Advertisement

Bacterial Signal Transduction Systems in Antimicrobial Resistance

  • Andrew T. Ulijasz
  • Sarah C. Feid
  • David G. Glanville
Chapter
Part of the Emerging Infectious Diseases of the 21st Century book series (EIDC)

Abstract

The ability to detect and respond in a timely fashion to environmental threats can determine whether a bacterial pathogen lives or dies. This detection and response to both host and bacterial-derived adversities is facilitated through microbial sensory and information relays commonly referred to as signal transduction systems. Signaling systems have been implicated in conferring resistance and/or tolerance to many antibiotics, especially to classes that target the cell envelope. The importance of these detection systems is evident from the nature of mutations observed within bacterial resistance-associated signaling genes detected within clinical isolates collected following antibiotic treatment. Although these bacterial signaling systems developed long before the clinical application of antimicrobials, in some cases they have evolved an expanded sensory role that now includes antimicrobials. Of particular interest is the ability of bacterial signaling systems to confer reversible resistance phenotypes, an act that saves precious cellular energy because they respond to host assaults only when the threat is present. This coordinated responsiveness then allows the pathogen to concentrate on other energy-requiring activities, such as acquiring nutrients and expressing virulence determinants. Given the importance of signaling systems in infection and resistance, some of these systems could potentially serve as novel antimicrobial targets.

References

  1. 1.
    Swartz TE, Tseng TS, Frederickson MA, Paris G, Comerci DJ, Rajashekara G, et al. Blue-light-activated histidine kinases: two-component sensors in bacteria. Science. 2007;317(5841):1090–3.PubMedCrossRefGoogle Scholar
  2. 2.
    Kobir A, Shi L, Boskovic A, Grangeasse C, Franjevic D, Mijakovic I. Protein phosphorylation in bacterial signal transduction. Biochim Biophys Acta. 2011;1810(10):989–94.PubMedCrossRefGoogle Scholar
  3. 3.
    Hu LI, Lima BP, Wolfe AJ. Bacterial protein acetylation: the dawning of a new age. Mol Microbiol. 2010;77(1):15–21.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Antelmann H, Helmann JD. Thiol-based redox switches and gene regulation. Antioxid Redox Signal. 2011;14(6):1049–63.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Hoch JA, Silhavy TJ, editors. Two-component signal transduction. Washington, D.C.: American Society for Microbiology; 1995.Google Scholar
  6. 6.
    Wright DP, Ulijasz AT. Regulation of transcription by eukaryotic-like serine-threonine kinases and phosphatases in gram-positive bacterial pathogens. Virulence. 2014;5:863–85.PubMedCrossRefGoogle Scholar
  7. 7.
    Burnside K, Rajagopal L. Regulation of prokaryotic gene expression by eukaryotic-like enzymes. Curr Opin Microbiol. 2012;15(2):125–31.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Howden BP, Davies JK, Johnson PD, Stinear TP, Grayson ML. Reduced vancomycin susceptibility in Staphylococcus aureus, including vancomycin-intermediate and heterogeneous vancomycin-intermediate strains: resistance mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev. 2010;23(1):99–139.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    D'Costa VM, King CE, Kalan L, Morar M, Sung WW, Schwarz C, et al. Antibiotic resistance is ancient. Nature. 2011;477(7365):457–61.PubMedCrossRefGoogle Scholar
  10. 10.
    CDC. Antibiotic resistance threats in the United States. US Department of Health and Human Services; 2013.Google Scholar
  11. 11.
    Ulrich LE, Koonin EV, Zhulin IB. One-component systems dominate signal transduction in prokaryotes. Trends Microbiol. 2005;13(2):52–6.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Maule AF, Wright DP, Weiner JJ, Han L, Peterson FC, Volkman BF, et al. The aspartate-less receiver (ALR) domains: distribution, structure and function. PLoS Pathog. 2015;11(4):e1004795.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Grangeasse C, Cozzone AJ, Deutscher J, Mijakovic I. Tyrosine phosphorylation: an emerging regulatory device of bacterial physiology. Trends Biochem Sci. 2007;32(2):86–94.PubMedCrossRefGoogle Scholar
  14. 14.
    Grangeasse C, Nessler S, Mijakovic I. Bacterial tyrosine kinases: evolution, biological function and structural insights. Philos Trans R Soc Lond Ser B Biol Sci. 2012;367(1602):2640–55.CrossRefGoogle Scholar
  15. 15.
    Pereira SF, Goss L, Dworkin J. Eukaryote-like serine/threonine kinases and phosphatases in bacteria. Microbiol Mol Biol Rev. 2011;75(1):192–212.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Libby EA, Goss LA, Dworkin J. The eukaryotic-like Ser/Thr kinase PrkC regulates the essential WalRK two-component system in Bacillus subtilis. PLoS Genet. 2015;11(6):e1005275.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Conlon BP, Rowe SE, Lewis K. Persister cells in biofilm associated infections. Adv Exp Med Biol. 2015;831:1–9.PubMedCrossRefGoogle Scholar
  18. 18.
    Levine DP. Vancomycin: a history. Clin Infect Dis. 2006;42(Suppl 1):S5–12.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Courvalin P. Vancomycin resistance in gram-positive cocci. Clin Infect Dis. 2006;42(Suppl 1):S25–34.PubMedCrossRefGoogle Scholar
  20. 20.
    Holman TR, Wu Z, Wanner BL, Walsh CT. Identification of the DNA-binding site for the phosphorylated VanR protein required for vancomycin resistance in Enterococcus faecium. Biochemistry. 1994;33(15):4625–31.PubMedCrossRefGoogle Scholar
  21. 21.
    Koteva K, Hong HJ, Wang XD, Nazi I, Hughes D, Naldrett MJ, et al. A vancomycin photoprobe identifies the histidine kinase VanSsc as a vancomycin receptor. Nat Chem Biol. 2010;6(5):327–9.PubMedCrossRefGoogle Scholar
  22. 22.
    Hughes CS, Longo E, Phillips-Jones MK, Hussain R. Characterisation of the selective binding of antibiotics vancomycin and teicoplanin by the VanS receptor regulating type A vancomycin resistance in the enterococci. Biochim Biophys Acta. 2017;1861(8):1951–9.CrossRefGoogle Scholar
  23. 23.
    Hu Q, Peng H, Rao X. Molecular events for promotion of vancomycin resistance in vancomycin intermediate Staphylococcus aureus. Front Microbiol. 2016;7:1601.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Cui L, Neoh HM, Shoji M, Hiramatsu K. Contribution of vraSR and graSR point mutations to vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother. 2009;53(3):1231–4.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Falord M, Karimova G, Hiron A, Msadek T. GraXSR proteins interact with the VraFG ABC transporter to form a five-component system required for cationic antimicrobial peptide sensing and resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 2012;56(2):1047–58.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Dubrac S, Bisicchia P, Devine KM, Msadek T. A matter of life and death: cell wall homeostasis and the WalKR (YycGF) essential signal transduction pathway. Mol Microbiol. 2008;70(6):1307–22.PubMedCrossRefGoogle Scholar
  27. 27.
    Fridman M, Williams GD, Muzamal U, Hunter H, Siu KW, Golemi-Kotra D. Two unique phosphorylation-driven signaling pathways crosstalk in Staphylococcus aureus to modulate the cell-wall charge: Stk1/Stp1 meets GraSR. Biochemistry. 2013;52(45):7975–86.PubMedCrossRefGoogle Scholar
  28. 28.
    Sun F, Ding Y, Ji Q, Liang Z, Deng X, Wong CC, et al. Protein cysteine phosphorylation of SarA/MgrA family transcriptional regulators mediates bacterial virulence and antibiotic resistance. Proc Natl Acad Sci U S A. 2012;109(38):15461–6.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Beltramini AM, Mukhopadhyay CD, Pancholi V. Modulation of cell wall structure and antimicrobial susceptibility by a Staphylococcus aureus eukaryote-like serine/threonine kinase and phosphatase. Infect Immun. 2009;77(4):1406–16.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kadioglu A, Weiser JN, Paton JC, Andrew PW. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol. 2008;6(4):288–301.CrossRefPubMedGoogle Scholar
  31. 31.
    Ulijasz AT, Andes DR, Glasner JD, Weisblum B. Regulation of iron transport in Streptococcus pneumoniae by RitR, an orphan response regulator. J Bacteriol. 2004;186(23):8123–36.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Novak R, Charpentier E, Braun JS, Tuomanen E. Signal transduction by a death signal peptide: uncovering the mechanism of bacterial killing by penicillin. Mol Cell. 2000;5(1):49–57.PubMedCrossRefGoogle Scholar
  33. 33.
    Haas W, Sublett J, Kaushal D, Tuomanen EI. Revising the role of the pneumococcal vex-vncRS locus in vancomycin tolerance. J Bacteriol. 2004;186(24):8463–71.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Robertson GT, Zhao J, Desai BV, Coleman WH, Nicas TI, Gilmour R, et al. Vancomycin tolerance induced by erythromycin but not by loss of vncRS, vex3, or pep27 function in Streptococcus pneumoniae. J Bacteriol. 2002;184(24):6987–7000.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hakenbeck R, Grebe T, Zahner D, Stock JB. beta-lactam resistance in Streptococcus pneumoniae: penicillin-binding proteins and non-penicillin-binding proteins. Mol Microbiol. 1999;33(4):673–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Moscoso M, Domenech M, Garcia E. Vancomycin tolerance in clinical and laboratory Streptococcus pneumoniae isolates depends on reduced enzyme activity of the major LytA autolysin or cooperation between CiaH histidine kinase and capsular polysaccharide. Mol Microbiol. 2010;77(4):1052–64.PubMedGoogle Scholar
  37. 37.
    Liu X, Li JW, Feng Z, Luo Y, Veening JW, Zhang JR. Transcriptional repressor PtvR regulates phenotypic tolerance to vancomycin in Streptococcus pneumoniae. J Bacteriol. 2017;199(14):e00054–17.Google Scholar
  38. 38.
    Fleming A. Classics in infectious diseases: on the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae by Alexander Fleming, Reprinted from the British Journal of Experimental Pathology 10:226-236, 1929. Rev Infect Dis. 1980;2(1):129–39.PubMedCrossRefGoogle Scholar
  39. 39.
    Muller M, Marx P, Hakenbeck R, Bruckner R. Effect of new alleles of the histidine kinase gene ciaH on the activity of the response regulator CiaR in Streptococcus pneumoniae R6. Microbiology. 2011;157(Pt 11):3104–12.PubMedCrossRefGoogle Scholar
  40. 40.
    Chewapreecha C, Marttinen P, Croucher NJ, Salter SJ, Harris SR, Mather AE, et al. Comprehensive identification of single nucleotide polymorphisms associated with beta-lactam resistance within pneumococcal mosaic genes. PLoS Genet. 2014;10(8):e1004547.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Peacock SJ, Paterson GK. Mechanisms of methicillin resistance in Staphylococcus aureus. Annu Rev Biochem. 2015;84:577–601.PubMedCrossRefGoogle Scholar
  42. 42.
    Lim D, Strynadka NC. Structural basis for the beta lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nat Struct Biol. 2002;9(11):870–6.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Otero LH, Rojas-Altuve A, Llarrull LI, Carrasco-Lopez C, Kumarasiri M, Lastochkin E, et al. How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function. Proc Natl Acad Sci U S A. 2013;110(42):16808–13.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Balish E, Warner T. Enterococcus faecalis induces inflammatory bowel disease in interleukin-10 knockout mice. Am J Pathol. 2002;160(6):2253–7.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Amarnani R, Rapose A. Colon cancer and enterococcus bacteremia co-affection: a dangerous alliance. J Infect Public Health. 2017;10:681.PubMedCrossRefGoogle Scholar
  46. 46.
    Kristich CJ, Wells CL, Dunny GM. A eukaryotic-type Ser/Thr kinase in enterococcus faecalis mediates antimicrobial resistance and intestinal persistence. Proc Natl Acad Sci U S A. 2007;104(9):3508–13.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Squeglia F, Marchetti R, Ruggiero A, Lanzetta R, Marasco D, Dworkin J, et al. Chemical basis of peptidoglycan discrimination by PrkC, a key kinase involved in bacterial resuscitation from dormancy. J Am Chem Soc. 2011;133(51):20676–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Hall CL, Tschannen M, Worthey EA, Kristich CJ. IreB, a Ser/Thr kinase substrate, influences antimicrobial resistance in Enterococcus faecalis. Antimicrob Agents Chemother. 2013;57(12):6179–86.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Comenge Y, Quintiliani R Jr, Li L, Dubost L, Brouard JP, Hugonnet JE, et al. The CroRS two-component regulatory system is required for intrinsic beta-lactam resistance in Enterococcus faecalis. J Bacteriol. 2003;185(24):7184–92.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Kellogg SL, Kristich CJ. Functional dissection of the CroRS two-component system required for resistance to cell wall stressors in enterococcus faecalis. J Bacteriol. 2016;198(8):1326–36.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Jaurin B, Grundstrom T. ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of beta-lactamases of the penicillinase type. Proc Natl Acad Sci U S A. 1981;78(8):4897–901.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Zeng X, Lin J. Beta-lactamase induction and cell wall metabolism in Gram-negative bacteria. Front Microbiol. 2013;4:128.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Zamorano L, Moya B, Juan C, Mulet X, Blazquez J, Oliver A. The Pseudomonas aeruginosa CreBC two-component system plays a major role in the response to beta-lactams, fitness, biofilm growth, and global regulation. Antimicrob Agents Chemother. 2014;58(9):5084–95.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Jeannot K, Bolard A, Plesiat P. Resistance to polymyxins in Gram-negative organisms. Int J Antimicrob Agents. 2017;49(5):526–35.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Tsubery H, Ofek I, Cohen S, Fridkin M. Structure activity relationship study of polymyxin B nonapeptide. Adv Exp Med Biol. 2000;479:219–22.PubMedCrossRefGoogle Scholar
  56. 56.
    Trimble MJ, Mlynarcik P, Kolar M, Hancock RE. Polymyxin: alternative mechanisms of action and resistance. Cold Spring Harb Perspect Med. 2016;6(10):pii: a025288.CrossRefGoogle Scholar
  57. 57.
    Wosten MM, Kox LF, Chamnongpol S, Soncini FC, Groisman EA. A signal transduction system that responds to extracellular iron. Cell. 2000;103(1):113–25.PubMedCrossRefGoogle Scholar
  58. 58.
    Kato A, Latifi T, Groisman EA. Closing the loop: the PmrA/PmrB two-component system negatively controls expression of its posttranscriptional activator PmrD. Proc Natl Acad Sci U S A. 2003;100(8):4706–11.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Bader MW, Sanowar S, Daley ME, Schneider AR, Cho U, Xu W, et al. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell. 2005;122(3):461–72.PubMedCrossRefGoogle Scholar
  60. 60.
    Olaitan AO, Diene SM, Kempf M, Berrazeg M, Bakour S, Gupta SK, et al. Worldwide emergence of colistin resistance in Klebsiella pneumoniae from healthy humans and patients in Lao PDR, Thailand, Israel, Nigeria and France owing to inactivation of the PhoP/PhoQ regulator mgrB: an epidemiological and molecular study. Int J Antimicrob Agents. 2014;44(6):500–7.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Jayol A, Poirel L, Brink A, Villegas MV, Yilmaz M, Nordmann P. Resistance to colistin associated with a single amino acid change in protein PmrB among Klebsiella pneumoniae isolates of worldwide origin. Antimicrob Agents Chemother. 2014;58(8):4762–6.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Gutu AD, Sgambati N, Strasbourger P, Brannon MK, Jacobs MA, Haugen E, et al. Polymyxin resistance of Pseudomonas aeruginosa phoQ mutants is dependent on additional two-component regulatory systems. Antimicrob Agents Chemother. 2013;57(5):2204–15.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Steenbergen JN, Alder J, Thorne GM, Tally FP. Daptomycin: a lipopeptide antibiotic for the treatment of serious Gram-positive infections. J Antimicrob Chemother. 2005;55(3):283–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Jung D, Rozek A, Okon M, Hancock RE. Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin. Chem Biol. 2004;11(7):949–57.PubMedCrossRefGoogle Scholar
  65. 65.
    Muraih JK, Pearson A, Silverman J, Palmer M. Oligomerization of daptomycin on membranes. Biochim Biophys Acta. 2011;1808(4):1154–60.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Silverman JA, Perlmutter NG, Shapiro HM. Correlation of daptomycin bactericidal activity and membrane depolarization in Staphylococcus aureus. Antimicrob Agents Chemother. 2003;47(8):2538–44.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Chen YF, Sun TL, Sun Y, Huang HW. Interaction of daptomycin with lipid bilayers: a lipid extracting effect. Biochemistry. 2014;53(33):5384–92.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Stefani S, Campanile F, Santagati M, Mezzatesta ML, Cafiso V, Pacini G. Insights and clinical perspectives of daptomycin resistance in Staphylococcus aureus: a review of the available evidence. Int J Antimicrob Agents. 2015;46(3):278–89.PubMedCrossRefGoogle Scholar
  69. 69.
    Seaton RA, Menichetti F, Dalekos G, Beiras-Fernandez A, Nacinovich F, Pathan R, et al. Evaluation of effectiveness and safety of high-dose daptomycin: results from patients included in the European Cubicin((R)) outcomes registry and experience. Adv Ther. 2015;32(12):1192–205.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Miller WR, Bayer AS, Arias CA. Mechanism of action and resistance to daptomycin in Staphylococcus aureus and Enterococci. Cold Spring Harb Perspect Med. 2016;6(11):pii: a026997.CrossRefGoogle Scholar
  71. 71.
    Muthaiyan A, Silverman JA, Jayaswal RK, Wilkinson BJ. Transcriptional profiling reveals that daptomycin induces the Staphylococcus aureus cell wall stress stimulon and genes responsive to membrane depolarization. Antimicrob Agents Chemother. 2008;52(3):980–90.PubMedCrossRefGoogle Scholar
  72. 72.
    Mehta S, Cuirolo AX, Plata KB, Riosa S, Silverman JA, Rubio A, et al. VraSR two-component regulatory system contributes to mprF-mediated decreased susceptibility to daptomycin in in vivo-selected clinical strains of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2012;56(1):92–102.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Kuroda M, Kuroda H, Oshima T, Takeuchi F, Mori H, Hiramatsu K. Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Mol Microbiol. 2004;49(3):807–21.CrossRefGoogle Scholar
  74. 74.
    Dubrac S, Msadek T. Identification of genes controlled by the essential YycG/YycF two-component system of Staphylococcus aureus. J Bacteriol. 2004;186(4):1175–81.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Turck M, Bierbaum G. Purification and activity testing of the full-length YycFGHI proteins of Staphylococcus aureus. PLoS One. 2012;7(1):e30403.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Pader V, Hakim S, Painter KL, Wigneshweraraj S, Clarke TB, Edwards AM. Staphylococcus aureus inactivates daptomycin by releasing membrane phospholipids. Nat Microbiol. 2016;2:16194.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Rutherford ST, Bassler BL. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med. 2012;2(11):a012427.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Novick RP, Geisinger E. Quorum sensing in staphylococci. Annu Rev Genet. 2008;42:541–64.CrossRefGoogle Scholar
  79. 79.
    Ledger EVK, Pader V, Edwards AM. Enterococcus faecalis and pathogenic streptococci inactivate daptomycin by releasing phospholipids. Microbiology. 2017;163(10):1502–8.Google Scholar
  80. 80.
    Sastry S, Doi Y. Fosfomycin: resurgence of an old companion. J Infect Chemother. 2016;22(5):273–80.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Kahan FM, Kahan JS, Cassidy PJ, Kropp H. The mechanism of action of fosfomycin (phosphonomycin). Ann N Y Acad Sci. 1974;235(0):364–86.PubMedCrossRefGoogle Scholar
  82. 82.
    Silhavy TJ, Hartig-Beecken I, Boos W. Periplasmic protein related to the sn-glycerol-3-phosphate transport system of Escherichia coli. J Bacteriol. 1976;126(2):951–8.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Kadner RJ, Winkler HH. Isolation and characterization of mutations affecting the transport of hexose phosphates in Escherichia coli. J Bacteriol. 1973;113(2):895–900.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Kurabayashi K, Hirakawa Y, Tanimoto K, Tomita H, Hirakawa H. Role of the CpxAR two-component signal transduction system in control of fosfomycin resistance and carbon substrate uptake. J Bacteriol. 2014;196(2):248–56.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Mahoney TF, Silhavy TJ. The Cpx stress response confers resistance to some, but not all, bactericidal antibiotics. J Bacteriol. 2013;195(9):1869–74.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Huang H, Sun Y, Yuan L, Pan Y, Gao Y, Ma C, et al. Regulation of the two-component regulator CpxR on aminoglycosides and beta-lactams resistance in Salmonella enterica serovar typhimurium. Front Microbiol. 2016;7:604.PubMedPubMedCentralGoogle Scholar
  87. 87.
    Tian ZX, Yi XX, Cho A, O'Gara F, Wang YP. CpxR activates MexAB-OprM efflux pump expression and enhances antibiotic resistance in both laboratory and clinical nalB-type isolates of Pseudomonas aeruginosa. PLoS Pathog. 2016;12(10):e1005932.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Danese PN, Snyder WB, Cosma CL, Davis LJ, Silhavy TJ. The Cpx two-component signal transduction pathway of Escherichia coli regulates transcription of the gene specifying the stress-inducible periplasmic protease, DegP. Genes Dev. 1995;9(4):387–98.PubMedCrossRefGoogle Scholar
  89. 89.
    Raivio TL, Popkin DL, Silhavy TJ. The Cpx envelope stress response is controlled by amplification and feedback inhibition. J Bacteriol. 1999;181(17):5263–72.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Tschauner K, Hornschemeyer P, Muller VS, Hunke S. Dynamic interaction between the CpxA sensor kinase and the periplasmic accessory protein CpxP mediates signal recognition in E. coli. PLoS One. 2014;9(9):e107383.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Raivio TL, Silhavy TJ. Transduction of envelope stress in Escherichia coli by the Cpx two-component system. J Bacteriol. 1997;179(24):7724–33.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Isaac DD, Pinkner JS, Hultgren SJ, Silhavy TJ. The extracytoplasmic adaptor protein CpxP is degraded with substrate by DegP. Proc Natl Acad Sci U S A. 2005;102(49):17775–9.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Kohanski MA, Dwyer DJ, Wierzbowski J, Cottarel G, Collins JJ. Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. Cell. 2008;135(4):679–90.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Zhao X, Hong Y, Drlica K. Moving forward with reactive oxygen species involvement in antimicrobial lethality. J Antimicrob Chemother. 2015;70(3):639–42.PubMedCrossRefGoogle Scholar
  95. 95.
    Takahata S, Ida T, Hiraishi T, Sakakibara S, Maebashi K, Terada S, et al. Molecular mechanisms of fosfomycin resistance in clinical isolates of Escherichia coli. Int J Antimicrob Agents. 2010;35(4):333–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Nilsson AI, Berg OG, Aspevall O, Kahlmeter G, Andersson DI. Biological costs and mechanisms of fosfomycin resistance in Escherichia coli. Antimicrob Agents Chemother. 2003;47(9):2850–8.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Mookherjee N, Hancock RE. Cationic host defence peptides: innate immune regulatory peptides as a novel approach for treating infections. Cell Mol Life Sci. 2007;64(7–8):922–33.PubMedCrossRefGoogle Scholar
  98. 98.
    Mansour SC, Pena OM, Hancock RE. Host defense peptides: front-line immunomodulators. Trends Immunol. 2014;35(9):443–50.PubMedCrossRefGoogle Scholar
  99. 99.
    Bauer ME, Shafer WM. On the in vivo significance of bacterial resistance to antimicrobial peptides. Biochim Biophys Acta. 2015;1848(11 Pt B):3101–11.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Muniz LR, Knosp C, Yeretssian G. Intestinal antimicrobial peptides during homeostasis, infection, and disease. Front Immunol. 2012;3:310.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Richards SM, Strandberg KL, Conroy M, Gunn JS. Cationic antimicrobial peptides serve as activation signals for the Salmonella typhimurium PhoPQ and PmrAB regulons in vitro and in vivo. Front Cell Infect Microbiol. 2012;2:102.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Dalebroux ZD, Miller SI. Salmonellae PhoPQ regulation of the outer membrane to resist innate immunity. Curr Opin Microbiol. 2014;17:106–13.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Needham BD, Trent MS. Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nat Rev Microbiol. 2013;11(7):467–81.PubMedCrossRefGoogle Scholar
  104. 104.
    Ernst RK, Yi EC, Guo L, Lim KB, Burns JL, Hackett M, et al. Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science. 1999;286(5444):1561–5.PubMedCrossRefGoogle Scholar
  105. 105.
    Ernst CM, Staubitz P, Mishra NN, Yang SJ, Hornig G, Kalbacher H, et al. The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion. PLoS Pathog. 2009;5(11):e1000660.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    LaRock CN, Nizet V. Cationic antimicrobial peptide resistance mechanisms of streptococcal pathogens. Biochim Biophys Acta. 2015;1848(11 Pt B):3047–54.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Joo HS, Otto M. Mechanisms of resistance to antimicrobial peptides in staphylococci. Biochim Biophys Acta. 2015;1848(11 Pt B):3055–61.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Peschel A, Jack RW, Otto M, Collins LV, Staubitz P, Nicholson G, et al. Staphylococcus aureus resistance to human defensins and evasion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J Exp Med. 2001;193(9):1067–76.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Graham MR, Smoot LM, Migliaccio CA, Virtaneva K, Sturdevant DE, Porcella SF, et al. Virulence control in group A Streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc Natl Acad Sci U S A. 2002;99(21):13855–60.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Burnside K, Rajagopal L. Aspects of eukaryotic-like signaling in Gram-positive cocci: a focus on virulence. Future Microbiol. 2011;6(7):747–61.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Pensinger DA, Aliota MT, Schaenzer AJ, Boldon KM, Ansari IU, Vincent WJ, et al. Selective pharmacologic inhibition of a PASTA kinase increases Listeria monocytogenes susceptibility to beta-lactam antibiotics. Antimicrob Agents Chemother. 2014;58(8):4486–94.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Klinzing DC, Ishmael N, Dunning Hotopp JC, Tettelin H, Shields KR, Madoff LC, et al. The two-component response regulator LiaR regulates cell wall stress responses, pili expression and virulence in group B Streptococcus. Microbiology. 2013;159(Pt 7):1521–34.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Cotter PD, Guinane CM, Hill C. The LisRK signal transduction system determines the sensitivity of Listeria monocytogenes to nisin and cephalosporins. Antimicrob Agents Chemother. 2002;46(9):2784–90.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Nizet V, Ohtake T, Lauth X, Trowbridge J, Rudisill J, Dorschner RA, et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature. 2001;414(6862):454–7.PubMedCrossRefGoogle Scholar
  115. 115.
    Cheung AL, Bayer AS, Yeaman MR, Xiong YQ, Waring AJ, Memmi G, et al. Site-specific mutation of the sensor kinase GraS in Staphylococcus aureus alters the adaptive response to distinct cationic antimicrobial peptides. Infect Immun. 2014;82(12):5336–45.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Cheung GY, Rigby K, Wang R, Queck SY, Braughton KR, Whitney AR, et al. Staphylococcus epidermidis strategies to avoid killing by human neutrophils. PLoS Pathog. 2010;6(10):e1001133.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Yang SJ, Xiong YQ, Yeaman MR, Bayles KW, Abdelhady W, Bayer AS. Role of the LytSR two-component regulatory system in adaptation to cationic antimicrobial peptides in Staphylococcus aureus. Antimicrob Agents Chemother. 2013;57(8):3875–82.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Valentini M, Filloux A. Biofilms and cyclic di-GMP (c-di-GMP) signaling: lessons from Pseudomonas aeruginosa and other bacteria. J Biol Chem. 2016;291(24):12547–55.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Lebeaux D, Ghigo JM, Beloin C. Biofilm-related infections: bridging the gap between clinical management and fundamental aspects of recalcitrance toward antibiotics. Microbiol Mol Biol Rev. 2014;78(3):510–43.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Mulcahy LR, Isabella VM, Lewis K. Pseudomonas aeruginosa biofilms in disease. Microb Ecol. 2014;68(1):1–12.PubMedCrossRefGoogle Scholar
  121. 121.
    Lewenza S. Extracellular DNA-induced antimicrobial peptide resistance mechanisms in Pseudomonas aeruginosa. Front Microbiol. 2013;4:21.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Kaplan JB. Antibiotic-induced biofilm formation. Int J Artif Organs. 2011;34(9):737–51.PubMedCrossRefGoogle Scholar
  123. 123.
    Liao J, Schurr MJ, Sauer K. The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms. J Bacteriol. 2013;195(15):3352–63.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Chambers JR, Liao J, Schurr MJ, Sauer K. BrlR from Pseudomonas aeruginosa is a c-di-GMP-responsive transcription factor. Mol Microbiol. 2014;92(3):471–87.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Gupta K, Liao J, Petrova OE, Cherny KE, Sauer K. Elevated levels of the second messenger c-di-GMP contribute to antimicrobial resistance of Pseudomonas aeruginosa. Mol Microbiol. 2014;92(3):488–506.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Chambers JR, Sauer K. The MerR-like regulator BrlR impairs Pseudomonas aeruginosa biofilm tolerance to colistin by repressing PhoPQ. J Bacteriol. 2013;195(20):4678–88.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Pezzulo AA, Tang XX, Hoegger MJ, Abou Alaiwa MH, Ramachandran S, Moninger TO, et al. Reduced airway surface pH impairs bacterial killing in the porcine cystic fibrosis lung. Nature. 2012;487(7405):109–13.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Hoffman LR, D'Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI. Aminoglycoside antibiotics induce bacterial biofilm formation. Nature. 2005;436(7054):1171–5.PubMedCrossRefGoogle Scholar
  129. 129.
    Drenkard E, Ausubel FM. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature. 2002;416(6882):740–3.PubMedCrossRefGoogle Scholar
  130. 130.
    Fiedler T, Koller T, Kreikemeyer B. Streptococcus pyogenes biofilms-formation, biology, and clinical relevance. Front Cell Infect Microbiol. 2015;5:15.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Gilley RP, Orihuela CJ. Pneumococci in biofilms are non-invasive: implications on nasopharyngeal colonization. Front Cell Infect Microbiol. 2014;4:163.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Periasamy S, Joo HS, Duong AC, Bach TH, Tan VY, Chatterjee SS, et al. How Staphylococcus aureus biofilms develop their characteristic structure. Proc Natl Acad Sci U S A. 2012;109(4):1281–6.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR. Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol Rev. 2015;39(5):649–69.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Wang R, Khan BA, Cheung GY, Bach TH, Jameson-Lee M, Kong KF, et al. Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. J Clin Invest. 2011;121(1):238–48.PubMedCrossRefGoogle Scholar
  135. 135.
    Schilcher K, Andreoni F, Dengler Haunreiter V, Seidl K, Hasse B, Zinkernagel AS. Modulation of Staphylococcus aureus biofilm matrix by subinhibitory concentrations of clindamycin. Antimicrob Agents Chemother. 2016;60(10):5957–67.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Lewis K. Persister cells. Annu Rev Microbiol. 2010;64:357–72.PubMedCrossRefGoogle Scholar
  137. 137.
    Bigger JW. Treatment of staphyloccal infections with penicillin by intermittent sterilisation. Lancet. 1944;ii:497–500.CrossRefGoogle Scholar
  138. 138.
    Fisher RA, Gollan B, Helaine S. Persistent bacterial infections and persister cells. Nat Rev Microbiol. 2017;15:453.PubMedCrossRefGoogle Scholar
  139. 139.
    Gerdes K, Maisonneuve E. Bacterial persistence and toxin-antitoxin loci. Annu Rev Microbiol. 2012;66:103–23.PubMedCrossRefGoogle Scholar
  140. 140.
    Dorr T, Vulic M, Lewis K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol. 2010;8(2):e1000317.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Germain E, Castro-Roa D, Zenkin N, Gerdes K. Molecular mechanism of bacterial persistence by HipA. Mol Cell. 2013;52(2):248–54.PubMedCrossRefGoogle Scholar
  142. 142.
    Maisonneuve E, Castro-Camargo M, Gerdes K. (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell. 2013;154(5):1140–50.PubMedCrossRefGoogle Scholar
  143. 143.
    Leung V, Ajdic D, Koyanagi S, Levesque CM. The formation of Streptococcus mutans persisters induced by the quorum-sensing peptide pheromone is affected by the LexA regulator. J Bacteriol. 2015;197(6):1083–94.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Helaine S, Cheverton AM, Watson KG, Faure LM, Matthews SA, Holden DW. Internalization of Salmonella by macrophages induces formation of nonreplicating persisters. Science. 2014;343(6167):204–8.PubMedCrossRefGoogle Scholar
  145. 145.
    Cheverton AM, Gollan B, Przydacz M, Wong CT, Mylona A, Hare SA, et al. A Salmonella toxin promotes persister formation through acetylation of tRNA. Mol Cell. 2016;63(1):86–96.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Grandclement C, Tannieres M, Morera S, Dessaux Y, Faure D. Quorum quenching: role in nature and applied developments. FEMS Microbiol Rev. 2016;40(1):86–116.PubMedCrossRefGoogle Scholar
  147. 147.
    O'Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci U S A. 2013;110(44):17981–6.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Worthington RJ, Blackledge MS, Melander C. Small-molecule inhibition of bacterial two-component systems to combat antibiotic resistance and virulence. Future Med Chem. 2013;5(11):1265–84.PubMedCrossRefGoogle Scholar
  149. 149.
    Ling LL, Schneider T, Peoples AJ, Spoering AL, Engels I, Conlon BP, et al. A new antibiotic kills pathogens without detectable resistance. Nature. 2015;517(7535):455–9.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Lewis K. New approaches to antimicrobial discovery. Biochem Pharmacol. 2017;134:87–98.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Andrew T. Ulijasz
    • 1
  • Sarah C. Feid
    • 1
  • David G. Glanville
    • 1
  1. 1.Department of Microbiology and ImmunologyLoyola University ChicagoMaywoodUSA

Personalised recommendations