Advertisement

Transmissible Antibiotic Resistance

  • George A. Jacoby
Chapter
Part of the Emerging Infectious Diseases of the 21st Century book series (EIDC)

Abstract

Bacteria have developed transmissible resistance to almost every antibiotic in clinical use, both synthetic compounds and natural products. The mechanisms are well understood: antibiotic inactivation, target alteration, and drug exclusion. Some mechanisms are antibiotic specific, others class specific, and a few provide resistance to several classes of agents. Resistance genes are ancient and ubiquitous. Sources include antibiotic producers, soil cohabitants that needed protection in order to compete, and housekeeping genes that can be adapted to new uses. Transmission involves conjugative and nonconjugative plasmids, integrons, transposons, insertion sequences, and bacteriophage. Resistance enzymes can be inhibited, and antibiotics can be modified to restore activity, but bacterial enzymes can evolve to lose inhibitor sensitivity, and new mechanisms can be recruited to resist modified drugs. Resistance to available agents is increasing. New antimicrobial agents and fresh ideas are needed to overcome the declining power of our antibacterial weapons.

References

  1. 1.
    Watanabe T. Infective heredity of multiple drug resistance in bacteria. Bacteriol Rev. 1963;27:87–115.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Novick RP, Clowes RC, Cohen SN, Curtiss R 3rd, Datta N, Falkow S. Uniform nomenclature for bacterial plasmids: a proposal. Bacteriol Rev. 1976;40(1):168–89.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Novick RP. Analysis by transduction of mutations affecting penicillinase formation in Staphylococcus aureus. J Gen Microbiol. 1963;33:121–36.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Datta N, Kontomichalou P. Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature. 1965;208(5007):239–41.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Manson JM, Keis S, Smith JM, Cook GM. Acquired bacitracin resistance in Enterococcus faecalis is mediated by an ABC transporter and a novel regulatory protein, BcrR. Antimicrob Agents Chemother. 2004;48(10):3743–8.  https://doi.org/10.1128/AAC.48.10.3743-3748.2004.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mitsuhashi S, Morimura M, Kono K, Oshima H. Elimination of drug resistance of Staphylococcus aureus by treatment with acriflavine. J Bacteriol. 1963;86:162–4.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Breeze AS, Obaseiki-Ebor EE. Transferable nitrofuran resistance conferred by R-plasmids in clinical isolates of Escherichia coli. J Antimicrob Chemother. 1983;12(5):459–67.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Leclercq R, Derlot E, Duval J, Courvalin P. Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med. 1988;319(3):157–61.  https://doi.org/10.1056/NEJM198807213190307.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, Doi Y, Tian G, Dong B, Huang X, Yu LF, Gu D, Ren H, Chen X, Lv L, He D, Zhou H, Liang Z, Liu JH, Shen J. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–8.  https://doi.org/10.1016/S1473-3099(15)00424-7.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Breuil J, Dublanchet A, Truffaut N, Sebald M. Transferable 5-nitroimidazole resistance in the Bacteroides fragilis group. Plasmid. 1989;21(2):151–4.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Fleming MP, Datta N, Gruneberg RN. Trimethoprim resistance determined by R factors. Br Med J. 1972;1(5802):726–8.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Evans RJ, Waterworth PM. Naturally-occurring fusidic acid resistance in staphylococci and its linkage to other resistances. J Clin Pathol. 1966;19(6):555–60.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Benveniste R, Davies J. R-factor mediated gentamicin resistance: a new enzyme which modifies aminoglycoside antibiotics. FEBS Lett. 1971;14(5):293–6.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Chandrasekaran S, Lalithakumari D. Plasmid-mediated rifampicin resistance in Pseudomonas fluorescens. J Med Microbiol. 1998;47(3):197–200.  https://doi.org/10.1099/00222615-47-3-197.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Martínez-Martínez L, Pascual A, Jacoby GA. Quinolone resistance from a transferable plasmid. Lancet. 1998;351(9105):797–9.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Mendoza C, Garcia JM, Llaneza J, Mendez FJ, Hardisson C, Ortiz JM. Plasmid-determined resistance to fosfomycin in Serratia marcescens. Antimicrob Agents Chemother. 1980;18(2):215–9.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Bauernfeind A, Chong Y, Schweighart S. Extended broad spectrum ß-lactamase in Klebsiella pneumoniae including resistance to cephamycins. Infection. 1989;17(5):316–21.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Knothe H, Shah P, Krcmery V, Antal M, Mitsuhashi S. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens. Infection. 1983;11(6):315–7.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Watanabe M, Iyobe S, Inoue M, Mitsuhashi S. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1991;35(1):147–51.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Rahman M, Noble WC, Cookson B. Mupirocin-resistant Staphylococcus aureus. Lancet. 1987;ii:387.CrossRefGoogle Scholar
  21. 21.
    Le Goffic F, Capmau ML, Bonnet D, Cerceau C, Soussy C, Dublanchet A, Duval J. Plasmid-mediated pristinamycin resistance. PAC IIA: a new enzyme which modifies pristinamycin IIA. J Antibiot. 1977;30(8):665–9.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Long KS, Poehlsgaard J, Kehrenberg C, Schwarz S, Vester B. The Cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A antibiotics. Antimicrob Agents Chemother. 2006;50(7):2500–5.  https://doi.org/10.1128/AAC.00131-06.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Xavier BB, Das AJ, Cochrane G, De Ganck S, Kumar-Singh S, Aarestrup FM, Goossens H, Malhotra-Kumar S. Consolidating and exploring antibiotic resistance gene data resources. J Clin Microbiol. 2016;54(4):851–9.  https://doi.org/10.1128/JCM.02717-15.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Armstrong ES, Kostrub CF, Cass RT, Moser HE, Serio AW, Miller GH. Aminoglycosides. In: Dougherty TJ, Pucci MJ, editors. Antibiotic discovery and development, vol. I. 1st ed. New York/Dordrecht/Heidelberg/London: Springer; 2012. p. 229–69.CrossRefGoogle Scholar
  25. 25.
    Shaw KJ, Rather PN, Hare RS, Miller GH. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev. 1993;57(1):138–63.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Ramirez MS, Tolmasky ME. Aminoglycoside modifying enzymes. Drug Resist Updat. 2010;13(6):151–71.  https://doi.org/10.1016/j.drup.2010.08.003.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Krause KM, Serio AW, Kane TR, Connolly LE. Aminoglycosides: an overview. Cold Spring Harb Perspect Med. 2016;6(6).  https://doi.org/10.1101/cshperspect.a027029.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Yokoyama K, Doi Y, Yamane K, Kurokawa H, Shibata N, Shibayama K, Yagi T, Kato H, Arakawa Y. Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa. Lancet. 2003;362(9399):1888–93.  https://doi.org/10.1016/S0140-6736(03)14959-8.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Doi Y, Arakawa Y. 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin Infect Dis. 2007;45(1):88–94.  https://doi.org/10.1086/518605.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Wachino J, Shibayama K, Kurokawa H, Kimura K, Yamane K, Suzuki S, Shibata N, Ike Y, Arakawa Y. Novel plasmid-mediated 16S rRNA m1A1408 methyltransferase, NpmA, found in a clinically isolated Escherichia coli strain resistant to structurally diverse aminoglycosides. Antimicrob Agents Chemother. 2007;51(12):4401–9.  https://doi.org/10.1128/AAC.00926-07. AAC.00926-07 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Gauntlett JC, Gebhard S, Keis S, Manson JM, Pos KM, Cook GM. Molecular analysis of BcrR, a membrane-bound bacitracin sensor and DNA-binding protein from Enterococcus faecalis. J Biol Chem. 2008;283(13):8591–600.  https://doi.org/10.1074/jbc.M709503200.CrossRefPubMedGoogle Scholar
  32. 32.
    Matos R, Pinto VV, Ruivo M, Lopes Mde F. Study on the dissemination of the bcrABDR cluster in Enterococcus spp. reveals that the BcrAB transporter is sufficient to confer high-level bacitracin resistance. Int J Antimicrob Agents. 2009;34(2):142–7.  https://doi.org/10.1016/j.ijantimicag.2009.02.008.CrossRefPubMedGoogle Scholar
  33. 33.
    Ambler RP, Coulson AFW, Frère J-M, Ghuysen J-M, Joris B, Forsman M, Levesque RC, Tiraby G, Waley SG. A standard numbering scheme for the class A ß-lactamases. Biochem J. 1991;276:269–70.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for ß-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39(6):1211–33.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Bush K, Jacoby GA. Updated functional classification of ß-lactamases. Antimicrob Agents Chemother. 2010;54(3):969–76.  https://doi.org/10.1128/AAC.01009-09. AAC.01009-09 [pii]CrossRefPubMedGoogle Scholar
  36. 36.
    Kernodle DS, Stratton CW, McMurray LW, Chipley JR, McGraw PA. Differentiation of ß-lactamase variants of Staphylococcus aureus by substrate hydrolysis profiles. J Infect Dis. 1989;159(1):103–8.PubMedCrossRefGoogle Scholar
  37. 37.
    East AK, Dyke KG. Cloning and sequence determination of six Staphylococcus aureus β-lactamases and their expression in Escherichia coli and Staphylococcus aureus. J Gen Microbiol. 1989;135(4):1001–15.  https://doi.org/10.1099/00221287-135-4-1001.CrossRefPubMedGoogle Scholar
  38. 38.
    Murray BE. β-lactamase-producing enterococci. Antimicrob Agents Chemother. 1992;36(11):2355–9.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    ß-Lactamase classification and amino acid sequences for TEM, SHV and OXA extended-spectrum and inhibitor resistant enzymes http:// www.lahey.org/studies.
  40. 40.
    Lartigue MF, Leflon-Guibout V, Poirel L, Nordmann P, Nicolas-Chanoine MH. Promoters P3, Pa/Pb, P4, and P5 upstream from blaTEM genes and their relationship to ß-lactam resistance. Antimicrob Agents Chemother. 2002;46(12):4035–7.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Philippon A, Arlet G, Jacoby GA. Plasmid-determined AmpC-type ß-lactamases. Antimicrob Agents Chemother. 2002;46(1):1–11.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Jacoby GA. AmpC ß-lactamases. Clin Microbiol Rev. 2009;22(1):161–82.  https://doi.org/10.1128/CMR.00036-08. 22/1/161 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Nordmann P, Poirel L. The difficult-to-control spread of carbapenemase producers in Enterobacteriaceae worldwide. Clin Microbiol Infect. 2014.  https://doi.org/10.1111/1469-0691.12719.PubMedCrossRefGoogle Scholar
  44. 44.
    Bontron S, Nordmann P, Poirel L. Transposition of Tn125 encoding the NDM-1 carbapenemase in Acinetobacter baumannii. Antimicrob Agents Chemother. 2016;60(12):7245–51.  https://doi.org/10.1128/AAC.01755-16.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Poirel L, Naas T, Nordmann P. Diversity, epidemiology, and genetics of class D ß-lactamases. Antimicrob Agents Chemother. 2010;54(1):24–38.  https://doi.org/10.1128/AAC.01512-08. doi:AAC.01512-08 [pii]CrossRefPubMedGoogle Scholar
  46. 46.
    Medeiros AA. Evolution and dissemination of ß-lactamases accelerated by generations of ß-lactam antibiotics. Clin Infect Dis. 1997;24(Suppl 1):S19–45.PubMedCrossRefGoogle Scholar
  47. 47.
    Castanheira M, Mendes RE, Jones RN, Sader HS. Changes in the frequencies of β-lactamase genes among Enterobacteriaceae isolates in U.S. hospitals, 2012 to 2014: activity of ceftazidime-avibactam tested against β-lactamase-producing isolates. Antimicrob Agents Chemother. 2016;60(8):4770–7.  https://doi.org/10.1128/AAC.00540-16.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    D'Andrea MM, Arena F, Pallecchi L, Rossolini GM. CTX-M-type β-lactamases: a successful story of antibiotic resistance. Int J Med Microbiol. 2013;303(6–7):305–17.  https://doi.org/10.1016/j.ijmm.2013.02.008.CrossRefPubMedGoogle Scholar
  49. 49.
    Bevan ER, Jones AM, Hawkey PM. Global epidemiology of CTX-M β-lactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother. 2017:2145–55.  https://doi.org/10.1093/jac/dkx146.PubMedCrossRefGoogle Scholar
  50. 50.
    Schwarz S, Johnson AP. Transferable resistance to colistin: a new but old threat. J Antimicrob Chemother. 2016;71(8):2066–70.  https://doi.org/10.1093/jac/dkw274.CrossRefPubMedGoogle Scholar
  51. 51.
    Snesrud E, Ong AC, Corey B, Kwak YI, Clifford R, Gleeson T, Wood S, Whitman TJ, Lesho EP, Hinkle M, McGann P. Analysis of serial isolates of mcr-1-positive Escherichia coli reveals a highly active ISApl1 transposon. Antimicrob Agents Chemother. 2017;61(5).  https://doi.org/10.1128/AAC.00056-17.
  52. 52.
    Yin W, Li H, Shen Y, Liu Z, Wang S, Shen Z, Zhang R, Walsh TR, Shen J, Wang Y. Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. MBio. 2017;8(3).  https://doi.org/10.1128/mBio.00543-17.
  53. 53.
    Jacoby G, Strahilevitz J, Hooper D. Plasmid-mediated quinolone resistance. In: Tolmasky M, Alonso JA, editors. Plasmids – biology and impact in biotechnology and discovery. Washington, D.C.: ASM Press; 2015.Google Scholar
  54. 54.
    Rodriguez-Martinez JM, Machuca J, Cano ME, Calvo J, Martinez-Martinez L, Pascual A. Plasmid-mediated quinolone resistance: two decades on. Drug Resist Updat. 2016;29:13–29.  https://doi.org/10.1016/j.drup.2016.09.001.CrossRefPubMedGoogle Scholar
  55. 55.
    Tran JH, Jacoby GA. Mechanism of plasmid-mediated quinolone resistance. Proc Natl Acad Sci U S A. 2002;99(8):5638–42.  https://doi.org/10.1073/pnas.082092899.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kim ES, Chen C, Braun M, Kim HY, Okumura R, Wang Y, Jacoby GA, Hooper DC. Interactions between QnrB, QnrB mutants, and DNA gyrase. Antimicrob Agents Chemother. 2015;59(9):5413–9.  https://doi.org/10.1128/AAC.00771-15.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Shah S, Heddle JG. Squaring up to DNA: pentapeptide repeat proteins and DNA mimicry. Appl Microbiol Biotechnol. 2014;98(23):9545–60.  https://doi.org/10.1007/s00253-014-6151-3.CrossRefPubMedGoogle Scholar
  58. 58.
    Jacoby GA, Corcoran MA, Hooper DC. Protective effect of Qnr on agents other than quinolones that target DNA gyrase. Antimicrob Agents Chemother. 2015;59(11):6689–95.  https://doi.org/10.1128/AAC.01292-15.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Zhao X, Xu X, Zhu D, Ye X, Wang M. Decreased quinolone susceptibility in high percentage of Enterobacter cloacae clinical isolates caused only by Qnr determinants. Diagn Microbiol Infect Dis. 2010;67:110–3.  https://doi.org/10.1016/j.diagmicrobio.2009.12.018. S0732-8893(09)00509-4 [pii]CrossRefPubMedGoogle Scholar
  60. 60.
    Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Park CH, Bush K, Hooper DC. Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med. 2006;12(1):83–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Quiroga MP, Orman B, Errecalde L, Kaufman S, Centron D. Characterization of Tn6238 with a new allele of aac(6′)-Ib-cr. Antimicrob Agents Chemother. 2015;59(5):2893–7.  https://doi.org/10.1128/AAC.03213-14.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Ho P, Ng K, Lo W, Law P, Lai EL, Wang Y, Chow K. Plasmid-mediated OqxAB is an important mechanism for nitrofurantoin resistance in Escherichia coli. Antimicrob Agents Chemother. 2016;60(1):537–43.PubMedCrossRefGoogle Scholar
  63. 63.
    Drlica K. The mutant selection window and antimicrobial resistance. J Antimicrob Chemother. 2003;52(1):11–7.CrossRefGoogle Scholar
  64. 64.
    Vinué L, Corcoran MA, Hooper DC, Jacoby GA. Mutations that enhance the ciprofloxacin resistance of Escherichia coli with qnrA1. Antimicrob Agents Chemother. 2016;60(3):1537–45.  https://doi.org/10.1128/AAC.02167-15.CrossRefPubMedCentralPubMedGoogle Scholar
  65. 65.
    Castaneda-Garcia A, Blazquez J, Rodriguez-Rojas A. Molecular mechanisms and clinical impact of acquired and intrinsic fosfomycin resistance. Antibiotics. 2013;2(2):217–36.  https://doi.org/10.3390/antibiotics2020217.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Fu Z, Liu Y, Chen C, Guo Y, Ma Y, Yang Y, Hu F, Xu X, Wang M. Characterization of fosfomycin resistance gene, fosB, in methicillin-resistant Staphylococcus aureus isolates. PLoS One. 2016;11(5):e0154829.  https://doi.org/10.1371/journal.pone.0154829.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Wang Y, Yao H, Deng F, Liu D, Zhang Y, Shen Z. Identification of a novel fosXCC gene conferring fosfomycin resistance in Campylobacter. J Antimicrob Chemother. 2015;70(4):1261–3.  https://doi.org/10.1093/jac/dku488.CrossRefPubMedGoogle Scholar
  68. 68.
    Kitanaka H, Wachino J, Jin W, Yokoyama S, Sasano MA, Hori M, Yamada K, Kimura K, Arakawa Y. Novel integron-mediated fosfomycin resistance gene fosK. Antimicrob Agents Chemother. 2014;58(8):4978–9.  https://doi.org/10.1128/AAC.03131-14.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    O'Neill AJ, McLaws F, Kahlmeter G, Henriksen AS, Chopra I. Genetic basis of resistance to fusidic acid in staphylococci. Antimicrob Agents Chemother. 2007;51(5):1737–40.  https://doi.org/10.1128/AAC.01542-06.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Farrell DJ, Castanheira M, Chopra I. Characterization of global patterns and the genetics of fusidic acid resistance. Clin Infect Dis. 2011;52(Suppl 7):S487–92.  https://doi.org/10.1093/cid/cir164.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Fernandes P. Fusidic acid: a bacterial elongation factor inhibitor for the oral treatment of acute and chronic staphylococcal infections. Cold Spring Harb Perspect Med. 2016;6(1):a025437.  https://doi.org/10.1101/cshperspect.a025437.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    O'Neill AJ, Larsen AR, Skov R, Henriksen AS, Chopra I. Characterization of the epidemic European fusidic acid-resistant impetigo clone of Staphylococcus aureus. J Clin Microbiol. 2007;45(5):1505–10.  https://doi.org/10.1128/JCM.01984-06.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Wang JL, Tang HJ, Hsieh PH, Chiu FY, Chen YH, Chang MC, Huang CT, Liu CP, Lau YJ, Hwang KP, Ko WC, Wang CT, Liu CY, Liu CL, Hsueh PR. Fusidic acid for the treatment of bone and joint infections caused by methicillin-resistant Staphylococcus aureus. Int J Antimicrob Agents. 2012;40(2):103–7.  https://doi.org/10.1016/j.ijantimicag.2012.03.010.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Farrell DJ, Mendes RE, Castanheira M, Jones RN. Activity of fusidic acid tested against staphylococci isolated from patients in U.S. medical centers in 2014. Antimicrob Agents Chemother. 2016;60(6):3827–31.  https://doi.org/10.1128/AAC.00238-16.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Bennett AD, Shaw WV. Resistance to fusidic acid in Escherichia coli mediated by the type I variant of chloramphenicol acetyltransferase. A plasmid-encoded mechanism involving antibiotic binding. Biochem J. 1983;215(1):29–38.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Murray IA, Cann PA, Day PJ, Derrick JP, Sutcliffe MJ, Shaw WV, Leslie AG. Steroid recognition by chloramphenicol acetyltransferase: engineering and structural analysis of a high affinity fusidic acid binding site. J Mol Biol. 1995;254(5):993–1005.  https://doi.org/10.1006/jmbi.1995.0671.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Courvalin P. Vancomycin resistance in gram-positive cocci. Clin Infect Dis. 2006;42(Suppl 1):S25–34.  https://doi.org/10.1086/491711.CrossRefPubMedGoogle Scholar
  78. 78.
    Cattoir V, Leclercq R. Twenty-five years of shared life with vancomycin-resistant enterococci: is it time to divorce? J Antimicrob Chemother. 2013;68(4):731–42.  https://doi.org/10.1093/jac/dks469.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Périchon B, Courvalin P. Glycopeptide resistance. In: Dougherty TJ, Pucci MJ, editors. Antibiotic discovery and development, vol. 1. 1st ed. New York/Dordrecht/Heidelberg/London: Springer; 2012. p. 515–42.CrossRefGoogle Scholar
  80. 80.
    Holman TR, Wu Z, Wanner BL, Walsh CT. Identification of the DNA-binding site for the phosphorylated VanR protein required for vancomycin resistance in Enterococcus faecium. Biochemistry. 1994;33(15):4625–31.PubMedCrossRefGoogle Scholar
  81. 81.
    Abadia Patino L, Courvalin P, Perichon B. vanE gene cluster of vancomycin-resistant Enterococcus faecalis BM4405. J Bacteriol. 2002;184(23):6457–64.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Zeng D, Debabov D, Hartsell TL, Cano RJ, Adams S, Schuyler JA, McMillan R, Pace JL. Approved glycopeptide antibacterial drugs: mechanism of action and resistance. Cold Spring Harb Perspect Med. 2016.  https://doi.org/10.1101/cshperspect.a026989.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Schwarz S, Shen J, Kadlec K, Wang Y, Michael GB, Fessler AT, Vester B. Lincosamides, streptogramins, phenicols, and pleuromutilins: mode of action and mechanisms of resistance. Cold Spring Harb Perspect Med. 2016.  https://doi.org/10.1101/cshperspect.a027037.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Morar M, Pengelly K, Koteva K, Wright GD. Mechanism and diversity of the erythromycin esterase family of enzymes. Biochemistry. 2012;51(8):1740–51.  https://doi.org/10.1021/bi201790u.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Korczynska M, Mukhtar TA, Wright GD, Berghuis AM. Structural basis for streptogramin B resistance in Staphylococcus aureus by virginiamycin B lyase. Proc Natl Acad Sci U S A. 2007;104(25):10388–93.  https://doi.org/10.1073/pnas.0701809104.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Bozdogan B, Berrezouga L, Kuo MS, Yurek DA, Farley KA, Stockman BJ, Leclercq R. A new resistance gene, linB, conferring resistance to lincosamides by nucleotidylation in Enterococcus faecium HM1025. Antimicrob Agents Chemother. 1999;43(4):925–9.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Fyfe C, Grossman TH, Kerstein K, Sutcliffe J. Resistance to macrolide antibiotics in public health pathogens. Cold Spring Harb Perspect Med. 2016;6(10).  https://doi.org/10.1101/cshperspect.a025395.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
  89. 89.
    Weisblum B. Insights into erythromycin action from studies of its activity as inducer of resistance. Antimicrob Agents Chemother. 1995;39(4):797–805.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Dzyubak E, Yap MN. The expression of antibiotic resistance methyltransferase correlates with mRNA stability independently of ribosome stalling. Antimicrob Agents Chemother. 2016;60(12):7178–88.  https://doi.org/10.1128/AAC.01806-16.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Siberry GK, Tekle T, Carroll K, Dick J. Failure of clindamycin treatment of methicillin-resistant Staphylococcus aureus expressing inducible clindamycin resistance in vitro. Clin Infect Dis. 2003;37(9):1257–60.  https://doi.org/10.1086/377501.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Boal AK, Grove TL, McLaughlin MI, Yennawar NH, Booker SJ, Rosenzweig AC. Structural basis for methyl transfer by a radical SAM enzyme. Science. 2011;332(6033):1089–92.  https://doi.org/10.1126/science.1205358.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Deshpande LM, Ashcraft DS, Kahn HP, Pankey G, Jones RN, Farrell DJ, Mendes RE. Detection of a new cfr-like gene, cfr(B), in Enterococcus faecium isolates recovered from human specimens in the United States as part of the SENTRY antimicrobial surveillance program. Antimicrob Agents Chemother. 2015;59(10):6256–61.  https://doi.org/10.1128/AAC.01473-15.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Tang Y, Dai L, Sahin O, Wu Z, Liu M, Zhang Q. Emergence of a plasmid-borne multidrug resistance gene cfr(C) in foodborne pathogen Campylobacter. J Antimicrob Chemother. 2017;72(6):1581–8.  https://doi.org/10.1093/jac/dkx023.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Ojo KK, Striplin MJ, Ulep CC, Close NS, Zittle J, Luis H, Bernardo M, Leitao J, Roberts MC. Staphylococcus efflux msr(a) gene characterized in Streptococcus, Enterococcus, Corynebacterium, and Pseudomonas isolates. Antimicrob Agents Chemother. 2006;50(3):1089–91.  https://doi.org/10.1128/AAC.50.3.1089-1091.2006.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Kehrenberg C, Ojo KK, Schwarz S. Nucleotide sequence and organization of the multiresistance plasmid pSCFS1 from Staphylococcus sciuri. J Antimicrob Chemother. 2004;54(5):936–9.  https://doi.org/10.1093/jac/dkh457.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Li XS, Dong WC, Wang XM, Hu GZ, Wang YB, Cai BY, Wu CM, Wang Y, Du XD. Presence and genetic environment of pleuromutilin-lincosamide-streptogramin a resistance gene lsa(E) in enterococci of human and swine origin. J Antimicrob Chemother. 2014;69(5):1424–6.  https://doi.org/10.1093/jac/dkt502.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Wang Y, Lv Y, Cai J, Schwarz S, Cui L, Hu Z, Zhang R, Li J, Zhao Q, He T, Wang D, Wang Z, Shen Y, Li Y, Fessler AT, Wu C, Yu H, Deng X, Xia X, Shen J. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J Antimicrob Chemother. 2015;70(8):2182–90.  https://doi.org/10.1093/jac/dkv116.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Fan R, Li D, Wang Y, He T, Fessler AT, Schwarz S, Wu C. Presence of the optrA gene in methicillin-resistant Staphylococcus sciuri of porcine origin. Antimicrob Agents Chemother. 2016;60(12):7200–5.  https://doi.org/10.1128/AAC.01591-16.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    He T, Shen Y, Schwarz S, Cai J, Lv Y, Li J, Fessler AT, Zhang R, Wu C, Shen J, Wang Y. Genetic environment of the transferable oxazolidinone/phenicol resistance gene optrA in Enterococcus faecalis isolates of human and animal origin. J Antimicrob Chemother. 2016;71(6):1466–73.  https://doi.org/10.1093/jac/dkw016.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Huang J, Chen L, Wu Z, Wang L. Retrospective analysis of genome sequences revealed the wide dissemination of optrA in Gram-positive bacteria. J Antimicrob Chemother. 2017;72(2):614–6.  https://doi.org/10.1093/jac/dkw488.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Gilbart J, Perry CR, Slocombe B. High-level mupirocin resistance in Staphylococcus aureus: evidence for two distinct isoleucyl-tRNA synthetases. Antimicrob Agents Chemother. 1993;37(1):32–8.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Seah C, Alexander DC, Louie L, Simor A, Low DE, Longtin J, Melano RG. MupB, a new high-level mupirocin resistance mechanism in Staphylococcus aureus. Antimicrob Agents Chemother. 2012;56(4):1916–20.  https://doi.org/10.1128/AAC.05325-11.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Antonov NK, Garzon MC, Morel KD, Whittier S, Planet PJ, Lauren CT. High prevalence of mupirocin resistance in Staphylococcus aureus isolates from a pediatric population. Antimicrob Agents Chemother. 2015;59(6):3350–6.  https://doi.org/10.1128/AAC.00079-15.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Trinh S, Reysset G. Detection by PCR of the nim genes encoding 5-nitroimidazole resistance in Bacteroides spp. J Clin Microbiol. 1996;34(9):2078–84.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Husain F, Veeranagouda Y, Hsi J, Meggersee R, Abratt V, Wexler HM. Two multidrug-resistant clinical isolates of Bacteroides fragilis carry a novel metronidazole resistance nim gene (nimJ). Antimicrob Agents Chemother. 2013;57(8):3767–74.  https://doi.org/10.1128/AAC.00386-13.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Carlier JP, Sellier N, Rager MN, Reysset G. Metabolism of a 5-nitroimidazole in susceptible and resistant isogenic strains of Bacteroides fragilis. Antimicrob Agents Chemother. 1997;41(7):1495–9.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Reysset G, Haggoud A, Sebald M. Genetics of resistance of Bacteroides species to 5-nitroimidazole. Clin Infect Dis. 1993;16(Suppl 4):S401–3.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Snydman DR, Jacobus NV, McDermott LA, Ruthazer R, Golan Y, Goldstein EJ, Finegold SM, Harrell LJ, Hecht DW, Jenkins SG, Pierson C, Venezia R, Yu V, Rihs J, Gorbach SL. National survey on the susceptibility of Bacteroides fragilis group: report and analysis of trends in the United States from 1997 to 2004. Antimicrob Agents Chemother. 2007;51(5):1649–55.  https://doi.org/10.1128/AAC.01435-06.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Sahm DF, Deane J, Bien PA, Locke JB, Zuill DE, Shaw KJ, Bartizal KF. Results of the surveillance of tedizolid activity and resistance program: in vitro susceptibility of gram-positive pathogens collected in 2011 and 2012 from the United States and Europe. Diagn Microbiol Infect Dis. 2015;81(2):112–8.  https://doi.org/10.1016/j.diagmicrobio.2014.08.011.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Schwarz S, Kehrenberg C, Doublet B, Cloeckaert A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev. 2004;28(5):519–42.  https://doi.org/10.1016/j.femsre.2004.04.001.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Schwarz S, Werckenthin C, Kehrenberg C. Identification of a plasmid-borne chloramphenicol-florfenicol resistance gene in Staphylococcus sciuri. Antimicrob Agents Chemother. 2000;44(9):2530–3.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Butaye P, Cloeckaert A, Schwarz S. Mobile genes coding for efflux-mediated antimicrobial resistance in Gram-positive and Gram-negative bacteria. Int J Antimicrob Agents. 2003;22(3):205–10.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Hansen LH, Jensen LB, Sorensen HI, Sorensen SJ. Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. J Antimicrob Chemother. 2007;60(1):145–7.PubMedCrossRefGoogle Scholar
  115. 115.
    Tribuddharat C, Fennewald M. Integron-mediated rifampin resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1999;43(4):960–2.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Almeida AC, Cavalcanti FL, Martins WM, Vilela MA, Gales AC, Morais Junior MA, Morais MM. First description of KPC-2-producing Klebsiella oxytoca in Brazil. Antimicrob Agents Chemother. 2013;57(8):4077–8.  https://doi.org/10.1128/AAC.02376-12.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Shen P, Yi M, Fu Y, Ruan Z, Du X, Yu Y, Xie X. Detection of an Escherichia coli ST167 strain with two tandem copies of blaNDM-1 encoded in the chromosome. J Clin Microbiol. 2016.  https://doi.org/10.1128/JCM.01581-16.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Bean DC, Livermore DM, Hall LM. Plasmids imparting sulfonamide resistance in Escherichia coli: implications for persistence. Antimicrob Agents Chemother. 2009;53(3):1088–93.  https://doi.org/10.1128/AAC.00800-08.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Leski TA, Bangura U, Jimmy DH, Ansumana R, Lizewski SE, Stenger DA, Taitt CR, Vora GJ. Multidrug-resistant tet(X)-containing hospital isolates in Sierra Leone. Int J Antimicrob Agents. 2013;42(1):83–6.  https://doi.org/10.1016/j.ijantimicag.2013.04.014.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Connell SR, Tracz DM, Nierhaus KH, Taylor DE. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob Agents Chemother. 2003;47(12):3675–81.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Warburton PJ, Amodeo N, Roberts AP. Mosaic tetracycline resistance genes encoding ribosomal protection proteins. J Antimicrob Chemother. 2016;71(12):3333–9.  https://doi.org/10.1093/jac/dkw304.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Orth P, Schnappinger D, Hillen W, Saenger W, Hinrichs W. Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nat Struct Biol. 2000;7(3):215–9.  https://doi.org/10.1038/73324.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Fiedler S, Bender JK, Klare I, Halbedel S, Grohmann E, Szewzyk U, Werner G. Tigecycline resistance in clinical isolates of Enterococcus faecium is mediated by an upregulation of plasmid-encoded tetracycline determinants tet(L) and tet(M). J Antimicrob Chemother. 2016;71(4):871–81.  https://doi.org/10.1093/jac/dkv420.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Brolund A, Sundqvist M, Kahlmeter G, Grape M. Molecular characterisation of trimethoprim resistance in Escherichia coli and Klebsiella pneumoniae during a two year intervention on trimethoprim use. PLoS One. 2010;5(2):e9233.  https://doi.org/10.1371/journal.pone.0009233.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Huovinen P, Sundstrom L, Swedberg G, Skold O. Trimethoprim and sulfonamide resistance. Antimicrob Agents Chemother. 1995;39(2):279–89.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Toulouse JL, Edens TJ, Alejaldre L, Manges AR, Pelletier JN. Integron-associated DfrB4, a previously uncharacterized member of the trimethoprim-resistant dihydrofolate reductase B family, is a clinically identified emergent source of antibiotic resistance. Antimicrob Agents Chemother. 2017;61(5).  https://doi.org/10.1128/AAC.02665-16.
  127. 127.
    Charpentier E, Courvalin P. Emergence of the trimethoprim resistance gene dfrD in Listeria monocytogenes BM4293. Antimicrob Agents Chemother. 1997;41(5):1134–6.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Nurjadi D, Schafer J, Friedrich-Janicke B, Mueller A, Neumayr A, Calvo-Cano A, Goorhuis A, Molhoek N, Lagler H, Kantele A, Van Genderen PJ, Gascon J, Grobusch MP, Caumes E, Hatz C, Fleck R, Mockenhaupt FP, Zanger P (2015) Predominance of dfrG as determinant of trimethoprim resistance in imported Staphylococcus aureus. Clin Microbiol Infect 2015;21 (12):1095.e5–1095.e9. doi: https://doi.org/10.1016/j.cmi.2015.08.021.CrossRefGoogle Scholar
  129. 129.
    Kadlec K, Fessler AT, Couto N, Pomba CF, Schwarz S. Unusual small plasmids carrying the novel resistance genes dfrK or apmA isolated from methicillin-resistant or -susceptible staphylococci. J Antimicrob Chemother. 2012;67(10):2342–5.  https://doi.org/10.1093/jac/dks235.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Perry J, Waglechner N, Wright G. The prehistory of antibiotic resistance. Cold Spring Harb Perspect Med. 2016;6(6).  https://doi.org/10.1101/cshperspect.a025197.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Benveniste R, Davies J. Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc Natl Acad Sci U S A. 1973;70(8):2276–80.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Cundliffe E. How antibiotic-producing organisms avoid suicide. Annu Rev Microbiol. 1989;43:207–33.  https://doi.org/10.1146/annurev.mi.43.100189.001231.CrossRefPubMedGoogle Scholar
  133. 133.
    Morar M, Wright GD. The genomic enzymology of antibiotic resistance. Annu Rev Genet. 2010;44:25–51.  https://doi.org/10.1146/annurev-genet-102209-163517.CrossRefPubMedGoogle Scholar
  134. 134.
    Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G. The shared antibiotic resistome of soil bacteria and human pathogens. Science. 2012;337(6098):1107–11.  https://doi.org/10.1126/science.1220761.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Nesme J, Cecillon S, Delmont TO, Monier JM, Vogel TM, Simonet P. Large-scale metagenomic-based study of antibiotic resistance in the environment. Curr Biol. 2014;24(10):1096–100.  https://doi.org/10.1016/j.cub.2014.03.036.CrossRefPubMedGoogle Scholar
  136. 136.
    Yoon EJ, Goussard S, Touchon M, Krizova L, Cerqueira G, Murphy C, Lambert T, Grillot-Courvalin C, Nemec A, Courvalin P. Origin in Acinetobacter guillouiae and dissemination of the aminoglycoside-modifying enzyme Aph(3′)-VI. MBio. 2014;5(5):e01972-01914.  https://doi.org/10.1128/mBio.01972-14.CrossRefGoogle Scholar
  137. 137.
    Yoon EJ, Goussard S, Nemec A, Lambert T, Courvalin P, Grillot-Courvalin C. Origin in Acinetobacter gyllenbergii and dissemination of aminoglycoside-modifying enzyme AAC(6′)-Ih. J Antimicrob Chemother. 2016;71(3):601–6.  https://doi.org/10.1093/jac/dkv390.CrossRefPubMedGoogle Scholar
  138. 138.
    Babini GS, Livermore DM. Are SHV ß-lactamases universal in Klebsiella pneumoniae? Antimicrob Agents Chemother. 2000;44(8):2230.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Bonnet R. Growing group of extended-spectrum ß-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother. 2004;48:1–14.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Poirel L, Heritier C, Nordmann P. Chromosome-encoded Ambler class D β-lactamase of Shewanella oneidensis as a progenitor of carbapenem-hydrolyzing oxacillinase. Antimicrob Agents Chemother. 2004;48(1):348–51.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Brown S, Young HK, Amyes SG. Characterisation of OXA-51, a novel class D carbapenemase found in genetically unrelated clinical strains of Acinetobacter baumannii from Argentina. Clin Microbiol Infect. 2005;11(1):15–23.PubMedCrossRefGoogle Scholar
  142. 142.
    Rottman M, Benzerara Y, Hanau-Bercot B, Bizet C, Philippon A, Arlet G. Chromosomal ampC genes in Enterobacter species other than Enterobacter cloacae, and ancestral association of the ACT-1 plasmid-encoded cephalosporinase to Enterobacter asburiae. FEMS Microbiol Lett. 2002;210(1):87–92.PubMedCrossRefGoogle Scholar
  143. 143.
    Bauernfeind A, Stemplinger I, Jungwirth R, Wilhelm R, Chong Y. Comparative characterization of the cephamycinase blaCMY-1 gene and its relationship with other ß-lactamase genes. Antimicrob Agents Chemother. 1996;40(8):1926–30.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Bauernfeind A, Stemplinger I, Jungwirth R, Ernst S, Casellas JM. Sequences of ß-lactamase genes encoding CTX-M-1 (MEN-1) and CTX-M-2 and relationship of their amino acid sequences with those of other ß-lactamases. Antimicrob Agents Chemother. 1996;40:509–13.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Papanicolaou GA, Medeiros AA, Jacoby GA. Antimicrob Agents Chemother. 1990;34:2200–9.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Horii T, Arakawa Y, Ohta M, Ichiyama S, Wacharotayankun R, Kato N. Plasmid-mediated AmpC-type ß-lactamase isolated from Klebsiella pneumoniae confers resistance to broad-spectrum ß-lactams, including moxalactam. Antimicrob Agents Chemother. 1993;37(5):984–90.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Fosse T, Giraud-Morin C, Madinier I, Labia R. Sequence analysis and biochemical characterisation of chromosomal CAV-1 (Aeromonas caviae), the parental cephalosporinase of plasmid-mediated AmpC 'FOX' cluster. FEMS Microbiol Lett. 2003;222(1):93–8.PubMedCrossRefGoogle Scholar
  148. 148.
    Verdet C, Arlet G, Barnaud G, Lagrange PH, Philippon A. A novel integron in Salmonella enterica serovar Enteritidis, carrying the blaDHA-1 gene and its regulator gene ampR, originated from Morganella morganii. Antimicrob Agents Chemother. 2000;44(1):222–5.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Girlich D, Karim A, Spicq C, Nordmann P. Plasmid-mediated cephalosporinase ACC-1 in clinical isolates of Proteus mirabilis and Escherichia coli. Eur J Clin Microbiol Infect Dis. 2000;19:893–5.PubMedCrossRefGoogle Scholar
  150. 150.
    Gudeta DD, Bortolaia V, Jayol A, Poirel L, Nordmann P, Guardabassi L. Chromobacterium spp. harbour Ambler class A β-lactamases showing high identity with KPC. J Antimicrob Chemother. 2016;71(6):1493–6.  https://doi.org/10.1093/jac/dkw020.CrossRefPubMedGoogle Scholar
  151. 151.
    Zheng B, Tan S, Gao J, Han H, Liu J, Lu G, Liu D, Yi Y, Zhu B, Gao GF. An unexpected similarity between antibiotic-resistant NDM-1 and beta-lactamase II from Erythrobacter litoralis. Protein Cell. 2011;2(3):250–8.  https://doi.org/10.1007/s13238-011-1027-0.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Shaw WV, Hopwood DA. Chloramphenicol acetylation in Streptomyces. J Gen Microbiol. 1976;94(1):159–66.  https://doi.org/10.1099/00221287-94-1-159.CrossRefPubMedGoogle Scholar
  153. 153.
    Hansen LH, Planellas MH, Long KS, Vester B. The order Bacillales hosts functional homologs of the worrisome cfr antibiotic resistance gene. Antimicrob Agents Chemother. 2012;56(7):3563–7.  https://doi.org/10.1128/AAC.00673-12.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Kieffer N, Nordmann P, Poirel L. Moraxella species as potential sources of MCR-like polymyxin resistance determinants. Antimicrob Agents Chemother. 2017;61(6).  https://doi.org/10.1128/AAC.00129-17.
  155. 155.
    Poirel L, Rodriguez-Martinez JM, Mammeri H, Liard A, Nordmann P. Origin of plasmid-mediated quinolone resistance determinant QnrA. Antimicrob Agents Chemother. 2005;49(8):3523–5.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Jacoby GA, Griffin CM, Hooper DC. Citrobacter spp. as a source of qnrB alleles. Antimicrob Agents Chemother. 2011;55(11):4979–84.  https://doi.org/10.1128/AAC.05187-11. AAC.05187-11 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Hooper DC, Jacoby GA. Topoisomerase inhibitors: fluoroquinolone mechanisms of action and resistance. Cold Spring Harb Perspect Med. 2016;6(9).  https://doi.org/10.1101/cshperspect.a025320.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Albornoz E, Tijet N, De Belder D, Gomez S, Martino F, Corso A, Melano RG, Petroni A. qnrE1, a member of a new family of plasmid-located quinolone resistance genes, originated from the chromosome of Enterobacter species. Antimicrob Agents Chemother. 2017;61(5).  https://doi.org/10.1128/AAC.02555-16.
  159. 159.
    Yuan J, Xu X, Guo Q, Zhao X, Ye X, Guo Y, Wang M. Prevalence of the oqxAB gene complex in Klebsiella pneumoniae and Escherichia coli clinical isolates. J Antimicrob Chemother. 2012;67(7):1655–9.  https://doi.org/10.1093/jac/dks086.CrossRefPubMedGoogle Scholar
  160. 160.
    Wachino J, Yamane K, Suzuki S, Kimura K, Arakawa Y. Prevalence of fosfomycin resistance among CTX-M-producing Escherichia coli clinical isolates in Japan and identification of novel plasmid-mediated fosfomycin-modifying enzymes. Antimicrob Agents Chemother. 2010;54(7):3061–4.  https://doi.org/10.1128/AAC.01834-09.CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Guo Q, Tomich AD, McElheny CL, Cooper VS, Stoesser N, Wang M, Sluis-Cremer N, Doi Y. Glutathione-S-transferase FosA6 of Klebsiella pneumoniae origin conferring fosfomycin resistance in ESBL-producing Escherichia coli. J Antimicrob Chemother. 2016;71(9):2460–5.  https://doi.org/10.1093/jac/dkw177.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Arthur M, Brisson-Noel A, Courvalin P. Origin and evolution of genes specifying resistance to macrolide, lincosamide and streptogramin antibiotics: data and hypotheses. J Antimicrob Chemother. 1987;20(6):783–802.PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Marshall CG, Broadhead G, Leskiw BK, Wright GD. D-Ala-D-Ala ligases from glycopeptide antibiotic-producing organisms are highly homologous to the enterococcal vancomycin-resistance ligases VanA and VanB. Proc Natl Acad Sci U S A. 1997;94(12):6480–3.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Hughes J, Mellows G, Soughton S. How does Pseudomonas fluorescens, the producing organism of the antibiotic pseudomonic acid A, avoid suicide? FEBS Lett. 1980;122(2):322–4.PubMedCrossRefGoogle Scholar
  165. 165.
    Ford PJ, Avison MB. Evolutionary mapping of the SHV ß-lactamase and evidence for two separate IS26-dependent blaSHV mobilization events from the Klebsiella pneumoniae chromosome. J Antimicrob Chemother. 2004;54(1):69–75.PubMedCrossRefGoogle Scholar
  166. 166.
    Toleman MA, Spencer J, Jones L, Walsh TR. blaNDM-1 is a chimera likely constructed in Acinetobacter baumannii. Antimicrob Agents Chemother. 2012;56(5):2773–6.  https://doi.org/10.1128/AAC.06297-11.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Cox G, Stogios PJ, Savchenko A, Wright GD (2015) Structural and molecular basis for resistance to aminoglycoside antibiotics by the adenylyltransferase ANT(2″)-Ia. mBio 6 (1). doi: https://doi.org/10.1128/mBio.02180-14.
  168. 168.
    Dunny GM, Berntsson RP. Enterococcal sex pheromones: evolutionary pathways to complex, two-signal systems. J Bacteriol. 2016;198(11):1556–62.  https://doi.org/10.1128/JB.00128-16.CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Garcillan-Barcia MP, Alvarado A, de la Cruz F. Identification of bacterial plasmids based on mobility and plasmid population biology. FEMS Microbiol Rev. 2011;35(5):936–56.  https://doi.org/10.1111/j.1574-6976.2011.00291.x.CrossRefPubMedGoogle Scholar
  170. 170.
    Orlek A, Stoesser N, Anjum MF, Doumith M, Ellington MJ, Peto T, Crook D, Woodford N, Walker AS, Phan H, Sheppard AE. Plasmid classification in an era of whole-genome sequencing: application in studies of antibiotic resistance epidemiology. Front Microbiol. 2017;8:182.  https://doi.org/10.3389/fmicb.2017.00182.CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Carattoli A. Resistance plasmid families in Enterobacteriaceae. Antimicrob Agents Chemother. 2009;53(6):2227–38.  https://doi.org/10.1128/AAC.01707-08. AAC.01707-08 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  172. 172.
    Carattoli A, Zankari E, Garcia-Fernandez A, Voldby Larsen M, Lund O, Villa L, Moller Aarestrup F, Hasman H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014;58(7):3895–903.  https://doi.org/10.1128/AAC.02412-14.CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Bertini A, Poirel L, Mugnier PD, Villa L, Nordmann P, Carattoli A. Characterization and PCR-based replicon typing of resistance plasmids in Acinetobacter baumannii. Antimicrob Agents Chemother. 2010;54(10):4168–77.  https://doi.org/10.1128/AAC.00542-10.CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Jensen LB, Garcia-Migura L, Valenzuela AJ, Lohr M, Hasman H, Aarestrup FM. A classification system for plasmids from enterococci and other Gram-positive bacteria. J Microbiol Methods. 2010;80(1):25–43.  https://doi.org/10.1016/j.mimet.2009.10.012.CrossRefPubMedGoogle Scholar
  175. 175.
    Lozano C, Garcia-Migura L, Aspiroz C, Zarazaga M, Torres C, Aarestrup FM. Expansion of a plasmid classification system for Gram-positive bacteria and determination of the diversity of plasmids in Staphylococcus aureus strains of human, animal, and food origins. Appl Environ Microbiol. 2012;78(16):5948–55.  https://doi.org/10.1128/AEM.00870-12.CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Garcillan-Barcia MP, de la Cruz F. Ordering the bestiary of genetic elements transmissible by conjugation. Mob Genet Elements. 2013;3(1):e24263.  https://doi.org/10.4161/mge.24263.CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Hancock SJ, Phan MD, Peters KM, Forde BM, Chong TM, Yin WF, Chan KG, Paterson DL, Walsh TR, Beatson SA, Schembri MA. Identification of IncA/C plasmid replication and maintenance genes and development of a plasmid multilocus sequence typing scheme. Antimicrob Agents Chemother. 2017;61(2).  https://doi.org/10.1128/AAC.01740-16.
  178. 178.
    Jacoby GA. Resistance plasmids of Pseudomonas. In: Sokatch JR, editor. The bacteria, vol. X. The biology of Pseudomonas. Orlando: Academic Press, Inc.; 1986. p. 265–93.Google Scholar
  179. 179.
    Hughes VM, Datta N. Conjugative plasmids in bacteria of the ‘pre-antibiotic’ era. Nature. 1983;302(5910):725–6.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Datta N, Hughes VM. Plasmids of the same Inc groups in Enterobacteria before and after the medical use of antibiotics. Nature. 1983;306(5943):616–7.PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Partridge SR. Analysis of antibiotic resistance regions in Gram-negative bacteria. FEMS Microbiol Rev. 2011;35(5):820–55.  https://doi.org/10.1111/j.1574-6976.2011.00277.x.CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Siguier P, Gourbeyre E, Varani A, Ton-Hoang B, Chandler M. Everyman’s guide to bacterial insertion sequences. Microbiol Spectr. 2015;3(2):MDNA3-0030-2014.  https://doi.org/10.1128/microbiolspec.MDNA3-0030-2014.CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Lartigue MF, Poirel L, Aubert D, Nordmann P. In vitro analysis of ISEcp1B-mediated mobilization of naturally occurring β-lactamase gene blaCTX-M of Kluyvera ascorbata. Antimicrob Agents Chemother. 2006;50(4):1282–6.  https://doi.org/10.1128/AAC.50.4.1282-1286.2006.CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Toleman MA, Bennett PM, Walsh TR. ISCR elements: novel gene-capturing systems of the 21st century? Microbiol Mol Biol Rev. 2006;70(2):296–316.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Labbate M, Case RJ, Stokes HW. The integron/gene cassette system: an active player in bacterial adaptation. Methods Mol Biol. 2009;532:103–25.  https://doi.org/10.1007/978-1-60327-853-9_6.CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Partridge SR, Tsafnat G, Coiera E, Iredell JR. Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol Rev. 2009;33(4):757–84.  https://doi.org/10.1111/j.1574-6976.2009.00175.x.CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Guillard T, Grillon A, de Champs C, Cartier C, Madoux J, Bercot B, Lebreil AL, Lozniewski A, Riahi J, Vernet-Garnier V, Cambau E. Mobile insertion cassette elements found in small non-transmissible plasmids in Proteeae may explain qnrD mobilization. PLoS One. 2014;9(2):e87801.  https://doi.org/10.1371/journal.pone.0087801.CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Guglielmini J, Quintais L, Garcillan-Barcia MP, de la Cruz F, Rocha EP. The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation. PLoS Genet. 2011;7(8):e1002222.  https://doi.org/10.1371/journal.pgen.1002222.CrossRefPubMedPubMedCentralGoogle Scholar
  189. 189.
    Fournier PE, Vallenet D, Barbe V, Audic S, Ogata H, Poirel L, Richet H, Robert C, Mangenot S, Abergel C, Nordmann P, Weissenbach J, Raoult D, Claverie JM. Comparative genomics of multidrug resistance in Acinetobacter baumannii. PLoS Genet. 2006;2(1):e7.  https://doi.org/10.1371/journal.pgen.0020007.CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Roy Chowdhury P, Scott M, Worden P, Huntington P, Hudson B, Karagiannis T, Charles IG, Djordjevic SP. Genomic islands 1 and 2 play key roles in the evolution of extensively drug-resistant ST235 isolates of Pseudomonas aeruginosa. Open Biol. 2016;6(3).  https://doi.org/10.1098/rsob.150175.PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Colomer-Lluch M, Jofre J, Muniesa M. Quinolone resistance genes (qnrA and qnrS) in bacteriophage particles from wastewater samples and the effect of inducing agents on packaged antibiotic resistance genes. J Antimicrob Chemother. 2014;69(5):1265–74.  https://doi.org/10.1093/jac/dkt528.CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Quiros P, Colomer-Lluch M, Martinez-Castillo A, Miro E, Argente M, Jofre J, Navarro F, Muniesa M. Antibiotic resistance genes in the bacteriophage DNA fraction of human fecal samples. Antimicrob Agents Chemother. 2014;58(1):606–9.  https://doi.org/10.1128/AAC.01684-13.CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Rice LB, Carias LL, Hutton RA, Rudin SD, Endimiani A, Bonomo RA. The KQ element, a complex genetic region conferring transferable resistance to carbapenems, aminoglycosides, and fluoroquinolones in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2008;52(9):3427–9.  https://doi.org/10.1128/AAC.00493-08. AAC.00493-08 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Gillings MR, Paulsen IT, Tetu SG. Genomics and the evolution of antibiotic resistance. Ann N Y Acad Sci. 2017;1388(1):92–107.  https://doi.org/10.1111/nyas.13268.CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Liebert CA, Hall RM, Summers AO. Transposon Tn21, flagship of the floating genome. Microbiol Mol Biol Rev. 1999;63(3):507–22.PubMedPubMedCentralGoogle Scholar
  196. 196.
    Jacoby GA, Munoz-Price LS. The new ß-lactamases. N Engl J Med. 2005;352(4):380–91.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Shaw KJ, Poppe S, Schaadt R, Brown-Driver V, Finn J, Pillar CM, Shinabarger D, Zurenko G. In vitro activity of TR-700, the antibacterial moiety of the prodrug TR-701, against linezolid-resistant strains. Antimicrob Agents Chemother. 2008;52(12):4442–7.  https://doi.org/10.1128/AAC.00859-08.CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    Arias CA, Mendes RE, Stilwell MG, Jones RN, Murray BE. Unmet needs and prospects for oritavancin in the management of vancomycin-resistant enterococcal infections. Clin Infect Dis. 2012;54(Suppl 3):S233–8.  https://doi.org/10.1093/cid/cir924.CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Shen Z, Ding B, Bi Y, Wu S, Xu S, Xu X, Guo Q, Wang M. CTX-M-190, a novel β-lactamase resistant to tazobactam and sulbactam, identified in an Escherichia coli clinical isolate. Antimicrob Agents Chemother. 2017;61(1).  https://doi.org/10.1128/AAC.01848-16.
  200. 200.
    Livermore DM, Mushtaq S, Warner M, Vickers A, Woodford N. In vitro activity of cefepime/zidebactam (WCK 5222) against gram-negative bacteria. J Antimicrob Chemother. 2017;72(5):1373–85.  https://doi.org/10.1093/jac/dkw593.CrossRefPubMedGoogle Scholar
  201. 201.
    Shields RK, Chen L, Cheng S, Chavda KD, Press EG, Snyder A, Pandey R, Doi Y, Kreiswirth BN, Nguyen MH, Clancy CJ. Emergence of ceftazidime-avibactam resistance due to plasmid-borne blaKPC-3 mutations during treatment of carbapenem-resistant Klebsiella pneumoniae infections. Antimicrob Agents Chemother. 2017;61(3).  https://doi.org/10.1128/AAC.02097-16.
  202. 202.
    Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010;74(3):417–33.  https://doi.org/10.1128/MMBR.00016-10. 74/3/417 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  203. 203.
    Bates J, Jordens JZ, Griffiths DT. Farm animals as a putative reservoir for vancomycin-resistant enterococcal infection in man. J Antimicrob Chemother. 1994;34(4):507–14.PubMedCrossRefGoogle Scholar
  204. 204.
    Kunin CM, Tupasi T, Craig WA. Use of antibiotics. A brief exposition of the problem and some tentative solutions. Ann Intern Med. 1973;79(4):555–60.PubMedCrossRefGoogle Scholar
  205. 205.
    Barlam TF, Cosgrove SE, Abbo LM, MacDougall C, Schuetz AN, Septimus EJ, Srinivasan A, Dellit TH, Falck-Ytter YT, Fishman NO, Hamilton CW, Jenkins TC, Lipsett PA, Malani PN, May LS, Moran GJ, Neuhauser MM, Newland JG, Ohl CA, Samore MH, Seo SK, Trivedi KK. Implementing an antibiotic stewardship program: guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis. 2016;62(10):e51–77.  https://doi.org/10.1093/cid/ciw118.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • George A. Jacoby
    • 1
  1. 1.Lahey Hospital and Medical CenterBurlingtonUSA

Personalised recommendations