Advertisement

Staphylococcus aureus Adaptation During Infection

  • Bo Shopsin
  • Richard Copin
Chapter
Part of the Emerging Infectious Diseases of the 21st Century book series (EIDC)

Abstract

Bacteria tune their gene expression, thereby enabling rapid responses to changing environments. When phenotypes produced in response to an environmental stress are inadequate to buffer against that stress, changes that do buffer may become genetically encoded by natural selection. Whole-genome sequencing has opened a new way to investigate the dynamics of genomic adaptation of bacterial pathogens during infection and antimicrobial treatment. This chapter describes how knowledge of adaptive change has advanced our understanding of the mechanisms and principles of antimicrobial resistance and virulence, with special focus on the opportunistic pathogen Staphylococcus aureus. The epidemiological consequences of such adaptations, both within and between hosts, are considered. These changes are often more extreme in opportunistic than in obligate pathogens, suggesting that normally commensal bacteria have evolved to accommodate a high degree of environmental variation through genome plasticity. Also discussed is the possibility that “omics” techniques may be used to predict the progression of bacterial infections and potentially to identiy the best option for achieving clinical cure and for limiting the development of resistance.

Notes

Acknowledgments

We thank Karl Drlica for helpful discussions and critical comments. Our work was supported by NIH grants AI103268 and N272201400019C.

References

  1. 1.
    Dwyer DJ, Belenky PA, Yang JH, et al. Antibiotics induce redox-related physiological alterations as part of their lethality. Proc Natl Acad Sci U S A. 2014;111:E2100–9.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Dwyer DJ, Collins JJ, Walker GC. Unraveling the physiological complexities of antibiotic lethality. Annu Rev Pharmacol Toxicol. 2015;55:313–32.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Zhao X, Drlica K. Reactive oxygen species and the bacterial response to lethal stress. Curr Opin Microbiol. 2014;21:1–6.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Zhao X, Hong Y, Drlica K. Moving forward with reactive oxygen species involvement in antimicrobial lethality. J Antimicrob Chemother. 2015;70:639–42.PubMedCrossRefGoogle Scholar
  5. 5.
    Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998;339:520–32.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Smith TL, Pearson ML, Wilcox KR, et al. Emergence of vancomycin resistance in Staphylococcus aureus. Glycopeptide-intermediate Staphylococcus aureus working group. N Engl J Med. 1999;340:493–501.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    From the Centers for Disease Control. Staphylococcus aureus resistant to vancomycin–United States, 2002. JAMA. 2002;288:824–5.CrossRefGoogle Scholar
  8. 8.
    From the Centers for Disease Control and Prevention. Vancomycin resistant Staphylococcus aureus–Pennsylvania, 2002. JAMA. 2002;288:2116.Google Scholar
  9. 9.
    Novick RP. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol. 2003;48:1429–49.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Cirioni O, Giacometti A, Ghiselli R, et al. Prophylactic efficacy of topical temporin A and RNAIII-inhibiting peptide in a subcutaneous rat Pouch model of graft infection attributable to staphylococci with intermediate resistance to glycopeptides. Circulation. 2003;108:767–71.PubMedCrossRefGoogle Scholar
  11. 11.
    Domenico P, Gurzenda E, Giacometti A, et al. BisEDT and RIP act in synergy to prevent graft infections by resistant staphylococci. Peptides. 2004;25:2047–53.PubMedCrossRefGoogle Scholar
  12. 12.
    Dell'Acqua G, Giacometti A, Cirioni O, et al. Suppression of drug-resistant staphylococcal infections by the quorum-sensing inhibitor RNAIII-inhibiting peptide. J Infect Dis. 2004;190:318–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Cirioni O, Giacometti A, Ghiselli R, et al. RNAIII-inhibiting peptide significantly reduces bacterial load and enhances the effect of antibiotics in the treatment of central venous catheter-associated Staphylococcus aureus infections. J Infect Dis. 2006;193:180–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Wright JS 3rd, Jin R, Novick RP. Transient interference with staphylococcal quorum sensing blocks abscess formation. Proc Natl Acad Sci U S A. 2005;102:1691–6.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Goerke C, Matias y Papenberg S, Dasbach S, et al. Increased frequency of genomic alterations in Staphylococcus aureus during chronic infection is in part due to phage mobilization. J Infect Dis. 2004;189:724–34.PubMedCrossRefGoogle Scholar
  16. 16.
    Painter KL, Krishna A, Wigneshweraraj S, Edwards AM. What role does the quorum-sensing accessory gene regulator system play during Staphylococcus aureus bacteremia? Trends Microbiol. 2014;22:676–85.PubMedCrossRefGoogle Scholar
  17. 17.
    Sakoulas G, Moellering RC Jr, Eliopoulos GM. Adaptation of methicillin-resistant Staphylococcus aureus in the face of vancomycin therapy. Clin Infect Dis. 2006;42(Suppl 1):S40–50.PubMedCrossRefGoogle Scholar
  18. 18.
    Traber KE, Lee E, Benson S, et al. agr function in clinical Staphylococcus aureus isolates. Microbiology. 2008;154:2265–74.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Vuong C, Kocianova S, Yao Y, Carmody AB, Otto M. Increased colonization of indwelling medical devices by quorum-sensing mutants of Staphylococcus epidermidis in vivo. J Infect Dis. 2004;190:1498–505.PubMedCrossRefGoogle Scholar
  20. 20.
    Vuong C, Saenz HL, Gotz F, Otto M. Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus. J Infect Dis. 2000;182:1688–93.PubMedCrossRefGoogle Scholar
  21. 21.
    Mwangi MM, Wu SW, Zhou Y, et al. Tracking the in vivo evolution of multidrug resistance in Staphylococcus aureus by whole-genome sequencing. Proc Natl Acad Sci U S A. 2007;104:9451–6.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Traber K, Novick R. A slipped-mispairing mutation in AgrA of laboratory strains and clinical isolates results in delayed activation of agr and failure to translate delta- and alpha-haemolysins. Mol Microbiol. 2006;59:1519–30.PubMedCrossRefGoogle Scholar
  23. 23.
    Schwan WR, Langhorne MH, Ritchie HD, Stover CK. Loss of hemolysin expression in Staphylococcus aureus agr mutants correlates with selective survival during mixed infections in murine abscesses and wounds. FEMS Immunol Med Microbiol. 2003;38:23–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Fowler VG Jr, Sakoulas G, McIntyre LM, et al. Persistent bacteremia due to methicillin-resistant Staphylococcus aureus infection is associated with agr dysfunction and low-level in vitro resistance to thrombin-induced platelet microbicidal protein. J Infect Dis. 2004;190:1140–9.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Schweizer ML, Furuno JP, Sakoulas G, et al. Increased mortality with accessory gene regulator (agr) dysfunction in Staphylococcus aureus among bacteremic patients. Antimicrob Agents Chemother. 2011;55:1082–7.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Khan BA, Yeh AJ, Cheung GY, Otto M. Investigational therapies targeting quorum-sensing for the treatment of Staphylococcus aureus infections. Expert Opin Investig Drugs. 2015;24:689–704.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Shopsin B, Drlica-Wagner A, Mathema B, Adhikari RP, Kreiswirth BN, Novick RP. Prevalence of agr dysfunction among colonizing Staphylococcus aureus strains. J Infect Dis. 2008;198:1171–4.PubMedCrossRefGoogle Scholar
  28. 28.
    Smyth DS, Kafer JM, Wasserman GA, et al. Nasal carriage as a source of agr-defective Staphylococcus aureus bacteremia. J Infect Dis. 2012;206:1168–77.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Shopsin B, Eaton C, Wasserman GA, et al. Mutations in agr do not persist in natural populations of methicillin-resistant Staphylococcus aureus. J Infect Dis. 2010;202:1593–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Kernbauer E, Maurer K, Torres VJ, Shopsin B, Cadwell K. Gastrointestinal dissemination and transmission of Staphylococcus aureus following bacteremia. Infect Immun. 2015;83:372–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Hunter P. The great leap forward. Major evolutionary jumps might be caused by changes in gene regulation rather than the emergence of new genes. EMBO Rep. 2008;9:608–11.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Wittkopp PJ, Haerum BK, Clark AG. Evolutionary changes in cis and trans gene regulation. Nature. 2004;430:85–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Barrier M, Robichaux RH, Purugganan MD. Accelerated regulatory gene evolution in an adaptive radiation. Proc Natl Acad Sci U S A. 2001;98:10208–13.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Quan S, Ray JC, Kwota Z, et al. Adaptive evolution of the lactose utilization network in experimentally evolved populations of Escherichia coli. PLoS Genet. 2012;8:e1002444.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Saxer G, Krepps MD, Merkley ED, et al. Mutations in global regulators lead to metabolic selection during adaptation to complex environments. PLoS Genet. 2014;10:e1004872.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Spencer CC, Bertrand M, Travisano M, Doebeli M. Adaptive diversification in genes that regulate resource use in Escherichia coli. PLoS Genet. 2007;3:e15.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Carter MQ, Parker CT, Louie JW, Huynh S, Fagerquist CK, Mandrell RE. RcsB contributes to the distinct stress fitness among Escherichia coli O157:H7 curli variants of the 1993 hamburger-associated outbreak strains. Appl Environ Microbiol. 2012;78:7706–19.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Das S, Lindemann C, Young BC, et al. Natural mutations in a Staphylococcus aureus virulence regulator attenuate cytotoxicity but permit bacteremia and abscess formation. Proc Natl Acad Sci U S A. 2016;113:E3101–10.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Kisiela DI, Radey M, Paul S, et al. Inactivation of transcriptional regulators during within-household evolution of Escherichia coli. J Bacteriol. 2017;199:e00036-17.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Smith EE, Buckley DG, Wu Z, et al. Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A. 2006;103:8487–92.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Balasubramanian D, Harper L, Shopsin B, Torres VJ. Staphylococcus aureus pathogenesis in diverse host environments. Pathog Dis. 2017;75(1):ftx005.PubMedCentralCrossRefPubMedGoogle Scholar
  42. 42.
    Novick RP, Geisinger E. Quorum sensing in staphylococci. Annu Rev Genet. 2008;42:541–64.PubMedCrossRefGoogle Scholar
  43. 43.
    D'Argenio DA, Wu M, Hoffman LR, et al. Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol Microbiol. 2007;64:512–33.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Feltner JB, Wolter DJ, Pope CE, et al. LasR variant cystic fibrosis isolates reveal an adaptable quorum-sensing hierarchy in Pseudomonas aeruginosa. MBio. 2016;7:e01513.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Hoffman LR, Kulasekara HD, Emerson J, et al. Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression. J Cyst Fibros. 2009;8:66–70.PubMedCrossRefGoogle Scholar
  46. 46.
    Wilder CN, Allada G, Schuster M. Instantaneous within-patient diversity of Pseudomonas aeruginosa quorum-sensing populations from cystic fibrosis lung infections. Infect Immun. 2009;77:5631–9.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Yarwood JM, Paquette KM, Tikh IB, Volper EM, Greenberg EP. Generation of virulence factor variants in Staphylococcus aureus biofilms. J Bacteriol. 2007;189:7961–7.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Pratten J, Foster SJ, Chan PF, Wilson M, Nair SP. Staphylococcus aureus accessory regulators: expression within biofilms and effect on adhesion. Microbes Infect. 2001;3:633–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Xiong YQ, Bayer AS, Yeaman MR, Van Wamel W, Manna AC, Cheung AL. Impacts of sarA and agr in Staphylococcus aureus strain Newman on fibronectin-binding protein A gene expression and fibronectin adherence capacity in vitro and in experimental infective endocarditis. Infect Immun. 2004;72:1832–6.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Sakoulas G, Eliopoulos GM, Fowler VG Jr, et al. Reduced susceptibility of Staphylococcus aureus to vancomycin and platelet microbicidal protein correlates with defective autolysis and loss of accessory gene regulator (agr) function. Antimicrob Agents Chemother. 2005;49:2687–92.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    DuMont AL, Yoong P, Surewaard BG, et al. Staphylococcus aureus elaborates leukocidin AB to mediate escape from within human neutrophils. Infect Immun. 2013;81:1830–41.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Koziel J, Maciag-Gudowska A, Mikolajczyk T, et al. Phagocytosis of Staphylococcus aureus by macrophages exerts cytoprotective effects manifested by the upregulation of antiapoptotic factors. PLoS One. 2009;4:e5210.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Kubica M, Guzik K, Koziel J, et al. A potential new pathway for Staphylococcus aureus dissemination: the silent survival of S. aureus phagocytosed by human monocyte-derived macrophages. PLoS One. 2008;3:e1409.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Lehar SM, Pillow T, Xu M, et al. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature. 2015;527:323–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Surewaard BG, Deniset JF, Zemp FJ, et al. Identification and treatment of the Staphylococcus aureus reservoir in vivo. J Exp Med. 2016;213:1141–51.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Zeng Z, Surewaard BG, Wong CH, Geoghegan JA, Jenne CN, Kubes P. CRIg functions as a macrophage pattern recognition receptor to directly bind and capture blood-borne gram-positive bacteria. Cell Host Microbe. 2016;20:99–106.PubMedCrossRefGoogle Scholar
  57. 57.
    Fraunholz M, Sinha B. Intracellular Staphylococcus aureus: live-in and let die. Front Cell Infect Microbiol. 2012;2:43.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Soong G, Paulino F, Wachtel S, et al. Methicillin-resistant Staphylococcus aureus adaptation to human keratinocytes. MBio. 2015;6:e00289-15.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Wickersham M, Wachtel S, Wong Fok Lung T, et al. Metabolic stress drives keratinocyte defenses against Staphylococcus aureus infection. Cell Rep. 2017;18:2742–51.PubMedCrossRefGoogle Scholar
  60. 60.
    Tsuji BT, MacLean RD, Dresser LD, McGavin MJ, Simor AE. Impact of accessory gene regulator (agr) dysfunction on vancomycin pharmacodynamics among Canadian community and health-care associated methicillin-resistant Staphylococcus aureus. Ann Clin Microbiol Antimicrob. 2011;10:20.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Butterfield J, Tsuji B, Brown J, et al. Predictors of agr dysfunction in methicillin-resistant Staphylococcus aureus (MRSA) isolates among patients with MRSA bloodstream infections in the “15-20 mg/L” target vancomycin trough era. Antimicrob Agents Chemother. 2011;55:5433.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Paulander W, Nissen Varming A, Baek KT, Haaber J, Frees D, Ingmer H. Antibiotic-mediated selection of quorum-sensing-negative. MBio. 2013;3:e00459–12.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Dai Y, Chang W, Zhao C, et al. VraR binding to the promoter region of agr inhibits its function in vancomycin-intermediate Staphylococcus aureus (VISA) and heterogeneous VISA. Antimicrob Agents Chemother. 2017;61:e02740.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Sakoulas G, Moise PA, Rybak MJ. Accessory gene regulator dysfunction: an advantage for Staphylococcus aureus in health-care settings? J Infect Dis. 2009;199:1558–9.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Mishra NN, Bayer AS, Moise PA, Yeaman MR, Sakoulas G. Reduced susceptibility to host-defense cationic peptides and daptomycin coemerge in methicillin-resistant Staphylococcus aureus from daptomycin-naive bacteremic patients. J Infect Dis. 2012;206:1160–7.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Somerville GA, Beres SB, Fitzgerald JR, et al. In vitro serial passage of Staphylococcus aureus: changes in physiology, virulence factor production, and agr nucleotide sequence. J Bacteriol. 2002;184:1430–7.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Dunman PM, Murphy E, Haney S, et al. Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J Bacteriol. 2001;183:7341–53.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Zorzet A, Andersen JM, Nilsson AI, Moller NF, Andersson DI. Compensatory mutations in agrC partly restore fitness in vitro to peptide deformylase inhibitor-resistant Staphylococcus aureus. J Antimicrob Chemother. 2012;67:1835–42.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Sun F, Liang H, Kong X, et al. Quorum-sensing agr mediates bacterial oxidation response via an intramolecular disulfide redox switch in the response regulator AgrA. Proc Natl Acad Sci U S A. 2012;109:9095–100.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Laabei M, Uhlemann AC, Lowy FD, et al. Evolutionary trade-offs underlie the multi-faceted virulence of Staphylococcus aureus. PLoS Biol. 2015;13:e1002229.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    McNamara PJ, Milligan-Monroe KC, Khalili S, Proctor RA. Identification, cloning, and initial characterization of rot, a locus encoding a regulator of virulence factor expression in Staphylococcus aureus. J Bacteriol. 2000;182:3197–203.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Kumar K, Chen J, Drlica K, Shopsin B. Tuning of the lethal response to multiple stressors with a single-site mutation during clinical infection by Staphylococcus aureus. MBio. 2017;8:e01476.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Liu Y, Liu X, Qu Y, Wang X, Li L, Zhao X. Inhibitors of reactive oxygen species accumulation delay and/or reduce the lethality of several antistaphylococcal agents. Antimicrob Agents Chemother. 2012;56:6048–50.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Pader V, Hakim S, Painter KL, Wigneshweraraj S, Clarke TB, Edwards AM. Staphylococcus aureus inactivates daptomycin by releasing membrane phospholipids. Nat Microbiol. 2016;2:16194.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Queck SY, Jameson-Lee M, Villaruz AE, et al. RNAIII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus. Mol Cell. 2008;32:150–8.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Keller L, Surette MG. Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol. 2006;4:249–58.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Sandoz KM, Mitzimberg SM, Schuster M. Social cheating in Pseudomonas aeruginosa quorum sensing. Proc Natl Acad Sci U S A. 2007;104:15876–81.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Booth MC, Cheung AL, Hatter KL, Jett BD, Callegan MC, Gilmore MS. Staphylococcal accessory regulator (sar) in conjunction with agr contributes to Staphylococcus aureus virulence in endophthalmitis. Infect Immun. 1997;65:1550–6.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Gillaspy AF, Hickmon SG, Skinner RA, Thomas JR, Nelson CL, Smeltzer MS. Role of the accessory gene regulator (agr) in pathogenesis of staphylococcal osteomyelitis. Infect Immun. 1995;63:3373–80.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Plata KB, Rosato RR, Rosato AE. Fate of mutation rate depends on agr locus expression during oxacillin-mediated heterogeneous-homogeneous selection in methicillin-resistant Staphylococcus aureus clinical strains. Antimicrob Agents Chemother. 2011;55:3176–86.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Malik M, Hoatam G, Chavda K, Kerns RJ, Drlica K. Novel approach for comparing the abilities of quinolones to restrict the emergence of resistant mutants during quinolone exposure. Antimicrob Agents Chemother. 2010;54:149–56.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Gusarov I, Shatalin K, Starodubtseva M, Nudler E. Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science. 2009;325:1380–4.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Liu Y, Zhou J, Qu Y, et al. Resveratrol antagonizes antimicrobial lethality and stimulates recovery of bacterial mutants. PLoS One. 2016;11:e0153023.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Shatalin K, Shatalina E, Mironov A, Nudler E. H2S: a universal defense against antibiotics in bacteria. Science. 2011;334:986–90.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Rose HR, Holzman RS, Altman DR, et al. Cytotoxic virulence predicts mortality in nosocomial pneumonia due to methicillin-resistant Staphylococcus aureus. J Infect Dis. 2015;211:1862–74.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Mendes RE, Deshpande LM, Smyth DS, Shopsin B, Farrell DJ, Jones RN. Characterization of methicillin-resistant Staphylococcus aureus strains recovered from a phase IV clinical trial for linezolid versus vancomycin for treatment of nosocomial pneumonia. J Clin Microbiol. 2012;50:3694–702.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Baines SL, Holt KE, Schultz MB, et al. Convergent adaptation in the dominant global hospital clone ST239 of methicillin-resistant. MBio. 2015;6:e00080.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Cheung GY, Kretschmer D, Duong AC, et al. Production of an attenuated phenol-soluble modulin variant unique to the MRSA clonal complex 30 increases severity of bloodstream infection. PLoS Pathog. 2014;10:e1004298.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Deleo FR, Kennedy AD, Chen L, et al. Molecular differentiation of historic phage-type 80/81 and contemporary epidemic Staphylococcus aureus. Proc Natl Acad Sci U S A. 2011;108:18091–6.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Fowler VG Jr, Nelson CL, McIntyre LM, et al. Potential associations between hematogenous complications and bacterial genotype in Staphylococcus aureus infection. J Infect Dis. 2007;196:738–47.PubMedCrossRefGoogle Scholar
  91. 91.
    Alegre ML, Chen L, David MZ, et al. Impact of Staphylococcus aureus USA300 colonization and skin infections on systemic immune responses in humans. J Immunol. 2016;197(4):1118–26PubMedCrossRefGoogle Scholar
  92. 92.
    Malachowa N, Kobayashi SD, Braughton KR, et al. Staphylococcus aureus leukotoxin GH promotes inflammation. J Infect Dis. 2012;206:1185–93.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Malachowa N, Kobayashi SD, Freedman B, Dorward DW, DeLeo FR. Staphylococcus aureus leukotoxin GH promotes formation of neutrophil extracellular traps. J Immunol. 2013;191:6022–9.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Yoong P, Pier GB. Immune-activating properties of Panton-valentine leukocidin improve the outcome in a model of methicillin-resistant Staphylococcus aureus pneumonia. Infect Immun. 2012;80:2894–904.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Didelot X, Walker AS, Peto TE, Crook DW, Wilson DJ. Within-host evolution of bacterial pathogens. Nat Rev Microbiol. 2016;14:150–62.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Popovich KJ, Weinstein RA, Hota B. Are community-associated methicillin-resistant Staphylococcus aureus (MRSA) strains replacing traditional nosocomial MRSA strains? Clin Infect Dis. 2008;46:787–94.PubMedCrossRefGoogle Scholar
  97. 97.
    Seybold U, Kourbatova EV, Johnson JG, et al. Emergence of community-associated methicillin-resistant Staphylococcus aureus USA300 genotype as a major cause of health care-associated blood stream infections. Clin Infect Dis. 2006;42:647–56.PubMedCrossRefGoogle Scholar
  98. 98.
    Laabei M, Recker M, Rudkin JK, et al. Predicting the virulence of MRSA from its genome sequence. Genome Res. 2014;24:839–49.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Harris SR, Cartwright EJ, Torok ME, et al. Whole-genome sequencing for analysis of an outbreak of meticillin-resistant Staphylococcus aureus: a descriptive study. Lancet Infect Dis. 2013;13:130–6.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Planet PJ, Diaz L, Kolokotronis SO, et al. Parallel epidemics of community-associated methicillin-resistant Staphylococcus aureus USA300 infection in North and South America. J Infect Dis. 2015;212:1874–82.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Tong SY, Holden MT, Nickerson EK, et al. Genome sequencing defines phylogeny and spread of methicillin-resistant Staphylococcus aureus in a high transmission setting. Genome Res. 2015;25:111–8.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Penades JR, Christie GE. The phage-inducible chromosomal islands: a family of highly evolved molecular parasites. Annu Rev Virol. 2015;2:181–201.PubMedCrossRefGoogle Scholar
  103. 103.
    Novick RP, Christie GE, Penades JR. The phage-related chromosomal islands of gram-positive bacteria. Nat Rev Microbiol. 2010;8:541–51.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Malachowa N, DeLeo FR. Mobile genetic elements of Staphylococcus aureus. Cell Mol Life Sci. 2010;67:3057–71.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Copin R, Shopsin B, Torres JV. After de deluge: mining Staphylococcus aureus genomic data for clinical associations and host pathogen interactions. Curr Opin Microbiol. 2018;41C:43–50.CrossRefGoogle Scholar
  106. 106.
    Xia G, Wolz C. Phages of Staphylococcus aureus and their impact on host evolution. Infect Genet Evol. 2014;21:593–601.PubMedCrossRefGoogle Scholar
  107. 107.
    Lindsay JA. Genomic variation and evolution of Staphylococcus aureus. Int J Med Microbiol. 2010;300:98–103.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Haaber J, Leisner JJ, Cohn MT, et al. Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells. Nat Commun. 2016;7:13333.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Nguyen LT, Vogel HJ. Staphylokinase has distinct modes of interaction with antimicrobial peptides, modulating its plasminogen-activation properties. Sci Rep. 2016;6:31817.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Everitt RG, Didelot X, Batty EM, et al. Mobile elements drive recombination hotspots in the core genome of Staphylococcus aureus. Nat Commun. 2014;5:3956.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Gillet Y, Issartel B, Vanhems P, et al. Association between Staphylococcus aureus strains carrying gene for Panton-valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet. 2002;359:753–9.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Goering RV, McDougal LK, Fosheim GE, Bonnstetter KK, Wolter DJ, Tenover FC. Epidemiologic distribution of the arginine catabolic mobile element among selected methicillin-resistant and methicillin-susceptible Staphylococcus aureus isolates. J Clin Microbiol. 2007;45:1981–4.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Diep BA, Gill SR, Chang RF, et al. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet. 2006;367:731–9.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Rolo J, Worning P, Boye Nielsen J, et al. Evidence for the evolutionary steps leading to mecA-mediated beta-lactam resistance in staphylococci. PLoS Genet. 2017;e1006674:13.Google Scholar
  115. 115.
    Salgado-Pabon W, Herrera A, Vu BG, et al. Staphylococcus aureus beta-toxin production is common in strains with the beta-toxin gene inactivated by bacteriophage. J Infect Dis. 2014;210:784–92.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Herrera A, Kulhankova K, Sonkar VK, et al. Staphylococcal beta-toxin modulates human aortic endothelial cell and platelet function through sphingomyelinase and biofilm ligase activities. MBio. 2017;8:e00273.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    van Wamel WJ, Rooijakkers SH, Ruyken M, van Kessel KP, van Strijp JA. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J Bacteriol. 2006;188:1310–5.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Goerke C, Gressinger M, Endler K, et al. High phenotypic diversity in infecting but not in colonizing Staphylococcus aureus populations. Environ Microbiol. 2007;9:3134–42.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Benson MA, Ohneck EA, Ryan C, et al. Evolution of hypervirulence by a MRSA clone through acquisition of a transposable element. Mol Microbiol. 2014;93:664–81.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Altman DR, Sebra R, Hand J, et al. Transmission of methicillin-resistant Staphylococcus aureus via deceased donor liver transplantation confirmed by whole genome sequencing. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2014;14:2640–4.CrossRefGoogle Scholar
  121. 121.
    Beres SB, Richter EW, Nagiec MJ, et al. Molecular genetic anatomy of inter- and intraserotype variation in the human bacterial pathogen group A streptococcus. Proc Natl Acad Sci U S A. 2006;103:7059–64.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Kennedy AD, Otto M, Braughton KR, et al. Epidemic community-associated methicillin-resistant Staphylococcus aureus: recent clonal expansion and diversification. Proc Natl Acad Sci U S A. 2008;105:1327–32.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Sumby P, Whitney AR, Graviss EA, DeLeo FR, Musser JM. Genome-wide analysis of group a streptococci reveals a mutation that modulates global phenotype and disease specificity. PLoS Pathog. 2006;2:e5.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Thomas VC, Kinkead LC, Janssen A, et al. A dysfunctional tricarboxylic acid cycle enhances fitness of Staphylococcus epidermidis during beta-lactam stress. MBio. 2013;4:e00437-13.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Kriegeskorte A, Block D, Drescher M, et al. Inactivation of thyA in Staphylococcus aureus attenuates virulence and has a strong impact on metabolism and virulence gene expression. MBio. 2014;5:e01447-14.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Kriegeskorte A, Grubmuller S, Huber C, et al. Staphylococcus aureus small colony variants show common metabolic features in central metabolism irrespective of the underlying auxotrophism. Front Cell Infect Microbiol. 2014;4:141.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Kriegeskorte A, Konig S, Sander G, et al. Small colony variants of Staphylococcus aureus reveal distinct protein profiles. Proteomics. 2011;11:2476–90.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Allison KR, Brynildsen MP, Collins JJ. Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature. 2011;473:216–20.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Gardner SG, Marshall DD, Daum RS, Powers R, Somerville GA. Metabolic mitigation of Staphylococcus aureus vancomycin intermediate-level susceptibility. Antimicrob Agents Chemother. 2018;62:e01608-17.PubMedCrossRefGoogle Scholar
  130. 130.
    Gutierrez A, Jain S, Bhargava P, Hamblin M, Lobritz MA, Collins JJ. Understanding and sensitizing density-dependent persistence to quinolone antibiotics. Mol Cell. 2017;68:1147–54. e3.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departments of Medicine and MicrobiologyNew York University School of MedicineNew YorkUSA

Personalised recommendations