Stability Analysis of Singularly Perturbed Switched Linear Systems

  • J. Ben Rejeb
  • I.-C. Morărescu
  • A. Girard
  • J. Daafouz
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 475)


This chapter proposes a methodology for stability analysis of singularly perturbed switched linear systems. We emphasize that, besides the stability of each subsystem, we need a dwell-time condition to guarantee the overall system stability. The main results of this study provide a characterization of an upper bound on the dwell time ensuring the overall system’s stability. Remarkably, this bound is the sum of two terms. The first one is an upper bound on the dwell time ensuring stability of the reduced-order linear switched system, which is zero if all the reduced modes share a common Lyapunov function. The magnitude of the second term is of order of the parameter defining the ratio between the two timescales of the singularly perturbed system.



This work was funded by the ANR project COMPACS—“Computation Aware Control Systems”, ANR-13-BS03-004.


  1. 1.
    Balluchi, A., .Di Benedetto, M., Pinello, C., Rossi, C., Sangiovanni-Vincentelli, A.: Cut-off in engine control: a hybrid system approach. In: Proceedings of the 36th IEEE Conference on Decision and Control, 1997, vol. 5, pp. 4720–4725 (1997)Google Scholar
  2. 2.
    Donkers, M.C.F., Heemels, W.P.M.H., van de Wouw, N., Hetel, L.: Stability analysis of networked control systems using a switched linear systems approach. IEEE Trans. Autom. Control 56(9), 2101–2115 (2011). SeptMathSciNetCrossRefGoogle Scholar
  3. 3.
    Branicky, M.S.: Multiple lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. Autom. Control 43(4), 475–482 (1998). AprMathSciNetCrossRefGoogle Scholar
  4. 4.
    Dayawansa, W.P., Martin, C.F.: A converse lyapunov theorem for a class of dynamical systems which undergo switching. IEEE Trans. Autom. Control 44(4), 751–760 (1999). AprilMathSciNetCrossRefGoogle Scholar
  5. 5.
    Liberzon, D.: Switching in Systems and Control. Springer, Boston (2003)CrossRefGoogle Scholar
  6. 6.
    Malloci, I., Daafouz, J., Iung, C., Bonidal, R., Szczepanski, P.: Switched system modeling and robust steering control of the tail end phase in a hot strip mill. Nonlinear Anal. Hybrid Syst. 3(3), 239–250 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chen, L., Aihara, K.: A model of periodic oscillation for genetic regulatory systems. IEEE Trans. Circuits Syst. 49(10), 1429–1436 (2002)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)CrossRefGoogle Scholar
  9. 9.
    Malloci, J.: Two time scale switched systems: application to steering control in hot strip mills. PhD thesis, University of Lorraine - CRAN UMR 7039 (2009)Google Scholar
  10. 10.
    Sanfelice, R.G., Teel, A.R.: On singular perturbations due to fast actuators in hybrid control systems. Automatica 47, 692–701 (2011)MathSciNetCrossRefGoogle Scholar
  11. 11.
    H.K. Khalil. Nonlinear Systems (Third Edition). Prentice Hall, 2001Google Scholar
  12. 12.
    Kokotović, P., Khalil, H.K., O’Reilly, J.: Singular perturbation methods in control: analysis and design. SIAM Series in Classics and Applied Mathematics. SIAM, Philadelphia (1999)CrossRefGoogle Scholar
  13. 13.
    Balachandra, M., Sethna, P.R.: A generalization of the method of averaging for systems with two time scales. Arch. Ration. Mech. Anal. 58(3), 261–283 (1975)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Nesic, D., Teel, A.R.: Input-to-state stability for nonlinear time-varying systems via averaging. Math. Control Signals Syst. 14, 257–280 (2001)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Teel, A.R., Moreau, L., Nesic, D.: A unified framework for input-to-state stability in systems with two time scales. IEEE Trans. Autom. Control 48(9), 1526–1544 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Alwan, M., Liu, X., Ingalls, B.: Exponential stability of singularly perturbed switched systems with time delay. Nonlinear Anal. Hybrid Syst. 2(3), 913–921 (2008)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Malloci, J., Daafouz, J., Iung, C.: Stabilization of continuous-time singularly perturbed switched systems. In: Proceedings of the 48th IEEE Conference on Decision and Control (2009)Google Scholar
  18. 18.
    Rantzer, A.: Distributed control of positive systems. In: 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp. 6608–6611. IEEE (2011)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • J. Ben Rejeb
    • 1
  • I.-C. Morărescu
    • 1
  • A. Girard
    • 2
  • J. Daafouz
    • 1
  1. 1.Université de Lorraine, CNRS, CRANNancyFrance
  2. 2.Laboratoire des Signaux et Systèmes (L2S), CNRS, CentraleSupélec, Université Paris-Sud, Université Paris-SaclaycedexFrance

Personalised recommendations