2016.  https://doi.org/10.1016/j.bbalip.2016.10.004.CrossRefGoogle Scholar
  59. 59.
    McLeod SM, Dougherty TJ, Pucci MJ. Novel antibacterial targets/identification of new targets by comparative genomics. In: Dougherty TJ, Pucci MJ, editors. Antibiotic discovery and development. Boston: Springer US; 2012. p. 881–900.CrossRefGoogle Scholar
  60. 60.
    Melton-Celsa AR, OʼBrien AD. New therapeutic developments against shiga toxin-producing Escherichia coli. Microbiol Spectr. 2014;2(5).  https://doi.org/10.1128/microbiolspec.EHEC-0013-2013.
  61. 61.
    Metz JT, Hajduk PJ. Rational approaches to targeted polypharmacology: creating and navigating protein-ligand interaction networks. Curr Opin Chem Biol. 2010;14(4):498–504.  https://doi.org/10.1016/j.cbpa.2010.06.166.CrossRefPubMedGoogle Scholar
  62. 62.
    Miesel L, Hecht DW, Osmolski JR, Gerding D, Flattery A, Li F, et al. Kibdelomycin is a potent and selective agent against toxigenic Clostridium difficile. Antimicrob Agents Chemother. 2014;58(4):2387–92.  https://doi.org/10.1128/AAC.00021-14.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Mills SD, Dougherty TJ. Cell-based screening in antibacterial discovery. In: Dougherty TJ, Pucci MJ, editors. Antibiotic discovery and development. Boston: Springer US; 2012. p. 901–29.CrossRefGoogle Scholar
  64. 64.
    Mukherjee T, Boshoff H. Nitroimidazoles for the treatment of TB: past, present and future. Future Med Chem. 2011;3(11):1427–54.  https://doi.org/10.4155/fmc.11.90.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Mullane K, Lee C, Bressler A, Buitrago M, Weiss K, Dabovic K, et al. A multi-center, randomized clinical trial to compare the safety and efficacy of LFF571 and vancomycin for Clostridium difficile infections. Antimicrob Agents Chemother. 2014.  https://doi.org/10.1128/AAC.04251-14.CrossRefGoogle Scholar
  66. 66.
    Nair DR, Monteiro JM, Memmi G, Thanassi J, Pucci M, Schwartzman J, et al. Characterization of a novel small molecule that potentiates β-lactam activity against Gram positive and Gram negative pathogens. Antimicrob Agents Chemother. 2015.  https://doi.org/10.1128/AAC.04164-14.CrossRefGoogle Scholar
  67. 67.
    Nayak SU, Griffiss JM, Blumer J, O’Riordan MA, Gray W, McKenzie R, et al. Safety, tolerability, systemic exposure and metabolism of CRS3123, a methionyl-tRNA synthetase inhibitor developed for treatment of Clostridium difficile infections, in a Phase I study. Antimicrob Agents Chemother. 2017.  https://doi.org/10.1128/AAC.02760-16.
  68. 68.
    Nayar AS, Dougherty TJ, Ferguson KE, Granger BA, McWilliams L, Stacey C, et al. Novel antibacterial targets and compounds revealed by a high-throughput cell wall reporter assay. J Bacteriol. 2015;197(10):1726–34.  https://doi.org/10.1128/JB.02552-14.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Novak R. Are pleuromutilin antibiotics finally fit for human use? Ann N Y Acad Sci. 2011;1241(1):71–81.  https://doi.org/10.1111/j.1749-6632.2011.06219.x.CrossRefPubMedGoogle Scholar
  70. 70.
    O’Dwyer K, Spivak AT, Ingraham K, Min S, Holmes DJ, Jakielaszek C, et al. Bacterial resistance to leucyl-tRNA synthetase inhibitor GSK2251052 develops during treatment of complicated urinary tract infections. Antimicrob Agents Chemother. 2015;59(1):289–98.  https://doi.org/10.1128/AAC.03774-14.CrossRefPubMedGoogle Scholar
  71. 71.
    O’Neill AJ, Chopra I. Preclinical evaluation of novel antibacterial agents by microbiological and molecular techniques. Expert Opin Investig Drugs. 2004;13(8):1045–63.CrossRefGoogle Scholar
  72. 72.
    Opperman TJ, Kwasny SM, Li JB, Lewis MA, Aiello D, Williams JD, et al. DNA targeting as a likely mechanism underlying the antibacterial activity of synthetic bis-indole antibiotics. Antimicrob Agents Chemother. 2016;60(12):7067–76.  https://doi.org/10.1128/AAC.00309-16.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Page MGP. Beta-lactam antibiotics. In: Dougherty TJ, Pucci MJ, editors. Antibiotic discovery and development. Boston: Springer US; 2012. p. 79–117.CrossRefGoogle Scholar
  74. 74.
    Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov. 2007;6(1):29–40.  https://doi.org/10.1038/nrd2201.CrossRefPubMedGoogle Scholar
  75. 75.
    Qiu X-Q, Wang H, Lu X-F, Zhang J, Li S-F, Cheng G, et al. An engineered multidomain bactericidal peptide as a model for targeted antibiotics against specific bacteria. Nat Biotechnol. 2003;21(12):1480–5.  https://doi.org/10.1038/nbt913.CrossRefPubMedGoogle Scholar
  76. 76.
    Que YA, Lazar H, Wolff M, François B, Laterre PF, Mercier E, et al. Assessment of panobacumab as adjunctive immunotherapy for the treatment of nosocomial Pseudomonas aeruginosa pneumonia. Eur J Clin Microbiol Infect Dis. 2014;33(10):1861–7.  https://doi.org/10.1007/s10096-014-2156-1.CrossRefPubMedGoogle Scholar
  77. 77.
    Ramachandran G, Kaempfer R, Chung C-S, Shirvan A, Chahin AB, Palardy JE, et al. Cd28 homodimer interface mimetic peptide acts as a preventive and therapeutic agent in models of severe bacterial sepsis and Gram-negative bacterial peritonitis. J Infect Dis. 2015;211(6):995–1003.  https://doi.org/10.1093/infdis/jiu556.CrossRefPubMedGoogle Scholar
  78. 78.
    Rothstein DM. Rifamycins, alone and in combination. Cold Spring Harb Perspect Med. 2016;6(7).  https://doi.org/10.1101/cshperspect.a027011.CrossRefGoogle Scholar
  79. 79.
    Ruiz N, Kahne D, Silhavy TJ. Advances in understanding bacterial outer-membrane biogenesis. Nat Rev Microbiol. 2006;4(1):57–66.  https://doi.org/10.1038/nrmicro1322.CrossRefPubMedGoogle Scholar
  80. 80.
    Ruiz N, Kahne D, Silhavy TJ. Transport of lipopolysaccharide across the cell envelope: the long road of discovery. Nat Rev Microbiol. 2009;7(9):677–83.  https://doi.org/10.1038/nrmicro2184.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Schneider T, Sahl H-G. An oldie but a goodie – cell wall biosynthesis as antibiotic target pathway. Int J Med Microbiol. 2010;300(2–3):161–9.  https://doi.org/10.1016/j.ijmm.2009.10.005.CrossRefPubMedGoogle Scholar
  82. 82.
    Schuch R, Khan BK, Raz A, Rotolo JA, Wittekind M. Bacteriophage lysin CF-301: a potent anti-staphylococcal biofilm agent. Antimicrob Agents Chemother. 2017.  https://doi.org/10.1128/AAC.02666-16.
  83. 83.
    Scott RW, Tew GN. Mimics of host defense proteins; strategies for translation to therapeutic applications. Curr Top Med Chem. 2017;17(5):576–89.CrossRefGoogle Scholar
  84. 84.
    Seiple IB, Zhang Z, Jakubec P, Langlois-Mercier A, Wright PM, Hog DT, et al. A platform for the discovery of new macrolide antibiotics. Nature. 2016;533(7603):338–45.  https://doi.org/10.1038/nature17967.CrossRefGoogle Scholar
  85. 85.
    Shan Y, Gandt AB, Rowe SE, Deisinger JP, Conlon BP, Lewis K. ATP-dependent persister formation in Escherichia coli. MBio. 2017;8(1):e02267–16.  https://doi.org/10.1128/mBio.02267-16.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Sharma P, Wang N, Kranz DM. Soluble T cell receptor Vβ domains engineered for high-affinity binding to staphylococcal or streptococcal superantigens. Toxins (Basel). 2014;6(2):556–74.  https://doi.org/10.3390/toxins6020556.CrossRefGoogle Scholar
  87. 87.
    Silver LL. Multi-targeting by monotherapeutic antibacterials. Nat Rev Drug Discov. 2007;6(1):41–55.  https://doi.org/10.1038/nrd2202.CrossRefPubMedGoogle Scholar
  88. 88.
    Silver LL. Challenges of antibacterial discovery. Clin Microbiol Rev. 2011;24(1):71–109.  https://doi.org/10.1128/CMR.00030-10.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Silver LL. A Gestalt approach to Gram-negative entry. Bioorg Med Chem. 2016.  https://doi.org/10.1016/j.bmc.2016.06.044.CrossRefGoogle Scholar
  90. 90.
    Singh SB, Young K, Miesel L. Screening strategies for discovery of antibacterial natural products. Expert Rev Anti-Infect Ther. 2011;9(8):589–613.  https://doi.org/10.1586/eri.11.81.CrossRefPubMedGoogle Scholar
  91. 91.
    Sjuts H, Vargiu AV, Kwasny SM, Nguyen ST, Kim H-S, Ding X, et al. Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives. Proc Natl Acad Sci U S A. 2016;113(13):3509–14.  https://doi.org/10.1073/pnas.1602472113.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Sköld O. Sulfonamides and trimethoprim. Expert Rev Anti-Infect Ther. 2010;8(1):1–6.  https://doi.org/10.1586/eri.09.117.CrossRefPubMedGoogle Scholar
  93. 93.
    Srinivas N, Jetter P, Ueberbacher BJ, Werneburg M, Zerbe K, Steinmann J, et al. Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science. 2010;327(5968):1010–3.  https://doi.org/10.1126/science.1182749.CrossRefPubMedGoogle Scholar
  94. 94.
    Starkey M, Lepine F, Maura D, Bandyopadhaya A, Lesic B, He J, et al. Identification of anti-virulence compounds that disrupt quorum-sensing regulated acute and persistent pathogenicity. PLoS Pathog. 2014;10(8).  https://doi.org/10.1371/journal.ppat.1004321.CrossRefGoogle Scholar
  95. 95.
    Suckling CJ. The antibacterial drug MGB-BP3 : from discovery to clinical trial. Chem Biol Interface. 2015;5(3):166–74.Google Scholar
  96. 96.
    Takatsuka Y, Chen C, Nikaido H. Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli. Proc Natl Acad Sci U S A. 2010;107(15):6559–65.  https://doi.org/10.1073/pnas.1001460107.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Tari LW, Li X, Trzoss M, Bensen DC, Chen Z, Lam T, et al. Tricyclic GyrB/ParE (TriBE) inhibitors: a new class of broad-spectrum dual-targeting antibacterial agents. PLoS One. 2013;8(12):e84409.  https://doi.org/10.1371/journal.pone.0084409.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Therien AG, Huber JL, Wilson KE, Beaulieu P, Caron A, Claveau D, et al. Broadening the spectrum of β-lactam antibiotics through inhibition of signal peptidase type I. Antimicrob Agents Chemother. 2012;56(9):4662–70.  https://doi.org/10.1128/AAC.00726-12.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Tommasi R, Brown DG, Walkup GK, Manchester JI, Miller AA. ESKAPEing the labyrinth of antibacterial discovery. Nat Rev Drug Discov. 2015;14(8):529–42.  https://doi.org/10.1038/nrd4572.CrossRefPubMedGoogle Scholar
  100. 100.
    Utaida S, Dunman PM, Macapagal D, Murphy E, Projan SJ, Singh VK, et al. Genome-wide transcriptional profiling of the response of Staphylococcus aureus to cell-wall-active antibiotics reveals a cell-wall-stress stimulon. Microbiology. 2003;149(Pt 10):2719–32.  https://doi.org/10.1099/mic.0.26426-0.CrossRefPubMedGoogle Scholar
  101. 101.
    Vaara M, Siikanen O, Apajalahti J, Fox J, Frimodt-Møller N, He H, et al. A novel polymyxin derivative that lacks the fatty acid tail and carries only three positive charges has strong synergism with agents excluded by the intact outer membrane. Antimicrob Agents Chemother. 2010;54(8):3341–6.  https://doi.org/10.1128/AAC.01439-09.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    van Miert AS. The sulfonamide-diaminopyrimidine story. J Vet Pharmacol Ther. 1994;17(4):309–16.CrossRefGoogle Scholar
  103. 103.
    Wang DY, Abboud MI, Markoulides MS, Brem J, Schofield CJ. The road to avibactam: the first clinically useful non-β-lactam working somewhat like a β-lactam. Future Med Chem. 2016;8(10):1063–84.  https://doi.org/10.4155/fmc-2016-0078.CrossRefPubMedGoogle Scholar
  104. 104.
    Wang H, Mann PA, Xiao L, Gill C, Galgoci AM, Howe JA, et al. Dual-targeting small-molecule inhibitors of the Staphylococcus aureus FMN riboswitch disrupt riboflavin homeostasis in an infectious setting. Cell Chem Biol. 2017;24(5):576–88.e6.  https://doi.org/10.1016/j.chembiol.2017.03.014.CrossRefPubMedGoogle Scholar
  105. 105.
    Wei J-R, Krishnamoorthy V, Murphy K, Kim J-H, Schnappinger D, Alber T, et al. Depletion of antibiotic targets has widely varying effects on growth. Proc Natl Acad Sci. 2011;108(10):4176–81.  https://doi.org/10.1073/pnas.1018301108.CrossRefPubMedGoogle Scholar
  106. 106.
    Wright PM, Seiple IB, Myers AG. The evolving role of chemical synthesis in antibacterial drug discovery. Angew Chem Int Ed Engl. 2014;53(34):8840–69.  https://doi.org/10.1002/anie.201310843.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Xu W, Wang W, Wang X. Gold-catalyzed cyclization leads to a bridged tetracyclic indolenine that represses β-lactam resistance. Angew Chem Int Ed. 2015;54(33):9546–9.  https://doi.org/10.1002/anie.201503736.CrossRefGoogle Scholar
  108. 108.
    Yao J, Rock CO. Bacterial fatty acid metabolism in modern antibiotic discovery. Biochim Biophys Acta. 2016.  https://doi.org/10.1016/j.bbalip.2016.09.014.CrossRefGoogle Scholar
  109. 109.
    Young K, Silver LL, Bramhill D, Cameron P, Eveland SS, Raetz CR, et al. The envA permeability/cell division gene of Escherichia coli encodes the second enzyme of lipid A biosynthesis. UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine deacetylase. J Biol Chem. 1995;270(51):30384–91.CrossRefGoogle Scholar
  110. 110.
    Yuan Z, White RJ. The evolution of peptide deformylase as a target: contribution of biochemistry, genetics and genomics. Biochem Pharmacol. 2006;71(7):1042–7.  https://doi.org/10.1016/j.bcp.2005.10.015.CrossRefPubMedGoogle Scholar
  111. 111.
    Zhou J, Bhattacharjee A, Chen S, Chen Y, Duffy E, Farmer J, et al. Design at the atomic level: generation of novel hybrid biaryloxazolidinones as promising new antibiotics. Bioorg Med Chem Lett. 2008;18(23):6179–83.  https://doi.org/10.1016/j.bmcl.2008.10.014.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alice L. Erwin
    • 1
  1. 1.Erwin ConsultingSeattleUSA

Personalised recommendations